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Announced as “the most revolutionary technology in decades” [1], artificial intelligence (AI) allows
for the analysis and extraction of insights from huge clinical datasets. By using AI algorithms,
healthcare professionals expect to gain valuable insights into patient outcomes, identify predictive
factors, and develop personalized approaches for each individual. In addition, AI also holds the
promise of streamlining clinical workflows, supporting real-time decision making, and enabling
more efficient use of healthcare resources. As AI technology continues to develop and infiltrate new
fields of our society every day, we wanted to propose a critical appraisal and try to define, among its
numerous possible applications in transplant medicine, the ones that have the capability to address
existing gaps and solve unmet needs.

The widespread introduction of AI in transplant nephrology has been prompted by the ever-
increasing complexity and volume of information, as well as the existence of multiple nephrology
registries around the world. Since the first kidney transplant, we have witnessed a shift in therapeutic
goals to achieve. Initially, most efforts were focused on obtaining good short-term outcomes. This was
accomplished by refining surgical techniques, researching and learning aboutmore effective preservation
solutions, and improving immunosuppression protocols. As a result, the use of kidney transplantation as
a therapeutic procedure has spread rapidly (becoming, de facto, a victim of its own success, with growing
waiting lists), and the focus has had to shift towards long-term success. In contrast with short-term
outcomes, the number and diversity of variables impacting the survival of graft and patient in the long-
term (including recipient’s innate and adaptive alloimmune responses, recurrence of the initial disease,
nephrotoxicity of the immunosuppressive drugs, infections, cancer, etc.) [2] complexify the decision-
making process, largely explaining the relative stagnation of kidney transplantation outcomes over the
last few decades [3]. Here, AI could play a crucial role since this technology unveils a tremendous
potential to improve immunological donor/recipient matching, kidney graft organ preservation,
ischemic/reperfusion profiles, and pharmacokinetic post-transplant surveillance, which all have long
term impacts (Figure 1). In addition, AI algorithms are also theoretically capable of identifying patterns
and signatures indicative of rejection or generating personalized risk scores for individual patients by
integrating multiple data sources including donor and recipient demographics, clinical variables, genetic
testing, laboratory results, and histopathological findings.

Biopsies provide key prognostic information for the health of allografts [4–6], which is essential
for choosing the appropriate therapeutic interventions and predicting long-term outcomes. The
complex and time-consuming process of histopathological analysis for kidney allograft biopsies relies
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heavily on the expertise of renal pathologists, which represents a
significant bottleneck due to its limited availability [7]. Even when
accessible, interobserver variability and the subjective nature of
traditional histopathological assessment can result in diagnostic
inaccuracies and misclassifications, which in turn impact clinical
decision-making [7]. AI and machine learning (ML) have
emerged as promising solutions to these problems, increasing
the amount of information that can be collected while decreasing
workload, and increasing reproducibility of the biopsy evaluation
[4]. Recent studies have demonstrated the promise of AI-based
solutions in the field of kidney histopathology. In 2019, Hermsen
et al. [8] proposed the first convolutional neural network (cNN)
applied to kidney biopsies. By using whole slide images of stained
kidney transplant biopsies, the convolutional neural network
(cNN) was effectively trained to perform multi-class
segmentation of kidney tissue sections. It showed excellent
accuracy in tissue classification, particularly in the detection of
glomeruli, and demonstrated strong associations between visually
scored histological elements and network-derived measurements.
This research has laid a solid foundation for AI-driven
quantitative investigations in renal histopathology, facilitating
the integration of deep learning into everyday diagnostics.
Similarly, research conducted by Ginley et al. [9] outlined the
successful application of ML and image analysis algorithms to
classify biopsy samples from patients with diabetic nephropathy,
demonstrating substantial concordance with classifications made
by three different pathologists. This study highlighted the
potential of computational methods, emphasizing that these
tools can provide consistent, precise interpretation of renal
biopsies, thereby improving clinical diagnostic precision and
providing new insights into disease progression and prognosis.

In 2022, Kers and colleagues performed a retrospective,
multicenter analysis on 5,844 kidney allograft slide images
from 1948 patients. CNNs were trained to categorize biopsies
as normal, rejection, or other diseases. A cross-validation and an
external real-world cohort (counting 1,847 and 101 patients,
respectively) have been used as validation. Results showed
concordance for biopsies classified as normal (AUC 0.87 [CI
0.85–0.88]), as disease (AUC 0.87 [0.86–0.88]), as other diseases
AUC (0.75 [0.72–0.77]), or as rejection (AUC 0.75 [0.73–0.76]).
This study showed that deep learning-based classification of
transplant biopsies could support pathological diagnostics of
kidney allograft rejection [10]. Lastly, Yi et al focused on using
AI to classify histological kidney abnormalities to use as
indicators of graft loss [11]. More specifically, a deep learning
algorithm was designed to improve prediction of renal allograft
failure by developing a pipeline that accurately identifies and
quantifies pathology related to interstitial fibrosis, tubular
atrophy, and inflammation. Once the algorithm was trained
on renal graft biopsies, the deriving digital features correlated
significantly with existing scoring systems. Moreover, the
Interstitial and Tubular Abnormality Score (ITAS) in baseline
samples and the Composite Damage Score in post-transplant
biopsies were highly predictive of graft loss, outperforming
conventional scores or clinical predictors. Although promising,
all of these examples of automated image analysis platforms are
not yet ready for routine clinical implementation and several
hurdles need to be overcome [12, 13].

Taking one step back, not using machine learning for image
analysis but for automating the rules of the Banff Classification
applied to individual lesion scores from pathology reports, Yoo et al.
[14] respond to the demand for more reliable and uniform

FIGURE 1 | A multitude of different indicators are crucial to achieve a successful long-term outcome in kidney transplantation. Histopathological features, donor/
recipient immunology matching characteristics, different types of organ perfusion and storage, several types of immunosuppressive regimes, or ischemia/reperfusion
consequences are just someof themost important variables to consider. Artificial intelligence has the capacity tomanage all these data and provide the best possible solution.
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classification of kidney transplant biopsies. This system utilizes an
algorithm that encodes Banff 2019 classification rules. The algorithm
is embedded in an accessible, user-friendly online tool that
categorizes cases into the different Banff diagnostic groups. The
authors compared the system’s diagnostic accuracy, repeatability and
efficiency with those of experienced pathologists from 20 transplant
referral centers from Europe and North America. In the group of
adult kidney transplant recipients, the Banff Automation System
reassigned 83 of 279 cases of antibody-mediated rejection and 57 of
105 cases of T-cell-mediated rejection, applying the Banff rules
strictly and thus more correctly than the expert pathologists did,
possibly because, in day-to-day routine, pathologists draft their
report before some key clinical information are available (DSA
screening, etc.). A key finding of the study was the association
between the system’s correction of diagnostic inaccuracies and
improved assessment of long-term risks to allograft outcomes.
Based on these results the authors claimed that this system has
the potential to streamline study comparisons and reduce healthcare
costs by preventing misdiagnoses.

In the same line [15], provides an innovative AI-based approach to
merging histological and clinical data. In this work, the authors aim to
overcome the heterogeneity in the interpretation of kidney allograft
biopsies by applying ML-based interpretation of pathological lesions,
which is improved by combining it with clinical data. This strategy
strives to shed light on clinical “cloudy” situations where pathologic
condition (e.g., rejection) is never really described as “absent/present,”
but as a constantly changing state. 935 biopsies were read by an expert
panel of pathologist and transplant physicians. The resulting ML
diagnostic classifier was then put to the test on three distinct biopsy
cohorts for a total of 4,693 biopsies. The ML classifier showed
remarkable consistency, achieving over 90% accuracy in predicting
and diagnosing T cell-mediated rejection, antibody-mediated
rejection, and interstitial fibrosis-tubular atrophy. It also showed
superior performance when compared to a computer-based
decision algorithm that strictly adhered to the Banff rules without
taking clinical context into account. Therefore, the use of AI,
integrated with clinicopathological features, can significantly
improve diagnostic efficiency. Notably, the classifier showed perfect
accuracy in categorizing six cases previously highlighted in a Banff
Working Group survey [13] involving 72 pathologists and
95 clinicians, which demonstrated that the human participants
deviated from the reference diagnosis in 26% and 35% of cases for
pathologists and clinicians, respectively.

Next to the evaluation of biopsies and rejection diagnosis, other
applications of AI in kidney transplantation are emerging. After kidney
transplantation, recipients are monitored intensively. Every transplant
center faces the challenges of a rigorous follow-up with early detection
of post-transplant complications and effective management of
immunosuppression. In this context, AI is increasingly becoming
implemented, particularly in overseeing immunosuppression
regimes via pharmacokinetics analysis and in predicting recipient
pharmacokinetic behavior [16–18]. The multi-faceted nature and
the inter-individual variability of immunosuppression management
poses significant challenges due to the need for individualized
treatment plans and vigilant monitoring to prevent rejection
episodes or adverse therapy effects. Also, ML algorithms trained on
historical patient data can predict individual responses to different

immunosuppressive drugs, helping clinicians determine the optimal
dosages and combinations of these drugs. In addition, AI tools can help
monitor patient adherence to medication regimens and alert clinicians
to any deviations. This can be invaluable in an area where non-
adherence can have devastating consequences. For example [17],
developed dose prediction algorithms to forecast recipient
tacrolimus dose after kidney transplantation. This study enrolled
1,045 kidney transplant patients. Different ML models [including
multiple linear regression (MLR), artificial neural network (ANN),
and regression tree (RT)] were applied and evaluated. Among all ML-
models, the RT model showed outperformance in both cohorts
[derivation cohort 0.71 (0.67–0.76); validation cohort 0.73
(0.63–0.82)]. Moreover, RT exceeded the MLR model by 4%. This
frontline paper was the first to propose usingML to predict tacrolimus
stable dose. More recently [19], developed ML prediction models
(Xgboost) to estimate tacrolimus inter-dose AUC based on a limited
number of blood concentrations and predictors. Two different cohorts
of patients have been analyzed following twice-a-day and once-a-day
dosing. Every model was subjected to data division, allocating 75% for
the training set and 25% for the test set. Xgboost models in the training
set that exhibited the lowest RootMean Square Error (RMSE) in a ten-
fold cross-validation experiment were then assessed in the test set as
well as six independent full pharmacokinetic datasets from kidney,
liver, and heart transplant recipients. Xgboost models demonstrated
excellent AUC estimation capabilities in the test datasets, with relative
bias under 5% and relative rootmean square error (RMSE) below 10%.
Furthermore, these models outperformed the Maximum A Posteriori
(MAP) Bayesian estimation in the six independent full
pharmacokinetic datasets.

Despite the promises of AI-driven follow-up after kidney
transplantation, a number of hurdles must be overcome before
these systems can be implemented in clinical practice. First, to
minimize biases and improve generalizability, the performance of
AI algorithms is heavily dependent on the quality and quantity of
data used for training [15]. Second, the integration of AI systems
into clinical workflows requires validation in real-world settings
and consideration of ethical, legal, and regulatory aspects [20, 21].
Additionally, it is important to remember that AI-driven
histological classification systems should not be viewed as a
replacement for expert renal pathologists but rather as a
complementary tool that can enhance their diagnostic abilities.
The combination of human expertise and AI-driven approaches
can lead to improved diagnostic accuracy and better-informed
clinical decision-making, which will ultimately benefit patients
and the broader transplantation community [22, 23].

The application of AI is still in its early stages and, aside from
ethical or privacy issues, the current hype for this technology
should not overshadow AI’s intrinsic limitations. The scientific
method is based on a six-step cycle: observe, define a question,
predict, collect data, analyze data, and draw conclusions [24]. AI
can only improve the prediction phase but lacks the potential to
generate data or new hypotheses autonomously. In addition, in
the prediction phase, AI should not simply be identified as an
“oracle technology” that will correctly predict the outcome of an
experiment. AI could create new correlations, but not causal links
[25]. A full understanding of how the predictions of the “oracle”
are arrived at is an integral part of scientific understanding, and
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therefore AI should be integrated with causal inference reasoning
to be fully exploited in the future. Moreover, existing AI systems
that base their predictions only on associations in data are highly
vulnerable to any changes in the way these variables are related
[25]. That is why, at this stage, AI cannot replace the nuanced and
complex decision-making skills inherent in transplant medicine.
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