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Data and transplant community opinion on delayed graft function (DGF), and its impact on
outcomes, remains varied. An unsupervised machine learning consensus clustering
approach was applied to categorize the clinical phenotypes of kidney transplant (KT)
recipients with DGF using OPTN/UNOS data. DGF was observed in 20.9% (n = 17,073) of
KT and most kidneys had a KDPI score <85%. Four distinct clusters were identified.
Cluster 1 recipients were young, high PRA re-transplants. Cluster 2 recipients were older
diabetics and more likely to receive higher KDPI kidneys. Cluster 3 recipients were young,
black, and non-diabetic; they received lower KDPI kidneys. Cluster 4 recipients were
middle-aged, had diabetes or hypertension and received well-matched standard KDPI
kidneys. By cluster, one-year patient survival was 95.7%, 92.5%, 97.2% and 94.3% (p <
0.001); one-year graft survival was 89.7%, 87.1%, 91.6%, and 88.7% (p < 0.001). There
were no differences between clusters after accounting for death-censored graft loss (p =
0.08). Clinically meaningful differences in recipient characteristics were noted between
clusters, however, after accounting for death and return to dialysis, there were no
differences in death-censored graft loss. Greater emphasis on recipient comorbidities
as contributors to DGF and outcomes may help improve utilization of DGF at-risk kidneys.
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INTRODUCTION

Delayed graft function (DGF) is common following kidney
transplantation (KT) and its incidence varies anywhere
from ≤30% in standard kidney donor profile index (KDPI)
kidneys to upwards of 60% in kidneys allografts coming from
donation after circulatory death (DCD), severe acute kidney
injury (AKI), and high KDPI (KDPI ≥85%) donor (1–4).
Although the definition of DGF, need for dialysis within
7 days of KT, is simplistic and allows for consistency, the
reporting of DGF as a binary outcome in data analyses fails to
capture complex clinical nuances that contribute to outcomes.
Donor-related characteristics, such as DCD status and acute
kidney injury, are commonly identified risk-factors for DGF,
although recipient-specific characteristics and transplant events
also play significant roles and influence outcomes (1–3, 5, 6).
Published data and transplant community opinion on DGF, and
its impact on outcomes, remains varied. Many studies have
shown an association between DGF and inferior survival
(7–9). While other studies have shown that select DGF
subgroups have equivocal outcomes compared to those with
primary function (1–4). The observed inconsistencies in DGF
outcomes are possibly related to how DGF data is analyzed, with
many studies focusing on predetermined individual donor-,
recipient-, or transplant characteristics rather than a balanced
interpretation of competing variables (1–9).

Artificial intelligence and machine learning (ML) function as
clinical decision support tools have been used to help
individualize patient care, including organ transplantation
(10–15). Unsupervised consensus clustering, a type of ML, can
be applied to clinical data and its application has allowed for the
discovery of novel data patterns and distinct subtypes (16–18). It

has facilitated the discovery of similarities and heterogeneities
among data variables and has also distinguished data into
clinically meaningful clusters independent of predefined risk-
variables (16, 17). Recent studies have demonstrated that distinct
subtypes identified by ML consensus clustering approach can
forecast different clinical outcomes (19–21). To better understand
differing DGF outcomes, we used an unsupervised ML consensus
clustering approach to categorize clinical phenotypes of KT
recipients with DGF and their paired donors.

MATERIALS AND METHODS

Adult patients who received a kidney-only transplant in the
United States from 2015 to 2019 were identified using the
Organ Procurement and Transplantation Network (OPTN)/
United Network for Organ Sharing (UNOS) database. All KT
patients with DGF were included. DGF was defined as the need
for dialysis within 7 days after KT. Multivisceral transplant
recipients were not included in this dataset. After accounting
for all adult kidney-only transplant recipients (n = 81,548), adult
kidney-only transplant recipients without DGF (n = 64,475) were
excluded. The Mayo Clinic Institutional Review Board approved
this study (IRB 21-007698).

Recipient-, donor-, and transplant-related variables shown in
Table 1, in addition to recipient ABO, positive hepatitis C
serostatus, hepatitis B surface antigen, human
immunodeficiency virus serostatus, working income, public
insurance, United States resident, undergraduate education or
higher, serum albumin, ABO incompatibility, Ebstein-Barr and
cytomegalovirus status, were abstracted from the OPTN/UNOS
database. All variables had ≤5% missing data (Supplementary
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TABLE 1 | Clinical characteristics, according to clusters, of kidney transplant recipients with DGF.

All
(n = 17,073)

Cluster 1
(n = 1,891)

Cluster 2
(n = 6,918)

Cluster 3
(n = 5,442)

Cluster 4
(n = 2,822)

p-value

Recipient Characteristics
Age (year) 54.1 ± 12.6 (56) 47.2 ± 12.6 (48) 61.5 ± 8.3 (62) 45.9 ± 11.6 (46) 56.3 ± 11.5 (58) <0.001
Male sex 11475 (67%) 1199 (63%) 4854 (70%) 3746 (69%) 1676 (59) <0.001
Race <0.001
White 5208 (30%) 753 (40%) 2022 (29%) 1167 (21%) 1266 (45%)
Black 6645 (39%) 681 (36%) 2627 (38%) 2692 (49%) 645 (23%)
Hispanic 3506 (21%) 324 (17%) 1464 (21%) 1059 (20%) 659 (23%)
Other 1714 (10%) 133 (7%) 805 (12%) 524 (10%) 252 (9%)

Body mass index (kg/m2) 29.3 ± 5.5 (29.0) 27.5 ± 5.6 (27.0) 30.1 ± 5.2 (29.9) 28.8 ± 5.8 (28.2) 29.7 ± 5.3 (29.4) <0.001
No. of kidney transplant(s) 1.1 ± 0.4 2.1 ± 0.4 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 <0.001
PRA, median (IQR) 0 (0, 39) 98 (83, 100) 0 (0, 3) 0 (0, 16) 0 (0, 57) <0.001
Dialysis duration <0.001
Preemptive 610 (4%) 74 (4%) 225 (3%) 183 (3%) 128 (5%)
<1 year 1054 (6%) 126 (7%) 406 (6%) 302 (6%) 220 (8%)
1–3 years 3120 (18%) 445 (23%) 1199 (17%) 734 (13%) 742 (26%)
>3 years 12289 (72%) 1246 (66%) 5088 (74%) 4223 (78%) 1732 (61%)

Cause of kidney disease <0.001
Diabetes mellitus 5998 (35%) 74 (4%) 4163 (60%) 600 (11%) 1161 (41%)
Hypertension 4151 (24%) 171 (9%) 1300 (19%) 2101 (39%) 579 (21%)
Glomerular disease 2780 (16%) 313 (16%) 595 (9%) 1443 (27%) 429 (15%)
PKD 976 (6%) 35 (2%) 302 (4%) 406 (7%) 233 (8%)
Other 3168 (19%) 1298 (69%) 558 (8%) 892 (16%) 420 (15%)

Comorbidities
Diabetes mellitus 7404 (43%) 349 (18%) 4788 (69%) 901 (17%) 1366 (48%) <0.001
Malignancy 1584 (9%) 213 (11%) 766 (11%) 316 (6%) 289 (10%) <0.001
PVD 1941 (11%) 144 (8%) 1159 (17%) 304 (6%) 334 (12%) <0.001

Functional status <0.001
10–30% 53 (0%) 2 (0%) 30 (1%) 13 (0%) 8 (0%)
40–70% 8789 (52%) 872 (46%) 3829 (55%) 2609 (48%) 1479 (53%)
80–100% 8231 (48%) 1017 (54%) 3059 (44%) 2820 (52%) 1335 (47%)

Donor Characteristics
Kidney donor status <0.001
Non-ECD 13528 (79%) 1697 (90%) 4530 (65%) 5161 (95%) 2140 (76%)
ECD 2778 (16%) 145 (8%) 2160 (31%) 61 (1%) 412 (15%)
Living donor 767 (5%) 49 (3%) 228 (3%) 220 (4%) 270 (10%)

Age 41.4 ± 14.6 (43) 37.9 ± 13.5 (39) 49.5 ± 11.0 (51) 31.3 ± 13.1 (31) 43.2 ± 12.9 (45) <0.001
Male sex 10571 (62%) 1223 (65%) 4057 (59%) 3565 (65%) 1726 (61%) <0.001
Race <0.001
White 11691 (68%) 1258 (66%) 4804 (69%) 3575 (66%) 2054 (73%)
Black 2247 (13%) 258 (14%) 924 (13%) 836 (15%) 229 (8%)
Hispanic 2350 (14%) 290 (15%) 841 (12%) 810 (15%) 409 (14%)
Other 785 (5%) 85 (4%) 349 (5%) 221 (4%) 130 (5%)

Hypertension 5678 (33%) 516 (27%) 3401 (49%) 829 (15%) 932 (33%) <0.001
KDPI <0.001
Living donor 767 (4%) 49 (3%) 228 (3%) 220 (4%) 270 (9%)
KDPI<85 14611 (86%) 1795 (95%) 5265 (76%) 5160 (95%) 2391 (85%)
KDPI≥85 1695 (10%) 47 (2%) 1425 (21%) 62 (1%) 161 (6%)

Transplant-Related Characteristics
HLA mismatch ABDR 4 (4, 5) 3 (2, 4) 5 (4, 5) 5 (4, 5) 3 (2, 3) <0.001
CIT (hours) 19.0 ± 9.3 (18.4) 19.6 ± 8.5 (19.3) 20.3 ± 9.6 (19.4) 17.3 ± 8.8 (16.4) 18.5 ± 9.8 (18.6) <0.001
Kidney on pump 8280 (48%) 701 (37%) 3961 (57%) 2396 (44%) 1222 (43%) <0.001
Allocation type <0.001
Local 10996 (64%) 752 (40%) 4347 (63%) 4208 (77%) 1689 (60%)
Regional 2748 (16%) 325 (17%) 1437 (21%) 574 (11%) 412 (15%)
National 3329 (20%) 814 (43%) 1134 (16%) 660 (12%) 721 (25%)

Induction Immunosuppression
Thymoglobulin 10777 (63%) 1425 (75%) 4136 (60%) 3478 (64%) 1738 (62%) <0.001
Alemtuzumab 2651 (15%) 270 (14%) 973 (14%) 965 (18%) 443 (16%) <0.001
Basiliximab 3308 (19%) 122 (6%) 1744 (25%) 877 (16%) 565 (20%) <0.001
Other 240 (1%) 27 (1%) 105 (1%) 65 (1%) 43 (1%) 0.44
No induction 965 (6%) 87 (5%) 404 (6%) 310 (6%) 164 (6%) 0.21

(Continued on following page)
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Table S1). We imputed missing data using multiple imputation
by chained equation (MICE) method (12). One-year acute
rejection was defined as clinical acute rejection, independent
of chronic rejection, occurring within the first-year post-
transplantation as reported to UNOS.

Clustering Analysis
An unsupervised ML was applied by conducting a consensus
clustering approach to categorize clinical phenotypes of KT
recipients with DGF (13). A pre-specified subsampling
parameter of 80% with 100 iterations and the number of
potential clusters (k) ranging from 2 to 10 were used to avoid
producing an excessive number of clusters that would not be
clinically useful. The optimal number of clusters was determined
by examining the consensus matrix (CM) heat map, cumulative
distribution function (CDF), cluster-consensus plots with the
within-cluster consensus scores, and the proportion of
ambiguously clustered pairs (PAC). The within-cluster
consensus score, ranging between 0 and 1, was defined as the
average consensus value for all pairs of individuals belonging to
the same cluster (14). A value closer to one indicates better cluster
stability. PAC, ranging between 0 and 1, was calculated as the
proportion of all sample pairs with consensus values falling
within the predetermined boundaries (15). A value closer to
zero indicates better cluster stability (16). To avoid cherry
picking results, we used validated clustering approaches
including examination of the consensus matrix (CM) heat
map, cumulative distribution function (CDF), cluster-
consensus plots with the within-cluster consensus scores, and
the proportion of ambiguously clustered pairs (19, 21–23). The
detailed consensus cluster algorithms used in this study for
reproducibility are provided in Online Supplementary.

Outcomes
Outcomes identified included acute rejection within the first post-
transplant year and 1- and 3-year patient, kidney allograft and
death-censored graft survival.

Statistical Analysis
After each KT recipient with DGFwas assigned a cluster using the
consensus clustering approach, we performed a comparison of
clinical characteristics and posttransplant outcomes among the
assigned clusters. Clinical characteristics among the assigned
clusters were compared using Chi-squared analysis for
categorical variables and analysis of variance (ANOVA) for
continuous variables. The key characteristics of each cluster

were identified using the standardized mean difference
between each cluster and the overall cohort with the pre-
specified cut-off of >0.3. The cumulative risks of death-
censored graft failure and death after KT were estimated using
Kaplan-Meier analysis, and the risks among the assigned cluster
were compared using Cox proportional hazard analysis. As
OPTN/UNOS only reported whether allograft rejection
occurred within 1 year after KT but did not specify the
occurrence date, we compared the risk of 1-year acute
allograft rejection among the assigned clusters using logistic
regression analysis. We did not adjust the association of the
assigned cluster and posttransplant outcomes in multivariable
analysis for difference in baseline characteristics because
unsupervised consensus clustering approach purposefully
generated clinically distinct clusters. R, version 4.0.3 (RStudio,
Inc., Boston, MA; http://www.rstudio.com/) was used for
statistical analyses; ConsensusClusterPlus package (version 1.
46.0) for consensus clustering analysis, and the MICE
command in R for multivariable imputation by chained
equation (24).

RESULTS

During this study period, a total of 81,548 adult patients received
a KT, and of those, 20.9% (n = 17,073) had DGF. Consensus
clustering analysis was performed on the 17,073 KT recipients
with DGF.

Figure 1A shows the CDF plot consensus distributions for
each cluster of KT recipients with DGF; the delta area plot shows
the relative change in the area under the CDF curve (Figure 1B).
The largest changes in area occurred between k = 2 and k = 4, at
which point the relative increase in area became noticeably
smaller. As shown in the CM heat map (Figure 1C), the ML
algorithm identified cluster 2 and cluster 4 with clear boundaries,
indicating good cluster stability over repeated iterations. The
mean cluster consensus score was comparable between k = 2 and
k = 4 (p > 0.05) (Figure 2A). Favorable low PAC was
demonstrated for 4 clusters than 2 clusters (Figure 2B). Thus,
using baseline variables at the time of transplant, the consensus
clustering analysis identified 4 clusters that best represented the
data pattern of our KT recipients with DGF.

Clinical Characteristics of DGF Clusters
Table 1 shows recipient-, donor-, and transplant-related
characteristics of included patients. DGF was observed in

TABLE 1 | (Continued) Clinical characteristics, according to clusters, of kidney transplant recipients with DGF.

All
(n = 17,073)

Cluster 1
(n = 1,891)

Cluster 2
(n = 6,918)

Cluster 3
(n = 5,442)

Cluster 4
(n = 2,822)

p-value

Maintenance Immunosuppression
Tacrolimus 15513 (91%) 1742 (92%) 6250 (90%) 4958 (91%) 2563 (91%) 0.10
Cyclosporine 152 (1%) 25 (1%) 56 (1%) 47 (1%) 24 (1%) 0.20
Mycophenolate 15678 (92%) 1746 (92%) 6329 (92%) 5020 (92%) 2583 (92%) 0.35
Azathioprine 61 (0%) 10 (1%) 21 (0%) 19 (0%) 11 (0%) 0.53
mTOR inhibitors 46 (0%) 4 (0%) 24 (0%) 9 (0%) 9 (0%) 0.24
Steroid 12337 (72%) 1523 (81%) 4875 (70%) 3930 (72%) 2009 (71%) <0.001
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20.9% of kidney transplants (n = 17,073) that occurred during
this study period. The majority of recipients with DGF were male
(67%, n = 11,475) and had more than 3 years of time on dialysis
(72%, n = 12,289). Most kidneys with DGF were non-extended
criterion donor (ECD) (79%, n = 13,528) standard KDPI kidneys
(86%, n = 14,611). Donors of kidneys with DGF had a median age
of 43 years, were likely to be male (62%, n = 10,571), white (68%,

n = 11,691), be transplanted by local centers (64%, n = 10,996),
and have a median CIT of 18.4 h.

Within this group of 17,073 recipients with DGF, consensus
clustering analysis identified four distinct clinical clusters as
shown in Table 1. There were 1,891 (11%) patients in cluster
1, 6,918 (41%) patients in cluster 2, 5,442 (32%) patients in cluster
3, and 2,822 (17%) patients in cluster 4. According to

FIGURE 1 | (A) CDF plot displaying consensus distributions for each k; (B) Delta area plot reflecting the relative changes in the area under the CDF curve.
(C) Consensus matrix heat map depicting consensus values on a white to blue color scale of each cluster.
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standardized mean differences, shown in Figure 3, cluster 1 was
characterized by younger (median age 48 years), low BMI, non-
diabetic, kidney re-transplant recipients who had a high PRA, a
low number of HLA mismatches, and received depleting
induction. Cluster 1 recipients received standard KDPI kidneys
(95% had a KDPI score <85%, n = 1795) and had the highest
percentage of nationally allocated kidneys (43%, n = 814).

By comparison, cluster 2 recipients were the oldest (median
age 62 years) of the four clusters. They had a higher BMI (30.1 ±
5.2 kg/m2) and were likely to be diabetic (69%, n = 4,788) with the
majority (74%, n = 5,088) having ≥3 years of dialysis time. Cluster
2 recipients were not sensitized. They were first-time KT
recipients with a high number of HLA mismatches. Cluster
2 had more recipients with lower functional status, with 55%

having a Karnofsky score between 40-70%. Out of the four
clusters, cluster 2 recipients were the most likely to receive an
ECD (31%, n = 2,160), high KDPI (21%, n = 1,425) kidney,
although the majority (76%, n = 5,265) received standard KDPI
kidneys. Peripheral vascular disease (PVD) was present in 17% of
cluster 2 recipients.

Cluster 3 recipients were young in age (median age 46 years)
and non-diabetic. They were more likely to be black (49%, n =
2,696) and have hypertension (39%, n = 2,101). Similar to cluster
2, they were also first-time KT recipients with a high number of
HLA mismatches and a low PRA. They were unlikely to receive
an ECD (1%, n = 61), high KDPI (1%, n = 62) kidney. Instead, the
majority of cluster 3 recipients received standard KDPI kidneys
(76%, n = 5,265), from young (median age 31 years), non-

FIGURE 2 | (A) The bar plot represents the mean consensus score for different numbers of clusters (K ranges from two to ten); (B) The PAC values assess
ambiguously clustered pairs.
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FIGURE 3 | (A–D) The standardized differences in Clusters 1–4 of DGF for each of baseline parameters. The x axis is the standardized differences value, and the y
axis shows baseline parameters. The dashed vertical lines represent the standardized differences cutoffs of <−0.3 or >0.3. Abbreviations: BMI, body mass index; CMV,
cytomegalovirus; D, donor; DGF, delayed graft function; DM, diabetes mellitus; EBV, Epstein-Barr virus; ECD, extended criteria donor; ESKD, end stage kidney disease;
GN, glomerulonephritis; HBs, hepatitis B surface; HCV, hepatitis C virus; HIV, human immunodeficiency virus; HLA, human leucocyte antigen; HTN, hypertension;
KDPI, kidney donor profile index; mTOR, mammalian target of rapamycin; PKD, polycystic kidney disease; PRA, panel reactive antibody; PVD, peripheral vascular
disease; R, recipient.
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hypertensive donors. These kidneys came from local donors
(77%, n = 4,208). Cluster 3 kidneys had the shortest CIT
(median 16.4 h).

Lastly, cluster 4 recipients were middle aged (median age
58 years), first-time KT recipients with greater than 3 years of
dialysis times, a low PRA, and a lower number of HLA
mismatches. Recipients in cluster 4 were likely to have kidney
disease as a result of diabetes (41%) or hypertension (21%). Forty-
eight percent (n = 1,366) were diabetic and 12% (n = 334) had
PVD. Recipient functional status was also lower in cluster 4, with
53% of recipients having a Karnofsky score between 40%–70%.
The majority received non-ECD (76%, n = 2,140), standard KDPI
(85%, n = 2,391) kidneys that largely came from local donors
(60%, n = 1,889).

Posttransplant Outcomes of DGF Clusters
Table 2 and Figure 4 show cluster-based posttransplant
outcomes. Median follow-up time for patient survival was
412 days (IQR 199-971). Median follow-up time for graft
survival was 391 days (IQR 188-945). One-year patient
survival in clusters 1, 2, 3 and 4 was 95.7%, 92.5%, 97.2% and
94.3%. Cluster 3 had the most favorable patient survival (ref) with
cluster 2 (HR 2.66, 95% CI 2.19–3.24) having the worst (p <
0.001) (Table 2, Figure 4A). One-year graft survival in clusters 1,

2, 3 and 4 was 89.7%, 87.1%, 91.6%, 88.7% (Table 2, Figure 4B).
Similar to patient survival, cluster 3 recipients had the best 1-year
graft survival (ref) with cluster 2 (HR 1.54, 95% 1.35-1.71)
recipients having the worst (p < 0.001). One-year death-
censored graft survival in clusters 1, 2, 3 and 4 was 92.7%,
92.5%, 93.7%, and 92.9% (Table 2, Figure 4C) and there were
no differences in death-censored graft survival when comparing
clusters (p < 0.08).

One-year acute rejection in clusters 1, 2, 3 and 4 was 10.2%,
5.3%, 7.0%, 3.0% (Table 2). Cluster 4 had the lowest observed
acute rejection within the first-year post-transplant (ref). Clusters
1 (HR 2.86, 2.24–3.64) and 3 (HR 1.90, 95% CI 1.52–2.36) had the
highest number of reported acute rejection events.

DISCUSSION

The clinical significance of DGF and its impact on KT outcomes
continues to be debated and some of the reported variation in
outcomes is likely a reflection of how DGF data is analyzed (1–9).
The interpretation of DGF data remains heavily influenced as a
result of predefined study constructs based on fixed and isolated
donor-, recipient-, and transplant characteristics, such as donor
DCD status, CIT, or rejection (1–9). To better understand

TABLE 2 | Posttransplant outcomes, according to clusters, of kidney transplant recipients with DGF.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

1-Year
Patient survival 95.7% (1.55, 1.17–2.07) 92.5% (2.66, 2.19–3.24) 97.2% (1, ref) 94.3% (1.98, 1.56–2.52)
Graft survival 89.7% (1.22, 1.03–1.46) 87.1% (1.52, 1.35–1.71) 91.6% (1, ref) 88.7% (1.33, 1.15–1.55)
Death-censored graft survival 92.7% (1.15, 0.94–1.41) 92.5% (1.18, 1.03, 1.36) 93.7% (1, ref) 92.9% (1.12, 0.93–1.34)
1-year acute rejection 10.2% (2.86, 2.24–3.64) 5.3% (1.42, 1.14–1.76) 7.0% (1.90, 1.52–2.36) 3.8% (1, ref)

3-Year
Patient survival 88.7% (1.63, 1.32–2.03) 81.6% (2.78, 2.39–3.24) 93.2% (1, ref) 86.7% (1.98, 1.64–2.39)
Graft survival 81.1% (1.20, 1.04–1.39) 74.6% (1.58, 1.43–1.75) 83.8% (1, ref) 80.0% (1.29, 1.14–1.47)
Death-censored graft survival 88.6% (1.05, 0.88–1.26) 86.5% (1.16, 1.03–1.32) 88.2% (1, ref) 88.9% (1.03, 0.87–1.20)

FIGURE 4 | (A) Patient survival, (B) Graft survival, (C) Death-censored graft survival after kidney transplant among four clusters of kidney transplant recipients with
DGF in the United States.
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differing DGF outcomes and viewpoints, we used an
unsupervised ML consensus clustering approach to categorize
the clinical phenotypes of KT recipients with DGF and their
paired donors.

During this recent study period, the overall incidence of DGF
in the US was 20.9%. The majority of recipients with DGF were
males who were on dialysis ≥3 years and who received non-ECD,
standard KDPI kidneys. Within this group of 17,073 recipients
with DGF, consensus clustering analysis identified four distinct
clinical clusters. Cluster 1 was characterized by younger, low BMI,
non-diabetic, kidney re-transplant recipients who had a high
PRA. Cluster 2 recipients were the oldest of the four clusters, had
a higher BMI, were likely to have lower functional status, and be
diabetic with 3+ years of dialysis vintage. They were also the most
likely to receive ECD high KDPI kidneys. Cluster 3 recipients
were young and non-diabetic. They were more likely to be black,
have hypertension and receive higher HLA mismatched, lower
KDPI kidneys. Lastly, cluster 4 recipients were middle-aged, first-
time KT recipients with either diabetes or hypertension, lower
functional status, dialysis duration ≥3 years, and a low PRA.
Patient and graft survival varied by cluster, however, after
accounting for death with a functioning graft, there were
nosurvival differences between the four clusters suggesting that
recipient comorbidities played an important role in graft
outcomes (Figure 4C).

Although DGF is often attributed to donor quality and CIT,
the majority of kidney allografts used during this study period
came from non-ECD, standard KDPI, younger donors with a
median CIT of 18.4 h (1–3, 5, 6). Only a small percentage of
donors had hypertension, and the majority of kidneys were
transplanted locally. Clinically significant differences in
recipient comorbidities were notable between the clusters.
Cluster 1 recipients were highly sensitized re-transplants,
cluster 2 recipients were older diabetics, cluster 3 recipients
were young non-diabetic black first-time transplants with
hypertension, and cluster 4 recipients were predominantly
middle-aged, recipients with diabetes or hypertension and
lower functional status. As might be predicted, patient survival
was best in 3 and lower in clusters 2 and 4. Despite varying
cluster-specific recipient comorbidities, there were however no
difference in death-censored graft survival between the four
clusters.

The lack of difference in death-censored graft loss suggests
that different factors contributed to survival across the four
clusters. Recipient comorbidities, such as diabetes, dialysis
vintage, PVD and dialysis vintage, likely played a significant
role for clusters 2 and 3. Lack of difference in death-censored
graft loss between clusters 2 and 4 suggests that there is increased
room to increase use of ECD and high KDPI allografts for
patients with these demographics. High KDPI kidneys
continue to be at significant risk of discard and recipients with
demographics shown in cluster 2 and 4 are well suited for these
allografts (24). Although recipients in cluster 4 received more
standard KDPI low HLA mismatched allografts, ultimately there
were no differences in death-censored graft survival. Although
cluster 1 recipients were younger in age and had less
comorbidities, they were sensitized re-transplants. They carried

the highest risk for rejection and likely had decreased survival as a
result of risk factors such as infection due to over-
immunosuppression, rejection as a result of infection or
reactivation of preexisting donor specific antibodies or
recurrent disease. Outcomes related to cluster 3 recipients
were possibly the most surprising. Based on comorbidities,
these recipients would perhaps be predicted to have the best
outcomes. This finding possibly underscores that racial
disparities in transplant impact outcomes and that variables,
such as risk for rejection, socioeconomic barriers and access to
healthcare, disproportionately affect minorities (21, 25).
Although graft quality, demonstrated though use of
predominantly standard KDPI allografts was observed in
cluster 4, better HLA matching, need for a more personalized
approach to immunosuppression or better post-transplant
support, might result in improved outcomes.

DGF is often felt to be a risk factor for early acute rejection (7,
26). The overall incidence of acute rejection post-transplant has
been reported to range between 10% and 29% with the inclusion
of subclinical rejection (27, 28). In this study, the reported
incidence of acute rejection was low ranging from 3.8% to
10.2% with the majority of recipients, regardless of PRA or
age, received depleting induction. Although historically
rejection data as reported in UNOS has had limitations due to
underreporting, the use of depleting induction remains a
widespread practice preference in the United States and these
lower rejection rates may be reflective of several factors (21, 30).
Increasingly, many centers are moving towards earlier initiation
of CNIs in combination with use of depleting therapy in the
setting of DGF to minimize this early rejection occurrences (1–4).
The highest incidence of acute rejection was observed in cluster
1 recipients who were highly sensitized re-transplants. Despite
this being an at-risk group for rejection, the reported incidence
was only 10.2%. Cluster 3 recipients had the second highest
reported incidence of acute rejection at 7.0%. Although this group
was not sensitized, risk factors such as young recipient age, black
race, and high HLA mismatches may have played a role in the
higher number of rejection events (3, 30–33). Cluster 2 recipients
were the oldest and the most likely to receive ECD high KDPI
kidneys and also receive non-depleting induction. While cluster
2 was possibly at higher risk for a longer duration of DGF due to
recipient and donor characteristics, there was not an increase in
acute rejection episodes noted. The results from this analysis
suggest that the overall incidence of acute rejection for kidneys
with DGF is low (25–29).

In using the OPTN/UNOS national registry data, there are
several limitations. This clustering analysis included only
recipients with DGF. As such, there is not a comparison
group for similarly matched recipients and donors without
DGF. Because of the registry nature of this study, there is lack
of detail regarding exact causes for DGF, mortality and graft loss.
We also do not know the outcomes for mate kidneys from the
same donor. Missing data remains an inherent limitation of the
UNOS dataset. Although we acknowledge this as a limitation, all
variables in our study had missing data <5%, and it is unlikely
that missing data imputation substantially altered the results of
our analysis. Additionally, we acknowledge that the current
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working definition of DGF has inherent limitations such that it is
simplistic and does not account for additional complexities, such
as DGF duration and oliguria. Forthcoming updated guidelines in
terminology specific to DGF will be helpful in addressing these
current limitations. These limitations highlight the need for better
reporting practices specific to DGF. Lastly, although
unsupervised ML clustering applied in this study provided
detailed information on distinct phenotypes and outcomes
pertaining to kidney transplant recipients with DGF, the
clinical characteristics attributed to the clusters were not
necessarily novel and unsupervised ML clustering approaches
have limitations in that they do not directly generate risk
prediction for each individual. Future studies using supervised
ML prediction models to predict outcomes of kidney transplant
recipients with DGF are needed for validation.

Despite these limitations, the interpretation of DGF data to
date remains heavily influenced as a result of predefined study
constructs. Unsupervised clustering machine learning
algorithms help us understand the characteristics of
different clusters of kidney transplant patients with DGF
within the current transplant practice in the U.S., and the
algorithms do not use labeled outcomes. Unlike supervised
machine learning models, unsupervised machine learning
models do not have issues with overfitting and do not have
limitations of variables in the clustering algorithms. To our
knowledge however, this is the first ML clustering approach to
look at the impact of DGF on KT outcomes. Outcomes specific
to DGF have been varied and have often been reported as
isolated analyses focusing on individual donor-, recipient-, or
transplant characteristics rather than isolated interpretation of
competing variables. By applying a ML clustering approach,
this study has allowed for an unbiased assessment of KT
outcomes for those with DGF.

Clinical outcomes specific to DGF are currently described in a
binary fashion, however factors contributing to DGF are complex,
nonbinary and varied. Significant variation exists between
different studies reporting on DGF and much of this variation
can be accounted for by differences in analyses. In this study,
unsupervised ML was applied to KT recipients with DGF and
their paired donors and this resulted in the identification of four
clinically distinct clusters with differing post-transplant
outcomes. The majority of kidneys utilized in the
United States continue to come from standard KDPI non-
ECD donors and more obvious clinical heterogeneity is
notable in cluster-specific recipient comorbidities. The
majority of kidneys with DGF in the United States come from
standard KDPI donors. Clinically meaningful differences in
recipient characteristics were noted between clusters, and, after
accounting for death and return to dialysis, there were no
differences in death-censored graft loss. Immunologic, cardiac,
metabolic, and socioeconomic contributors likely play significant
roles in varying outcomes and, although DGF is a predefined
clinical endpoint, recipient comorbidities assume an important
role in survival outcomes.
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