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Data presented in this paper show that the size of the endogenous coenzyme Q (CoQ)

pool is not a limiting factor in the activation of mitochondrial glyceropho-

sphate-dependent respiration by exogenous CoQ3, since successive additions of

succinate and NADH to brown adipose tissue mitochondria further increase the rate

of oxygen uptake. Because the inhibition of glycerophosphate-dependent respiration

by oleate was eliminated by added CoQ3, our data indicate that the activating effect of

CoQ3 is related to the release of the inhibitory effect of endogenous free fatty acids

(FFA). Both the inhibitory effect of FFA and the activating effect of CoQ3 could be

demonstrated only for glycerophosphate-dependent respiration, while succinate- or

NADH-dependent respiration was not affected. The presented data suggest differ-

ences between mitochondrial glycerophosphate dehydrogenase and succinate or

NADH dehydrogenases in the transfer of reducing equivalents to the CoQ pool.

Mitochondrial glycerophosphate dehydro-
genase (mGPDH), together with cytosolic
glycerophosphate dehydrogenase (cGPDH),
form the glycerophosphate shuttle (Estabrook

& Sacktor, 1958; Bucher & Klingenberg, 1958).
This shuttle is involved, alongside with the
malate-aspartate shuttle (Scholz et al., 2000),
in the reoxidation of cytosolic NADH, bypass-
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ing complex I. In contrast with the malate-
aspartate shuttle, the glycerophosphate shuttle
is highly active only in insect flight muscle cells
(Estabrook & Sactor, 1958; Bolter & Chefurka,
1990) and in brown adipose tissue of newborn
mammals and in hibernating mammals
(Houštìk et al., 1975). However, some publica-
tions showed an important role of this shuttle
also in other mammalian organs, such as pla-
centa (Olivera & Meigs, 1975; Swierczynski et

al., 1976), testes (MacDonald & Brown, 1996)
or pancreatic �-cells (Ishihara et al., 1996) and
in the regulation of various physiological and
pathological processes, such as thermogenesis
(Lardy et al., 1995), diabetes (Senner et al.,
1993) or obesity (Lardy et al., 1989). Brown et

al. (2002) demonstrated a lethal effect of elimi-
nation of the two genes for mGPDH and
cGPDH in mice.
In spite of this increasing interest, there are

still many problems not fully clarified, related
to the complex system of factors regulating
mGPDH expression in various organs and its
participation in the regulation of the cell en-
ergy provision system.
In a previous study we found that activity of

mGPDH is highly stimulated by CoQ3, a short-
chain homolog of coenzyme Q (Rauchová et al.,
1992). The aim of the present study was to fur-
ther clarify the mechanism of the CoQ3 activat-
ing effect on mGPDH. Because in brown adi-
pose tissue mitochondria, mGPDH is highly
stimulated by removal of endogenous free fatty
acids (FFA) (Houštìk & Drahota, 1975; Rau-
chová & Drahota, 1984), we tested whether ac-
tivation of mGPDH is related to the limited
pool size of endogenous CoQ as the acceptor of
reducing equivalents from the highly active
mGPDH, or whether this activation indicates
that CoQ3 can compete with the endogenous
FFA and release their inhibitory effect.

MATERIALS AND METHODS

Brown adipose tissue of adult, male Syrian
hamsters adapted at 4�C for 3 weeks was used.

Mitochondria were isolated in 0.25 M sucrose,
10 mM Tris/HCl, 1 mM EDTA, pH 7.4 as de-
scribed by Hittelman et al. (1969) and stored
at –70�C. Enzyme activities and respiration
were measured using fresh or frozen-thawed
mitochondria.
Glycerophosphate and succinate cytochro-

me c reductases activities were determined by
measuring the rate of cytochrome c reduction
at 550 nm in a medium containing 50 mM
KCl, 20 mM Tris/HCl, 1 mM EDTA, 2 mM
KCN, 100 �M cytochrome c and 50–75 �g mi-
tochondrial protein/ml, pH 7.4. The reaction
was started by addition of 25 mM glycero-
phosphate. The enzyme activity was ex-
pressed as nmol cytochrome c reduced per
min per mg protein using an extinction coeffi-
cient of 19.1. The activity of glycerophosphate
and succinate dehydrogenase was determined
using dichlorophenol indophenol (DCIP) as an
artificial electron acceptor as described previ-
ously (Rauchová et al., 1993).
Oxygen consumption was measured with a

High Resolution Oxygraph (OROBOROS, Aus-
tria) in a medium containing 100 mM KCl, 20
mM Tris/HCl, 4 mM K-phosphate, 3 mM
MgCl2, 1 mM EDTA at pH 7.2. The oxygraphic
curves presented are the first derivative of oxy-
gen tension changes. For calculation and pre-
sentation of oxygraphic data OROBOROS soft-
ware was used (Gnaiger et al., 1995). Oxygen
consumption is expressed as pmol or nmol O2
per second per mg protein. Proteins were de-
termined according to Lowry et al. (1951) using
bovine serum albumin as a standard.

RESULTS

In this study we extend our previous find-
ings (Rauchová et al., 1992) that the activating
effect of CoQ3 is specific for glycerophosphate
cytochrome c reductase and cannot be de-
tected when succinate cytochrome c reductase
activity is measured. Data in Table 1 demon-
strate the antimycin-sensitive and insensitive
portion of the glycerophosphate and succinate
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cytochrome c reductase activities and com-
pare the activating effect of CoQ3 with that of
menadione. We found that both reductases
were inhibited by 93% by antimycin A. The in-
hibitory effect of antimycin A on glycero-
phosphate cytochrome c reductase was nearly
completely restored by menadione, but
succinate cytochrome c reductase activity was
restored by the same menadione concentra-
tion only by 50%. Because, in contrast to

menadione, CoQ3 added in the presence of
antimycin A cannot shuttle electrons from
glycerophosphate dehydrogenase to cyto-
chrome c, its activating effect must be con-

nected with a modification of the mGPDH
function.
In further experiments we compared the

rates of cytochrome c reductase activity in the
presence of glycerophosphate and/or succi-
nate. As demonstrated in Fig. 1, the rate of
cytochrome c reduction is significantly higher
when both substrates are present in the me-
dium. Similar data were also obtained by
polarographic measurements. The rate of oxy-

gen uptake in the presence of glycero-
phosphate was further increased by subse-
quent additions of succinate and NADH
(Fig. 2, Table 2). All these data clearly indi-
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Figure 1. Glycerophosphate and

succinate cytochrome c reductase

activities (nmol/min per mg pro-

tein) of brown adipose tissue mito-

chondria.

Where indicated, glycerophosphate
(GP) was 25 mM and succinate (SUC)
25 mM or both substrates were pres-
ent. Activities were determined in the
absence (A) and in the presence (B) of
0.2% fatty acid free bovine serum albu-
min. Frozen-thawed mitochondria
were used. Data presented are means
of four experiments ±S.E.M.

Table 1. Activation of glycerophosphate and succinate cytochrome c reductase activity of brown adi-

pose tissue mitochondria by CoQ3 and menadione

Enzyme activity (nmol/min per mg protein)

Control + CoQ3 (20 �M) + Menadione (800 �M)

Glycerophosphate cytochrome c reductase

Total activity 422.9 ± 31 (100%) 781.2 ± 23 (100%) 718.9 ± 5 (100%)

AA-sensitive 392.7± 31 (93%) 700.3 ± 15 (90%) 123.0 ± 64 (10%)

AA-insensitive 30.2 ± 4 (7%) 80.8± 30 (10%) 643.4 ± 68 (90%)

Succinate cytochrome c reductase

Total activity 265.4 ± 33 (100%) 250.0 ± 15 (100%) 196.3 ± 39 (100%)

AA-sensitive 251.1 ± 34 (93%) 185.2 ± 11 (74%) 85.9 ± 22 (44%)

AA-insensitive 17.7 ± 2 (7%) 65.9 ± 4 (44%) 110.4 ± 18 (56%)

Experimental conditions were the same as in Fig 1. Glycerophosphate was 25 mM, succinate 25 mM, antimycin A 1 �M.
Data presented are means of four experiments ± S.E.M.



cate that the endogenous CoQ pool cannot be
the limiting factor for the rate of mGPDH ac-
tivity and that the activating effect of CoQ3
must be due to modification of mGPDH activ-
ity.

In our previous papers we found that the
mGPDH activity is inhibited by endogenous
FFA and that the inhibitory effect of endoge-
nous fatty acids can be released by fatty acid
oxidation (Bulychev et al., 1972) or by their ex-
traction by added bovine serum albumin
(BSA) (Houštìk & Drahota, 1975; Rauchová &
Drahota, 1984). Data presented in Fig. 3 dem-
onstrate that BSA and oleate induced pro-
nounced changes of glycerophosphate
cytochrome c oxidoreductase activity. Both
BSA and oleate had a less pronounced effect

on the activity of glycerophosphate dichlo-
rophenol indophenol oxidoreductase. These
data are thus in agreement with our previous
proposal that free fatty acids inhibit the trans-
fer of reducing equivalents from glycerophos-
phate dehydrogenase to the CoQ pool
(Rauchová & Drahota, 1984).
In further experiments we tested to what ex-

tent CoQ3 can modify the inhibition of
mGPDH by added oleate and we found that
CoQ3 can fully restore glycerophosphate-de-

pendent respiration inhibited by oleate
(Fig. 4, Table 3). However, the activating ef-
fect of CoQ3 was less efficient than that of bo-
vine serum albumin. Added CoQ3 compen-
sated only the inhibition caused by added
oleate and even higher concentrations of
added CoQ3 were not able to increase the oxy-
gen uptake to values obtained after addition
of BSA. Also the activating effect of BSA on
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Figure 2. Oxygen consumption by brown adipose

tissue mitochondria in the presence of various re-

spiratory substrates.

To the incubation medium containing 100 mM KCl, 10
mM Tris/HCl, 4 mM K-phosphate, 3 mM MgCl2, 1 mM
EDTA (pH 7.2), frozen-thawed brown adipose tissue mi-
tochondria (MITO), 0.1 mg protein/ml of medium, 10
mM glycerophosphate (GP), 25 �M cytochrome c

(CYTO), 0.4% bovine serum albumin (BSA), 10 mM
succinate (SUC) and 0.2 mM NADH were added as indi-
cated. The oxygraphic curve is the first derivative of ox-
ygen concentration changes. Oxygen uptake is ex-
pressed as pmol oxygen per second per mg protein. The
same results were obtained using three preparations of
mitochondria.

Figure 3. The effect of bovine serum albumin and

Na-oleate on glycerophosphate cytochrome c

oxidoreductase (GP-cyto c) and glycerophosphate

dichlorophenol indophenol oxidoreductase

(GP-DCIP).

Bovine serum albumin (BSA) was 0.2% and Na-oleate
(OLE) was 15 �M. C indicates control samples. Frozen-
thawed mitochondria were used. The same results were
obtained using three preparations of mitochondria.



glycerophosphate-dependent respiration was
higher than that of CoQ3 (Fig. 5) and CoQ3
could not further activate glycerophos-
phate-dependent oxygen consumption in the
presence of BSA (Table 4).

DISCUSSION

Activity of mGPDH is regulated by many fac-
tors, such as calcium ions (MacDonald &
Brown, 1996), acyl CoA esters (Bukowiecki &
Lindberg, 1974), free fatty acids (Drahota &
Houštìk, 1976; Rauchová & Drahota, 1984;
Rauchová et al. 1993) or intermediates of
glycolysis (Swierczynski et al., 1977). Its
biogenesis is under the control of thyroid and
steroid hormones (Weitzel et al., 2001).
Regulation by FFA is of particular impor-

tance because the inhibitory effect of FFA is
completely reversible. When fatty acids

bound to isolated mitochondria are oxidized
(Bulychev et al., 1972) or removed by BSA
treatment (Drahota & Houštìk, 1976;
Rauchová & Drahota, 1984) the inhibitory ef-
fect disappears. The mechanism of this inhibi-
tory effect has not yet been fully clarified. It
seems that FFA do not interact directly with
the catalytic site of the enzyme as do acyl-CoA
esters (Bukowiecki & Lindberg, 1974), but
modify the transfer of reducing equivalents to
coenzyme Q or to artificial acceptors.
The inhibitory effect of FFA is specific for

glycerophosphate oxidase or cytochrome c

reductase activity. Succinate oxidase or
cytochrome c reductase activity is not inhib-
ited by FFA nor activated by BSA (Houštìk &
Drahota, 1976). This supports our previous
finding that the transfer of reducing equiva-
lents from mGPDH to the coenzyme Q pool
has a different mechanism than that from
succinate and NADH dehydrogenases, most
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Table 2. Respiration of brown adipose tissue mitochondria in the presence of various substrates

Additions nmol oxygen per second per mg protein

Glycerophosphate (10 mM) 0.97 39%

GP + cyt c (25 �M) 1.22 49%

GP + cyt c + BSA (0.1 %) 2.48 100%

+ Succinate (10 mM) 4.08 164%

+ NADH (0.2 mM) 5.51 228%

Experimental conditions are the same as described in Fig. 2. Similar results were obtained in three experiments with mito-
chondria isolated from four hamsters.

Table 3. Release of the oleate-induced inhibition of mGPDH by CoQ3.

Additions Oxygen uptake
(nmol per second per mg protein)

Without cytochrome c With cytochrome c (25 �M)

10 mM glycerophosphate 1.37 (100 %) 1.36 (100 %)

+Na-oleate (15 �M) 0.51 (37 %) 0.40 (29 %)

+CoQ3 (50 �M) 1.05 (77 %) 1.30 (96 %)

+BSA (0.1 %) 2.15 (169 %) 3.76 (276 %)

Experimental conditions were the same as described in Fig 3. Similar results were obtained in three experiments with mito-
chondria isolated from four hamsters.



probably due to the absence of a CoQ-binding
protein in the mGHPH enzyme complex
(Cottingham & Ragan 1980a; 1980b; Rau-
chová et al.,1992; 1997).
Modulation of mGPDH activity by FFA may,

however, occur also through their effect on
membrane fluidity. As we found in previous

studies, mGPDH activity correlates with
membrane fluidity changes induced by FFA,
both in the intact mitochondrial membrane
(Amler et al., 1986) and in liposomes with in-
corporated mGPDH (Amler et al., 1990). In in-
sect thoracic muscle mitochondria Wojtczak
& Nalecz (1979) found that the activity of
mGPDH was dependent on the surface charge
of the mitochondrial membrane and in lipo-
somes it was dependent on their phospholipid
composition (Nalecz et al., 1980).
As demonstrated in Fig. 4, CoQ3 can release

the inhibition by added FFA. However, in
these experimental conditions, CoQ3 in-
creased mGPDH activity only to the level ob-
tained before the addition of oleate. This
could be related to the fact that, although the
activating effect of both CoQ3 and BSA is re-
lated to fatty acid inhibition of mGPDH, evi-
dently the mechanism of action of both sub-
stances is different. BSA is a more powerful
activating agent because it can extract fatty
acids from their binding sites whereas CoQ3
activation could be explained by competition
with fatty acids for the fatty acid binding
sites.
Data presented in this communication de-

scribe another mechanism which participates
in the regulation of mitochondrial glycero-
phosphate dehydrogenase, viz. competition of
CoQ and FFA, and support the idea that CoQ,
besides its role in the transport of reducing
equivalents and antioxidative protection
(Lenaz, 2001), has an important role also in
the regulation of cell metabolic processes as,
e.g., in the regulation of uncoupling proteins
function (Echtay et al., 2000; 2001).
The existence of a competition between FFA

and CoQ3 at the acceptor site of mGPDH also
suggests that the inhibitory effect of FFA is
exerted by occupying the CoQ-reducing site in
the enzyme, thus preventing transfer of re-
ducing equivalents to the CoQ pool.
Recent models of organization of the mito-

chondrial respiratory chain suggest the exis-
tence of specific supramolecular aggregates
formed by complexes III and IV or complexes
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Figure 4. Inhibition by oleate of glycerophos-

phate-dependent oxygen consumption and the re-

lease of the inhibition by CoQ3 in the absence (A)

and in the presence (B) of cytochrome c.

Where indicated, freshly isolated mitochondria (MITO)
0.1 mg protein/ml, cytochrome c (CYTO) 25 �M,
glycerophosphate (GP) 10 mM, Na-oleate (OLE) 15 �M,
coenzyme Q3 (Q) 20 �M and bovine serum albumin
0.2% (BSA) were added. The oxygraphic curves are the
first derivatives of oxygen tension changes. Oxygen up-
take is expressed as pmol oxygen per second per mg
protein. The same results were obtained using three
preparations of mitochondria.



I, III and IV (Schagger & Pfeiffer, 2001).
Succinate dehydrogenase is not involved. On
the other hand, the state of mGPDH is not
known although the lack of CoQ binding pro-
teins (Cottingham & Ragan, 1980a; 1980b) is
in favour of electron transfer from the enzyme
to the CoQ pool. Moreover, a previous study
(Rauchová et al., 1997) has demonstrated a
CoQ pool function for mGPDH. Thus, the
transfer of reducing equivalents from
succinate dehydrogenase and evidently also
from glycerophosphate dehydrogenase must
occur through the CoQ pool without direct in-
teractions between individual complexes. The
differences that exist between succinate and
glycerophosphate dehydrogenases described

in this communication and in a previous pa-
per (Drahota et al., 2002) support our hypothe-
sis that the transfer of reducing equivalents
from succinate dehydrogenase is better pro-
tected against electron leak than that from
glycerophosphate dehydrogenase.
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