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A laboratory experiment was carried out to investigate the response of the microbial
communities in acid agricultural soils located in the NW Iberian Peninsula to the presence
of clarithromycin. Four soils, with different organic C content and similar pH, and seven
different concentrations of clarithromycin (0.49, 1.95, 7.81, 31.25, 125, 500 and
2,000 mg kg−1 of soil) were used, and microbial estimates were made after 8 and
42 incubation days. The phospholipid fatty acids (PLFA) technique was used to
estimate the total microbial biomass and biomass of specific microbial groups as well
as the microbial community structure (PLFA pattern). The microbial biomass (total and
specific groups) was different in the four studied soils, the lowest values being exhibited by
soils with the lowest organic C. The antibiotic addition showed a positive effect onmicrobial
biomass (total and specific groups), especially at the highest dose; the effect being similar
or even more accentuated with time passed after the addition (42 days ≥8 days). Principal
component analysis (PCA) of the PLFA data carried out with the whole data set showed
that the main determining factors of the microbial structure followed the order: soil > time
incubation ≥ antibiotic dose. When the PCAwas performed individually for each incubation
time, the results indicated that microbial communities of the four soils were different.
Likewise, for each soil, different microbial communities were observed depending on
antibiotic concentration. The microbial biomass and PLFA pattern data were coincidentally
showing that the clarithromycin addition favored fungi and G− bacteria more that bacteria
and G+ bacteria; the effect being dose-dependent. Our data (microbial biomass, PLFA
pattern) also demonstrated that the effect of clarithromycin addition on microbial
communities in these four acid agricultural soils persisted even after 42 incubation days.
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INTRODUCTION

Antibiotics, used worldwide for human health, are excreted in feces and urine as the origin
compound and/or as secondary metabolites, reaching the environment and causing serious
damage to the soil and aquatic ecosystems (Thiele-Bruhn, 2003; Kümmerer, 2009). These
emergent contaminants of human origin, which are present in wastewater destined for
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wastewater treatment plants (WWTPs), can enter into soil
following both agricultural irrigation with liquid effluents and
the application of solid effluents (sewage sludge) as organic
amendments to the soil (Fijalkowski et al., 2017; Aydin et al.,
2022). Thus, residues of both parent veterinary and
pharmaceutical compounds and their degradation products
have been detected in soils (Biel-Maeso et al., 2018; Conde-
Cid et al., 2018; Nuñez-Delgado et al., 2019; Mejías et al.,
2021). These findings are being taken into account by the
regulatory bodies of the European Union, leading in the last
two decades to increased investigations concerning the presence
of these emergent contaminants such as antimicrobial
compounds on soil-plant ecosystems (Caracciolo et al., 2015;
Tasho and Cho, 2016; Pan and Chu, 2017; Madikizela et al., 2018;
Gworek et al., 2021; Bolesta et al., 2022; Yin et al., 2023).

Soil microorganisms play a major role in soil quality and long-
term sustainability of agricultural terrestrial ecosystems since
they control the breakdown of organic matter and hence the
net fluxes of carbon and nutrients through the decomposition,
mineralization, and immobilization processes (Pankhurst et al.,
1996; Nannipieri et al., 2003). However, most studies concerning
the impact of emergent contaminants such as antibiotics on
terrestrial ecosystems are focused on their presence, behaviour,
and risk assessment on human health and aquatic systems (Li,
2014; Bastos et al., 2020; Aydin et al., 2022). It is well known that
antimicrobials for veterinary and humanmedicine can drastically
modify non-target organisms living in the agricultural soils and
hence alter biodiversity and ecosystem functions. Surprisingly,
despite interest in the topic, the investigations addressing the
impact of antibiotics on autochthonous microorganisms in the
terrestrial ecosystems are scarce. The investigations concerning
the impact of different groups of pharmaceutical compounds on
microbial communities of agricultural soils located through the
world were collected in a recent review by Cycón et al. (2019). The
review clearly evidences that the response of microorganisms to
the presence of these compounds measured by means of different
parameters related to their mass, activity, and diversity (microbial
C, total PLFA biomass and specific microbial groups PLFA
biomass, soil respiration, bacterial growth, soil enzymes,
microbial community structure), were variable; thus, although
a negative temporal effect was often observed on microorganisms
living in the soil, non effect, or even a positive effect, could also be
detected. This is in agreement with recent investigations
conducted by our research group performed with acid
agricultural soils located in Galicia (NW Iberian Peninsula)
added with antibiotics of different groups (tetracyclines,
sulfonamides, fluorquinones, penicillins, cephalosphorine,
diaminopyridine, β-lactams) (Santás-Miguel et al., 2020a;
Santás-Miguel et al., 2020b; Santás-Miguel et al., 2020c;
Rodríguez-González et al., 2021; Santás-Miguel et al., 2021;
Rodríguez-González et al., 2022; Santás-Miguel et al., 2022;
Rodríguez-González et al., 2023).

The World Health Organization (2017) considers the
macrolides to be critical antibimicrobials of the highest
priority, besides being the second most commonly used group
of antibiotics in Europe (European Centre for Disease Prevention
and Control, 2018). Clarithromycin is one of the most frequently

prescribed macrolides in human medicine, therefore
environmental risk investigations about the presence of this
compound in soils are necessary (McLaughlin and Belknap,
2008; Baumann et al., 2015; Senta et al., 2019; Aydin et al.,
2022). Recently, we examined the bacterial growth of
12 agricultural soils, both with no additions and with the
addition of increasing concentrations of clarithromycin over
time (1, 8, and 42 incubation days) (Rodríguez-González et al.,
2021). In general, the data showed an initial inhibitory (toxic)
effect which disappeared over time; however, in some cases,
surprisingly, bacterial growth rates reached values higher than
those in the corresponding unpolluted soil after 42 days of
incubation. The aim of this laboratory experiment is to
determine whether these bacterial growth changes were
accompanied by changes in biomass and microbial community
structure.

MATERIAL AND METHODS

Soils
The study was conducted with four agricultural soils located in
the temperate humid zone (Galicia, NW Iberian Peninsula)
which have not been previously treated with antibiotics. For
each soil, 15–20 subsamples, collected randomly from the top
20 cm of the A horizon, were mixed, sieved (<2 mm), thoroughly
homogenized, and air-dried. The main soil properties, which
have been previously determined by Rodríguez-González et al.
(2022), are shown in Table 1. They showed different texture,
similar pH (ranges of pH in water 5.1–5.6), and different organic
matter content (1.61%–6.8% C).

Experimental Set Up
Of each of the four air-dried soil samples, 100 g was moistened to
up to 70% of the water holding capacity and incubated in the dark
at 22°C for 15 days to recover and achieve the stabilization of
bacterial growth (Meisner et al., 2013). After that, they were

TABLE 1 | Main properties of the four acid soils studied (adapted from
Rodríguez-González et al., 2022).

Soil 3 5 10 12

pHW 5.6 5.7 5.2 5.1
pHKCl 4.8 4.9 4.7 4.5
C (%) 1.1 4.8 3.2 6.8
N (%) 0.18 0.40 0.41 0.59
C/N 6.1 12.0 7.8 11.5
eCEC (cmolc kg

−1) 6.0 17.4 4.1 5.5
OC (mg kg−1) 243.1 332.9 327.1 318.4
Sand (%) 44 58 55 34
Silt (%) 33 20 28 38
Clay (%) 23 22 17 28
Texture loam Sandy clay loam Sandy loam Clay loam
Feo (g kg−1) 2.2 2.8 8.9 8.9
Alo (g kg−1) 1.0 5.3 3.1 8.7

pHW is pH measured in water; pHKCl is pH measured in 0.1 M KCl; C is total carbon;
eCEC is Cationic Exchange Capacity; OC is organic carbon; Alo, Feo: Al and Fe extracted
with ammonium oxalate.
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separated into 8 centrifuge tubes (12 g in each tube) to be spiked
with 7 different concentrations of clarithromycin (0.49, 1.95, 7.81,
31.25, 125, 500, and 2,000 mg kg−1 of soil), using talc as carrier to
facilitate the mixture of the antibiotic with the soil and a blank to
which the same amount of talc (48 mg) was added, but without
antibiotic. These concentrations allowed the study of the effects of
the antibiotic in a range that encompasses the toxicity of the
antibiotic on soil bacteria from blank (no toxicity) to levels that
suppress bacterial growth at high levels (Rodriguez-Gonzalez
et al., 2021). The different mixtures of soil and antibiotic were
incubated under controlled conditions (22°C, 70% of water
holding capacity, darkness). After 8 days of incubation, 2 g
samples were extracted in triplicate from each mixture and
PLFA analysis was made. The same process was repeated after
42 days. Sampling was destructive for each treatment-time
combination, resulting in a total of 192 microcosms (4 soils ×
8 concentrations × 3 replicates × 2 times). The PLFA estimates
were made using a representative composite soil sample of each
antibiotic treatment obtained by mixing the three incubation
replicates.

Phospholipid Fatty Acids (PLFA) Analysis
The total biomass (TotalPLFA) and the biomass of the specific
microbial groups as well as the microbial community structure
were estimated using the procedure and the nomenclature
described by Frostegård et al. (1993). A detailed description of
the method is given by Rodríguez-González et al. (2022).
TotalPLFA was estimated as the sum of all the extracted
PLFAs. The following PLFAs fatty acids were used as
indicators of biomass of specific microbial groups: bacterial
biomass (BactPLFA), the sum of i15:0, a15:0, 15:0, i16:0, 16:
1ω9, 16:1ω7t, i17:1ω8, i17:0, a17:0, 17:0, cy17:0, 18:1ω7, and cy19:
0 PLFAs; fungal biomass (FungPLFA), 18:2ω6 PLFA;
actinobacteria biomass (ActPLFA), the sum of 10Me16:0,
10Me17:0, and 10Me18:0 PLFAs; Gram-positive bacteria
biomass (G+PLFA), the sum of i14:0, i15:0, i16:0, a15:0, i17:0,
and a17:0 PLFAs; and Gram-negative bacteria biomas (G−PLFA),
the sum of cy17:0, cy19:0, 16:1ω7c, and 18:1ω7 PLFAs (Santás-
Miguel et al., 2020b). In order to detect environmental effects
(soil, incubation, antibiotic addition) on the soil microbial
community structure, the concentrations of all the individual
PLFAs, expressed in mole percent and logarithmically
transformed, were subjected to principal component analysis
(PCA). All statistical analyses were made using the SPSS
15.0 statistical package.

RESULTS AND DISCUSSION

The values of total (TotalPLFA) and specific microbial biomass
(FungPLFA, BactPLFA, G−PLFA, G+PLFA, and ActPLFA)
obtained for soil groups with nothing added and with different
doses of the antibiotic clarithromycin added after 8 and 42 days of
its application are shown in Figures 1, 2, respectively. In general,
the values observed for the two sampling times were quite similar.
Therefore, for each soil type, the data obtained for un-treated and
treated samples after 8 and 42 days of incubation were grouped

together. Furthermore, in order to facilitate the interpretation of
the results, the mean values of soil samples added with the 7 doses
of clarithromycin were compared with the corresponding soil
without antibiotic addition. In control S3 soil, total biomass
showed values (mean values ±SE) of 35 ± 6 nmol g−1 and
FungPLFA, BactPLFA, G−PLFA, G+PLFA, and ActPLFA
values of 0.47 ± 0.16, 17.8 ± 3.1, 6.6 ± 0.8, 9.9 ± 2.1, and
2.7 ± 0.5 nmol g−1, respectively. Similar values were found in
the samples treated with clarithromycin, in which TotalPLFA,
FungPLFA, BactPLFA, G−PLFA, G+PLFA, and ActPLFA values
were 37 ± 3, 0.52 ± 0.07, 18.4 ± 1.1, 7 ± 0.5, 10.2 ± 0.5, and 2.9 ±
0.6 nmol g−1, respectively. In S5, S10, and S12 soils, the
magnitude levels of the total and specific biomass values were
quite similar and much higher than those observed for S3 soil
(Figures 1, 2). These results can be explained by the organic C
content of the soils, which is found to be positively correlated with
the biomass estimates (Díaz-Raviña et al., 1988; Díaz-Raviña
et al., 1993; Leirós et al., 2000). In general, as a consequence
of antibiotic addition, the values of total and specific biomass of
the S5, S10, and S12 soils increased. Thus, TotalPLFA biomass in
these soils ranged from 117 ± 20 and 168 ± 33 nmol g−1 in control
samples and from 162 ± 30 and 224 ± 56 nmol g−1 in antibiotic
treated samples. FungPLFA biomass showed the lowest values of
the specific microbial groups, ranging from 1.31 ± 0.32 and 1.88 ±
0.56 nmol g−1 in control soils and from 1.49 ± 0.47 and 4.16 ±
3.5 nmol g−1 in the soils added with clarithromycin. In contrast,
BactPLFA biomass showed the highest values of the specific
groups ranging from 49.3 ± 8.6 and 80.8 ± 18.5 nmol g−1 in
un-treated control soils, and from 70.3 ± 26.4 and 104.2 ±
24.8 nmol g−1 in antibiotic polluted soils. G−PLFA biomass
values varied from 16 ± 2.3 and 31.2 ± 10.2 nmol g−1 in
control soils and from 26.7 ± 14 and 35 ± 7.9 nmol g−1 in
treated soils, while G+PLFA biomass ranged from 29.3 ±
5.8 and 40.3 ± 9.7 nmol g−1 in control soils and from 41.2 ±
11.5 and 64.15 ± 15.33 nmol g−1 in antibiotic polluted soils.
Finally, ActPLFA biomass ranged from 10.9 ± 1.9 and 14.9 ±
3.2 nmol g−1 in un-treated control soils and from 14 ± 4.6 and
20 ± 5.1 nmol g−1 in antibiotic polluted soils.

The total and specific biomass PLFA values in both the control
studied soils and the corresponding soils added with
clarithromycin, were within the reported range given for other
soils of the same area added with other organic compounds such
as atrazine (Mahía et al., 2011), tetracyclines, cyproflaxin,
trimethoprim, and amoxicillin (Santás-Miguel et al., 2021;
Rodríguez-González et al., 2022). Likewise, the relative
importance of different specific groups (FungPLFA, BactPLFA,
G−PLFA, G+PLFA, and ActPLFA) with respect to the TotalPLFA,
as well as the ratios of Fung/Bact PLFA and Gr−/G+ PLFA, were
similar to those reported in the mentioned studies. In agreement
with a previous study, the lowest total and specific biomass values
were exhibited by the soil with the lowest organic matter content
(Rodríguez-González et al., 2022).

In four studied soils, after the incubation of the soils added
with clarithromycin, the values of the total and specific biomass
were generally similar (S3 soil) or higher (soils S5, S10, and
S12 soils) than those in the equivalent control soils.
Consequently, a positive effect of antibiotic addition, with

Spanish Journal of Soil Science | Published by Frontiers April 2023 | Volume 13 | Article 113193

Rodríguez-González et al. Clarithromycin Effect in Microbial Communities



increases up to 2 times the control value, was detected at medium-
(8 incubation days) and long-term (42 days). Comparison of four
soil trends at two sampling times showed slight differences
among them, with increases slightly higher at 42 days for
S3 and S5 soils while the opposite was observed for S10 and

S12 soils. The higher biomass values, which were dose dependent,
showed that fungal and Gram− bacterial groups are more
favoured by the antibiotic addition than the bacterial and
Gram+ bacterial groups. This trend was evidenced by the
values of the Fung/Bact PLFA and Gram−/G+ PLFA, which is

FIGURE 1 | Total and specific microbial biomass values (fungal, bacterial, actinobacteria, Gram-negative bacteria and Gram-positive bacterial) in four studied soils
with nothing added (C) and with the different doses of clarithromycin after 8 days of incubation. Doses: 1 (0.49), 2 (1.95), 3 (7.81), 4 (31.25), (5) 125, 6 (500), and 7 (2000)
mg kg−1 of soil.
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coincident with findings of other studies on this topic
(Hammesfahr et al., 2008; Unger et al., 2012; Chen et al.,
2013; Rodríguez-González et al., 2022). Inconsistent results
were reported in the literature concerning the impact of
veterinary and human antibiotics on biomass of soil microbial
communities estimated by the PLFA method. According to the

results of the present investigation, some authors showed that
microbial biomass increased (Cordova-Kreylos and Scow, 2007)
while other researchers observed that PLFA biomass values were
unaffected or decreased as a consequence of the antibiotic
presence (Thiele-Bruhn and Beck, 2005; Cui et al., 2014). The
studies also showed that this variable response of microbial

FIGURE 2 | Total and specific microbial biomass values (fungal, bacterial, actinobacteria, Gram-negative bacteria, and Gram-positive bacterial) in four studied soils
with nothing added (C) and with the different doses of clarithromycin after 42 days of incubation. Doses: 1 (0.49), 2 (1.95), 3 (7.81), 4 (31.25), (5) 125, 6 (500), and 7 (2000)
mg kg−1 of soil.
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communities to the antibiotic addition depended on soil
characteristics, type, and dose of antibiotic as well as time
passed after its application (Cycón et al., 2019; Santás et al.,
2020b; Santás et al., 2021; Rodríguez-González et al., 2022).

Figure 3 shows the results of the principal component analysis
performed with the whole PLFA data set obtained for the four
studied soils (S3, S5, S10, S12) with nothing added (control soil)
and with different concentrations of clarithromycin added (0.49,
1.95, 7.81, 31.25, 125, 500 and 2,000 mg kg−1 of soil) after 8 and
42 days of incubation. The plane defined by the first and second
component, accounting for the 43% of the variation, separated
the soils independently of antibiotic addition and the time passed
after its application. Samples of the same soil at two sampling
times (8 and 42 days) and the antibiotic addition were grouped
together and separated from the rest of the soils. S10 samples,
having higher concentrations of i16:0, a17:0, 10Me18:0 and
10Me17:0 PLFAs, were located in the positive part of axis 1,
S12 and S3 samples in the middle part and, finally, S5 samples,
having higher concentrations of PLFAs 18:0, 16:0, cy19:0, 16:1ω9,
and 18:1ω7, in the negative part. The axis 2 clearly separated
S3 samples, having higher concentrations of PLFAs, at 17:0, 19:1a,
18:2ω6, 18:1, and 18:1ω9, from the rest of the soils (S5, S10, and
S12), with higher values of 10Me16:0, 16:1ω5, i14:0, and i15:0.
This axis also differentiated samples showing higher antibiotic
concentrations, located in its negative part, which exhibited
higher concentrations of PLFAs 18:2ω6 and 18:1ω9, indicative
of fungi, and PLFA 19:1a, characteristic of G− bacteria. Likewise,
for each soil, a slight separation of samples incubated for 8 and
42 days was observed along axis 1 as well as a more defined
separation of samples according the antibiotic addition,
particularly after 42 days of incubation at higher doses.

To properly analyze the influence of the antibiotic addition on
microbial community structure without the masking effect of
time passed after its application, principal component analysis
was made for each time separately (8 and 42 days after
incubation) (Figure 4). Similar results were observed
independently of sampling time (8 and 42 days of incubation).

Again, the plane was defined by axis 1 and 2, accounting for 46%
of the variation, samples of same soil were grouped together and
separated from the other soils. Along axis 1, accounting for 23%
of the variation, samples of S3 and S10 were located in the positive
part of axis 1, while samples of S5 and S12 were situated in the
negative part. The axis 2, accounting for 23% of the variation,
clearly distinguished between samples with nothing added and
those with an increasing dose of clarithromycin. Thus, in general,
for all soils, independently of soil and sampling time, the highest
effect of clarithromycin was observed at higher doses. It should be
noted that, for all soils, the samples with higher doses of
clarithromycin antibiotic had a relatively higher abundance of
fungi, as indicated by PLFAs 18:2ω6 and 18:1ω9, and G− bacteria,
as indicated by PLFAs 18:1ω7, 19:1a, 16:1ω7c, and cy19:0.

Therefore, our data clearly demostrated that the main factor
determining the source of variation of PLFA profiles among
samples are soil characteristics followed by the incubation
time and, to a lesser extent, the antibiotic dose. This is
consistent with numerous field and laboratory studies
concerning phospholipid fatty acid profiles performed with
different soils following the impact of numerous stress agents
(e.g., wildfire, prescribed fire, soil heating, fire retardants, post-fire
rehabilitation treatments, vegetation type, soil management,
climatic conditions, herbicide application, heavy metal
pollution) which found that microbial communities of the
same soil with different disturbances were grouped together
and separated from microbial communities of other soils
(Bossio et al., 1998; Díaz-Raviña et al., 2006, 2018; Fernández-
Calviño et al., 2010; Mahía et al., 2011; Barreiro et al., 2015;
Lombao et al., 2015). Likewise, a similar medium-term response
of microbial communities was observed following the addition of
antibiotics of both veterinary use such as tetracyclines (Santás-
Miguel et al., 2021) and human use such as ciprofloxacin,
trimethoprim, and amoxicillin (Rodríguez-González et al.,
2022) to some soils of the same temperate humid zone.

The results of total and specific microbial biomass and
microbial community structure determined by means of PLFA

FIGURE 3 | Principal component analysis ((A), variables; (B), samples) performed with the PFLA data set for the four studied soils with nothing added (C) and with
the different doses of clarithromycin after 8 (open symbols) and 42 (filled symbols) days of incubation. Doses: 1 (0.49), 2 (1.95), 3 (7.81), 4 (31.25), (5) 125, 6 (500), and 7
(2000) mg kg−1 of soil.
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analysis were somehow coincident, showing that: a) the
clarithromycin addition favoured fungi and G− bacteria more
than bacteria and G+ bacterial and b) the effects observed
short-term (8 days of incubation) changed very little at
medium-term (42 days of indication). The PLFA pattern
distinguished different microbial communities following the
application of increasing concentrations of clarithromycin;
however, this analysis does not allow us to determine if its
impact is positive or negative. This information is derived from
total and specific microbial biomass data which showed a positive
influence on soil microbial communities. The results of a study of
Díaz-Raviña et al. (1988) concerning the soil respiration and
mineralization of soil organic matter (SOM) in soils with
nothing added and with glucose added, located in the temperate
humid zone, demonstrated that the C availability is the limiting
factor of microbial community activity. Thus, the positive effect of
clarithromycin on soil microorganisms can be explained by the use
of the antibiotic as a source of C (Liao et al., 2016; Schofield, 2018)
and/or the increase of C and nutrient availability derived from the
death of non-target bacteria (bactericide effect) (Díaz-Raviña
and Bååth, 1996; Rajapaksha et al., 2004). Likewise, an
increased mineralization of the native SOM (priming effect)

caused by trace concentrations of “tigger solutions” of original
chlaritromycin and its secondary metabolites can not be
discarded. The magnitude and the duration (8 and 42 days)
of the increases of the microbial biomass seem to support the
latter hypothesis. Our results are also in agreement with
findings of other authors concerning the respiration or
bacterial growth rate values following the addition of glucose,
amino acids, root exudates (De Nobili et al., 2001), herbicides
(Mahía et al., 2008), and antibiotics of veterinary or human origin
(Rodríguez-González et al., 2022) to different soils. It should be
noted that an increased biomass and bacterial growth rates cannot
be necessarily related to an increase in the soil quality status,
particularly in these acid soils with low C and nutrient availability
where soil quality is closely related to quantity and quality of soil
organicmatter (SOM) (Carballas et al., 2015). Thus, for example, in
soil S3 exhibiting the lowest SOM content and C/N ratio, an
increased SOM over a prolonged time (more than 42 days) can
provoke a decrease in SOM content and hence also in soil quality.

The values reported in the literature for half-lifes of
clarithromycin in soils, estimated in laboratory experiments
using labelled compounds, ranged from 8 days to almost no
dissipation (Kodešová et al., 2016; Topp et al., 2016). This

FIGURE 4 | Principal component analysis performed with the PFLA data set for the four studied soils with nothing added (C) and with the different doses of
clarithromycin after 8 (A,B) and 42 (C,D) days of incubation. Doses: 1 (0.49), 2 (1.95), 3 (7.81), 4 (31.25), (5) 125, 6 (500), and 7 (2000) mg kg−1 of soil.
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behavior can be explained by the characteristics and
concentration of the clarithromycin, the soil properties, as well
as the time passed after application. In general, the higher half-life
values or long-term persistence of clarithromycin were observed
in more polluted soils with high sorption capacity (Cycón et al.,
2019). This is associated not only with clarithromycin affinity by
soil and chemical properties such as pH and properties related to
the effective cation exchange properties (Rodríguez-González
et al., 2022), but also with the soil microbial properties. The
latter hypothesis is confirmed by Kodešová et al. (2016) who
found higher dissipation half-lives in soils of better quality and,
hence, with better microbial conditions for biodegradation
processes than in lower quality soils. The history of field
exposure to clarithromycin also showed a great influence on
the response of microbial communities to the recent application
of this antibiotic to the same soil; thus, repeated annual exposure
to the antibiotic provided selective pressure to provoke changes in
microbial composition (increase of tolerant microorganisms and
decrease of sensitive ones) and, hence, a faster dissipation of
clarithromycin (Topp et al., 2016; Lau et al., 2020). Evidence for
long-term exposure leading to accelerated biodegradation of
organic compounds in soils was previously detected for
herbicides (Barriuso and Houot, 1996; Mahía et al., 2011).

In a previous investigation, we examined the bacterial growth
rates of soils S3, S5, S10, and S12 not added and added with the same
increasing concentration of clarithromycin over time (1, 8, and
42 days) (Rodríguez-González et al., 2022); therefore, data can be
properly compared with those obtained in this investigation. For all
soils, an inhibitory effect of clarithromycin on bacterial growth was
detected; however, this toxicity disappeared gradually with time
(8 days) and was no longer found after 42 days. In fact, for soil
S3 after 8 days and for all soils after 42 days of incubation, bacterial
growth rates increased exponentially between 8 and 42 days at higher
doses of the antibiotic. In the present work, a positive effect of
antibiotic was shown on total and specific microbial biomass values
after both 8 and 42 days, the amended soils reaching values
1.5–2 times higher than those in the corresponding unpolluted
soil. Therefore, the data supported our initial hypothesis about
the fact that changes in bacterial growth observed as a
consequence of clarithromycin addition were accompanied by
changes in both microbial community composition and total and
specific microbial biomass.

CONCLUSION

In summary, the results of the present study clearly demonstrated
residual effects on total and specificmicrobial biomass (shifts in the

positive direction) in these agricultural acid soils as a consequence
of the clarithromicyn addition after 42 days of application. Since
these microbial PLFAbiomass changes are associated with shifts in
the microbial composition (PLFA pattern), it is quite probable that
clarithromycin can have also an impact on functional microbial
diversity. Further investigations including the measurements of
microbial parameters related to mass, activity, microbial
community structure, and functional microbial diversity should
be conducted in short-, medium- and long-term studies in order to
gain a deeper understanding of the persistence period of
clarythromycine in terrestrial ecosystems as well as its risk
assessment in human health, which is associated with its
potential negative impact on soil functioning.
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