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This work is focused on the study of the dissipation of the antibiotics amoxicillin (AMX) (an
amino penicillin) and azithromycin (AZT) (belonging to the macrolide group), performed at a
laboratory scale, under simulated sunlight and in the dark, at pH values 4.0, 5.5, and 7.2,
and in the presence of humic acids and different inorganic salts. The results indicate that
AMX is more affected than AZT by simulated sunlight, with half-lives ranging 7.7–9.9 h for
AMX and 250–456 h for AZT. The lowest half-life values were obtained at pH 7.2 for AMX
(7.7 h) and at pH 4.0 for AZT (250 h). Regarding the effect of various salts, the presence of
NaNO3 causes that C/C0 decreases from 0.6 to 0 under simulated sunlight, having no
effect on the dissipation of AMX in the dark. However, in the presence of FeCl3 at
concentrations of 500mg L−1, AMX suffered total dissipation, both under simulated
sunlight and in the dark. For AZT the influence was lower, and the salts that caused a
higher increase in its dissipation were NaCl (with C/C0 decreasing from 0.5 to 0.2) and
CaCl2 (C/C0 decreasing from 0.5 to 0.3). The presence of humic acids caused a slight
increase in the dissipation of AMX, both under simulated sunlight and in the dark, a fact that
was attributed to the adsorption of the antibiotic onto these organic substances, which,
however, caused a more marked increase in the dissipation of AZT (reaching 68%) under
simulated sunlight. The overall results of this research can be considered clearly relevant,
mainly to determine the fate of AMX and AZT when these antibiotics reach the environment
as pollutants, either as regards their exposure to natural sunlight, or in relation to the use of
inactivation/photo-degradation systems in decontamination procedures focused on
environmental compartments.
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INTRODUCTION

Antibiotics reaching environmental compartments are considered emerging pollutants, and its
presence in soils can cause a variety of public health and environmental issues (Tello et al., 2012;
Manyi-Loh et al., 2018; Iwu et al., 2020; Serwecińska, 2020). The passage of antibiotics from soils to
surface-, subsurface- and ground-water (and its direct arrival to riverbeds through wastewater), as
well as their entry into the food chain through crops or aquatic organisms, is considered a
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particularly relevant risk (Zhao et al., 2019; Kumar et al., 2020;
Muhammad et al., 2020; Hassan et al., 2021). But a particular
aspect, specific to the soil, is the potential harmful effects of
antibiotics on edaphic microorganisms (Brandt et al., 2015;
Cycoń et al., 2019; Santás-Miguel et al., 2020), both due to the
direct toxicity on these microorganisms, and to the development
of pathogenic antibiotic resistant bacteria (Forsberg et al., 2012;
Cycoń et al., 2019). In this regard, as indicated in Salam and
Obayori (2019), antibiotic resistance is common in the
environment, and the meta-genomic approach has recently
shown its increasing relevance, mainly in cultivated soils and
environmental compartments affected by anthropogenic
activities.

One of the main routes for antibiotics to reach soils and the
overall environment is through wastewater and sewage sludge
spreading, and since many treatment plants (WWTPs) have low
efficiency in removing these compounds (Wang and Wang.,
2016; Yang et al., 2016), different additional methods have
been tested to inactivate/remove them, among which oxidation
processes, adsorption or biological treatments stand out (Han
et al., 2019; Han et al., 2021; Nippes et al., 2021). This low
purification efficiency reached in WWTPs, is one of the reasons
why relevant concentrations of antibiotics appear in both surface
and groundwater, and even in drinking water (Kemper, 2008).

Once these antibiotics reach watercourses, their degrees of
susceptibility to photo-degradation are of main importance to
establishing their persistence, as occurs in soils and other
environmental compartments (Cycoń et al., 2019; Nnadozie
and Odume, 2019; Arun et al., 2020). This susceptibility to
photo-degradation can be studied in the laboratory under
simulated sunlight, allowing to determine the persistence of
the antibiotics in the environment (particularly in aqueous
media), which affects their probability of generating
environmental and public health issues (Bilal et al., 2020;
Chaturvedi et al., 2021).

Given the complexity and importance of this problem, it
would be clearly interesting to obtain new experimental data
regarding the degradation of antibiotics that takes place in
aqueous media (which could correspond to watercourses, but
could also be representative of the soil solution). In a latter step,
this would help inmodeling the behavior of these compounds in a
variety of environmental situations, allowing to predict and fight
related pollution and public health issues (Rico et al., 2019; Su
et al., 2019; Tang et al., 2019; Khan et al., 2020; Bavumiragira
et al., 2022).

In addition, this kind of information on photo-degradation,
obtained through laboratory experiments, could be useful to find
the most favorable conditions promoting the removal/
inactivation of antibiotics present in wastewater, which could
be studied in later phases, at pilot scale, before entering the real
world scale if justified (Liu et al., 2018; Almansba et al., 2021; Silva
et al., 2021).

With the above background in mind, this work was
conceived to study the laboratory photo-degradation of two
antibiotics: amoxicillin (AMX), a semi-synthetic derivative of
penicillin that is among the most widely used antibiotic
substances, and has been detected in waters of different

countries (Tran et al., 2019; Sodhi et al., 2021; Yang et al.,
2021), and azithromycin (AZT), a macrolide which was also
detected in different water samples (Yi et al., 2019; Yang et al.,
2021). This is the first study on the photo-degradation of both
antibiotics in aqueous media in which the pH is modified, as
well as the concentrations of different salts and humic acids.
The results of this research could shed light on these processes,
which are highly relevant at the level of different
environmental compartments, public health and the overall
environment.

MATERIALS AND METHODS

Chemicals and Reagents
The antibiotics used were Amoxicillin tri-hydrate (AMX) with
95% purity, and Azithromycin (AZT), with 98% purity, both
from by Sigma Aldrich (Barcelona, Spain). MilliQ water was
used to prepare the AMX solution (at 50 µM), while AZT was
prepared at 5 mM in 96% ethanol, and from this a 50 µM
concentration was obtained by dilution with MilliQ water. All
the reagents used for HPLC analyses (acetonitrile, phosphoric
acid and monopotassium phosphate), and the different
inorganic salts used, were of high purity analytical grade,
supplied by Sigma-Aldrich (Barcelona, Spain). The most
relevant physicochemical characteristics of both antibiotics
are presented in Table 1.

Antibiotics Quantification
The equipment used for the quantification of the antibiotics
was an UltiMate 3000 HPLC (Thermo Fisher Scientific,
United States), with a quaternary pump, an auto-sampler, a
thermosstatted column compartment and an UltiMate 3000
series ultraviolet-visible detector. This equipment contains a
computer with version 7 of the Chromeleon software (Thermo
Fisher Scientific, United States). Chromatographic separations
were performed on a Luna C18 analytical column (150 mm
long; 4.6 mm internal diameter; 5 µm particle size) from
Phenomenex (Madrid, Spain), and a security column (4 mm
long; 3 mm internal diameter; 5 µm particle size), packed with
the same material as the column.

As the quantification limits were 0.01 µM for AMX and 0.5 µM
for AZT, the injection volumes were lower for the former (50 µL),
while it was 200 µL for AZT. The flow rates were 1.5 ml min−1 for
AMX and 1mlmin−1 for AZT. The temperature was kept constant
at 25 ± 1°C throughout the analysis. Finally, it should be noted that
between each measurement, the syringe was washed with a
methanol:water solution (ratio 50:50).

The conditions used to achieve the separation of the antibiotic
AZT were the following: the mobile phase was formed by
acetonitrile (phase A), and by monopotassium phosphate
0.025 M (phase B). The linear gradient elution program was
executed from 5 to 70% for phase A and from 95 to 30% for
phase B with a time of 18 min. The initial conditions were
restored in 2 min and held for 3 min. The total time for
analysis was 25 min, with a retention time of 9.7 min, and the
wavelength used for detection was 210 nm.
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AMX was separated under the following conditions: the mobile
phase was acetonitrile (phase A) as for AZT, but with phase B being
0.01M phosphoric acid (at pH = 2). The linear gradient elution
program was executed from 5 to 15% for phase A and from 95 to
85% for phase B, within 4 min. The initial conditions were restored
in 2min. The total analysis time was 10min, with a retention time of
3.3 min, and the wavelength used was 230 nm.

Additionally, in the aqueous solutions in which photo-
degradation was studied, the total organic carbon (TOC) was
determined at times of 0, 2, 16, and 72 h of exposure to light, to
determine the degree of antibiotic mineralization. However, it
was performed just for AMX, as AZT had been prepared in
ethanol, as indicated above. Specifically, the quantification of
TOC was carried out by means of a Multi N/C2100 equipment
(Analytikjena, Jena, Germany).

Photo-Degradation Experiments
Influence of pH on AMX and AZT Photo-Degradation
The effect of pH on degradation was studied, both under
simulated sunlight and in the dark, adjusting the solutions to
three pH values (4.0, 5.5, and 7.0) with 0.5 M NaOH and 0.5 M
HCl. The following conditions were used to carry out the study in
the dark: Six (6) ml of the solution of each antibiotic (at
concentrations of 50 µM) were placed in opaque glass EPA
vials that were kept at a constant temperature (22 ± 2°C); the
concentration of each antibiotic was measured at different times
(between 0.1 and 72 h for AMX, and between 0.1 and 192 h for
AZT) using the HPLC equipment. In the simulated sunlight
experiments, the samples were placed in a Suntest CPS + Atlas
cabinet (Germany) equipped with a 550Wm−2 xenon lamp and
quartz filters with a wavelength cut-off at 285 nm. The contact
times were the same as those used in the experiments in the dark.

Effects of Inorganic Salts and Humic Acids on AMX
and AZT Photo-Degradation
For these experiments, specific samples were prepared with a
50 µM concentration of each antibiotic and with different

concentrations of each salt (0, 5, 10, 50, and 500 mg L−1) and
humic acids (0, 0.05, 0.1, 0.2, 0.5, 1, and 10 mg L−1). The salts used
were NaCl, CaCl2, NaNO3, Na2HPO4, and FeCl3. The solutions
were adjusted to pH 4.0 with 0.5 M NaOH and 0.5 MHCl, except
for the samples with humic acids, which were adjusted to pH 5.5,
since these substances precipitate at more acidic pH values.

The exposure to light or dark conditions took place during a
time dependent on the half-life of each antibiotic, calculated from
the experimental data of degradation in water at pH 4.0, which
were described with an exponential decay model presented below,
being 8 h for AMX and 216 h for AZT. All experiments were
performed in triplicate.

Decay Model
The experimental data were fitted to an exponential decay model
(Eq. 1)

C/C0
� e−kt (1)

where C/C0 is the fraction of the initial concentration C0

that remains in the suspension after a given time t
(expressed in min), and k (min−1) is the kinetic dissipation
constant. The half-life (t1/2) of each compound was calculated
as per Eq. 2:

t1 /

2
� ln 2

k
(2)

RESULTS

Effect of pH on AMX and AZT
Photo-Degradation in Absence of Inorganic
Salts and Humic Acids
Figure 1 shows the dissipation results for AMX and AZT at
different pH values, both under simulated sunlight and in the

TABLE 1 | Properties of the antibiotics studied.

Common name Chemical structure Chemical formula Molecular weight
(g mol−1)

Log KOW pKa Water solubility
(mg L−1)

Amoxicillina C16H19N3O5S 365.4 0.87 3.23–7.22 3430

Azithromycinb C38H72N2O12 749.0 4.02 12.53–9.57 2.37

aSolliec et al. (2016), Ghirardini et al. (2020).
bGhirardini et al. (2020), Talaiekhozani et al. (2020).
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dark. For AMX, there was no dissipation in the dark at the
three pHs studied, keeping the value of the ratio C/C0 close to 1
(Figures 1A–C), while significant degradation occurred under

simulated sunlight, although without showing a clear trend as a
function of pH (Figures 1A–C), reaching C/C0 values close to
0 after 40 h of contact/exposure.

FIGURE 1 | Degradation kinetics of the antibiotics studied. (A) Amoxicillin at pH 4.0; (B) Amoxicillin at pH 5.5; (C) Amoxicillin at pH 7.0; (D) Azithromycin at pH 4.0;
(E) Azithromycin at pH 5.5; (F) Azithromycin at pH 7.0.
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The behavior of AZT in dark conditions was similar to that
of AMX, keeping the C/C0 values close to 1 for all the contact
times considered (Figures 1D–F). However, the degradation
under simulated sunlight was much lower than that of AMX,
in spite of using longer times of exposure to light (Figures
1D–F), with C/C0 values always above 0.5. In this case, the

degradation was higher at pH 4.0 than at pH 5.5 and 7.2
(Figures 1D–F).

The exponential decay model used to calculate half-lives (Eq.
1) proved to be useful for this type of estimation, with R2 scoring
between 0.913 and 0.999 (Table 2). For AMX, the kinetic
constants (k) did not show clear variation when pH went
from 4.0 to 7.2, with just a slight increase at pH 7.2, with the
half-life following the same trend, going from 8.8 h (at pH 4.0) to
7.7 h (at pH 7.2), and reaching a value of 9.9 h at the intermediate
pH of 5.5 (Table 2).

Furthermore, changing the pH between 4 and 7.2 does not
produce significant modifications in the AMX adsorption spectra
(Figure 2), an aspect that could also influence its degradation, but
it does not seem to be relevant in this case.

Figure 3 presents TOC data corresponding to the
experiments with AMX under simulated sunlight at
different pHs and at different times of exposition to light.
With 2 and 16 h of exposure, TOC does not decrease
significantly, despite the fact that the concentration of
AMX does reduce by more than 50% at the three pH

TABLE 2 | Data corresponding to the exponential decay model showing the
behavior of the antibiotics in filtered milliQ water at different pH values; k: rate
constant (h−1); t1/2: half-life (h).

Amoxicillin k (h−1) t1/2 (h) R2

pH 4.0 0.0791 ± 0.0037 8.8 0.995
pH 5.5 0.0701 ± 0.0008 9.8 0.999
pH 7.2 0.0900 ± 0.0026 7.7 0.993

Azithromycin

pH 4.0 0.0028 ± 0.0002 250.2 0.983
pH 5.5 0.0015 ± 0.0001 455.9 0.913
pH 7.2 0.0016 ± 0.0002 440.7 0.928

FIGURE 2 | Spectra of antibiotics adsorption and speciation at different pH values (4.0, 5.5 and 7.2). (A) Spectrum of Amoxicillin (AMX); (B) Speciation of AMX; (C)
Spectrum of Azithromycin (AZT); (D) Speciation of AZT.

Spanish Journal of Soil Science | Published by Frontiers May 2022 | Volume 12 | Article 104385

Rodríguez-López et al. Dissipation of Amoxicillin and Azithromycin



values studied (Figures 1A–C). After 72 h of simulated
sunlight, AMX was below the quantification limit, but the
TOC measurements only decreased between 30 and 35%,
without significant differences among the three pH values
studied (Figure 3).

The degradation of AZT was different from that of AMX, with
much lower kinetic constants (ranging between 0.0016 and
0.0028 h−1) and much longer half-lives (between 250 and
456 h), the lowest values corresponding to pH 4.0. This
indicates that AZT suffers higher degradation at acidic pH
(4.0) (Table 2), with a minimum degradation at pH 5.5, which
corresponds to a longer half-life (Table 2).

Effects of Inorganic Salts and Humic Acids
on AMX and AZT Photo-Degradation
The effects of the presence of the inorganic salts NaCl, CaCl2,
NaNO3, Na2HPO4, and FeCl3, and of soluble organic matter
(humic acids) on the degradation of the two antibiotics studied,
both in the dark and under simulated sunlight, are presented in
Figures 4, 5.

Figure 4 shows the data corresponding to AMX. The results
indicate that the degradation of AMX is dependent on
exposition to light, as well as on the matrix, and on the
characteristics of the antibiotic. In the dark, no effect on
the degradation of AMX was found for the different
inorganic salts studied, except for FeCl3 at its highest
concentration (500 mg L−1), which causes a 100%
dissipation of AMX; however, under simulated sunlight,
AMX degradation was greatly increased in the presence of
NaCl and NaNO3 (Figures 1A,C). The inorganic salt NaCl had
an effect favoring the dissipation of AMX, with C/C0 passing
from a value of 0.61 in the sample without NaCl to 0.34 in the
presence of 500 mg L−1 of NaCl, which means a decrease of

44% for this antibiotic (Figure 4A). The presence of NaNO3

caused the dissipation of practically 100% of AMX for the
highest concentration of the salt used (500 mg L−1)
(Figure 4C).

The effects of CaCl2 and Na2HPO4 under simulated
sunlight were slightly lower, with C/C0 values changing
from 0.60 to 0.48, and from 0.65 to 0.57, respectively,
which represents 21% and 12% dissipation, respectively
(Figures 4B,D). As was the case in the dark, the presence
of FeCl3 made AMX degradation very high (Figure 1E).

The effect of the presence of inorganic salts on the dissipation
of AZT is shown in Figure 5. In the dark, no significant effect was
observed, while under simulated sunlight the salts that had the
greatest effect on increasing the degradation of AZT were NaCl,
(with C/C0 changing from 0.49 to 0.24, whichmeans a dissipation
of 51% for the antibiotic) and CaCl2 (with C/C0 changing from
0.52 to 0.27, which means 47% of dissipation) (Figures 5A,B);
NaNO3, Na2HPO4 and FeCl3 did not cause increases in AZT
degradation (Figures 5C–E). The fundamental difference of AZT
with respect to AMX is the lack of effect of FeCl3, and the effect of
NaCl and NaNO3 favoring the degradation for AZT, with respect
to AMX (Figures 4, 5).

Finally, the presence of dissolved organic matter (humic
acids) had very scarce effect on AMX degradation, both in the
dark and under simulated sunlight (Figure 4F). There is a
slight dissipation taking place both in the dark and under
simulated sunlight (4%–19% of increase in dissipation) that
can be related to the adsorption of AMX onto humic acids.
However, for AZT the results are similar to those of AMX in
the dark (6% of increase in dissipation), whereas under
simulated sunlight the dissipation is very intense, reaching
68% (Figure 5F).

DISCUSSION

Effect of pH on AMX and AZT
Photo-Degradation
Regarding previous publications, there are few data on the
photo-degradation of AMX in aqueous solutions without the
intervention of a photo-catalyst, but the trend is that the
degradation increases as the pH rises, as has been pointed
out in studies using TiO2 nanoparticles (Moosavi and
Tavakoli, 2016; Li et al., 2019), or ZnO (Elmolla and
Chaudhuri, 2010). However, there are also other studies
indicating that changing pH does not affect AMX
degradation, such as that of Dimitrakopoulou et al. (2012),
who reported that the change in pH from 5 to 7.5 had not effect
on AMX degradation, but it did slow down the mineralization of
the antibiotic. This increase in degradation as the pH rises is
usually related to the different sensitivity of the various species
present, which is dependent on pH. Specifically, the zwitterion
and negatively charged forms grow as the pH increases
(Figure 2), which is determined by their pKa values. The
effect of increasing photo-degradation with rising pH has
also been highlighted for other antibiotics, such as
tetracyclines (Conde-Cid et al., 2018a), sulfonamides

FIGURE 3 | Total organic carbon (TOC) values (mg L−1) for Amoxicillin
(AMX), at times: 0, 2, 16, and 72 h, in the experiments under simulated
sunlight. Average values for three replicates (n = 3), with vertical bars
corresponding to standard deviations.
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(Canonica et al., 2008; Conde-Cid et al., 2018b) and other
families of antibiotics (Canonica et al., 2008; Rodríguez-
López et al., 2021; Álvarez-Esmorís et al., 2022).

Regarding TOC analyses, the results obtained indicate that the
mineralization of AMX is not complete and that intermediate
molecules are formed through different degradation pathways,
such as hydroxylation, hydrolysis and decarboxylation (Li et al.,
2019; Zhang et al., 2019).

The behavior of presenting a maximum stability at pH between
5.0 and 6.5, has already been described for AZT by other authors
(Farghaly and Mohamed, 2004; Zhang et al., 2009). In addition,
Čizmič et al. (2019) described a lack of effect on the degradation of
AZT due to varying pH between 3.0 and 7.0, but they did observe
an increase in the degradation of AZT when pH reached 10. The
greater or minor degree of photo-degradation in this case is not
related to different ionic forms of the molecule, since AZT has a
predominantly positive charge in the pH range studied in the
current work, due to its very high pKa values (Table 1; Figure 2D).
Although it was not possible to verify this fact with TOC
measurements, numerous intermediate degradation products

have also been detected for AZT, generating different fragments
due to modifications in the macrolide ring (Tong et al., 2011).

Effects of Salts and Humic Acids on
Photo-Degradation
The effect of Fe favoring the degradation of AMX has already
been described by several authors, both through the Fenton
reagent (Ay and Kargi, 2010) and through Fe particles
(Ghauch et al., 2009), the fundamental mechanism being the
formation of OH radicals that favor the degradation of the
antibiotic (Buitrago et al., 2020).

Comparing with previous publications, the results regarding the
effects of different water matrices on the degradation of the
antibiotics are contradictory, which can be attributed to the
different experimental conditions and the difference in sensitivity
of the antibiotics. In this sense, Canonica et al. (2008) indicate that
the effects of photosensitizers on the degradation of antibiotics
depended on the type of antibiotic and the light source. Different
results are also described even within the same family of antibiotics,

FIGURE 4 | Amoxicillin (AMX) degradation under simulated sunlight and in the dark, in the presence of the inorganic salts: (A) NaCl; (B) CaCl2; (C) NaNO3; (D)
Na2HPO4; (E) FeCl3; and in the presence of (F) humic acids.
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as is the case of the various responses due to the presence of dissolved
organic matter and nitrates on the degradation of different
cephalosporin molecules (Jiang et al., 2010). In general, the
presence of nitrates in water has been related to an increase in
the photolysis of AZT (Tang et al., 2019). In addition, an increase in
ionic strength was related to a higher rate of degradation of AZT
(Zhang et al., 2009). Other authors found an inhibitory effect due to
the presence of anions such as Cl−, HCO3

−, NO3
−, and SO4

2-, which
has been observed for AMX (Zhang et al., 2019), while some other
authors did not find neither inhibition nor promotion of degradation
(Mavronikola et al., 2009).

Regarding the effect of humic acids on the dissipation of
antibiotics, it probably depends on the content of these organic
substances, since at low concentrations they can work as
promoters of the photosensitivity of antibiotics, while at high
concentrations they can act as a preventer of photo-degradation
by increasing the turbidity of the liquid medium (Thiele-Bruhn,
2003; Xuan et al., 2010). This is one of the reasons why
contradictory results are found regarding its effect on the
degradation of antibiotic molecules. As example, an effect of

increasing the dissipation of sulfonamides has been previously
reported (Conde-Cid et al., 2018b), but their presence caused no
effect on the dissipation of tetracycline (Chen et al., 2008).

Conclusion
Among themain facts to remark from the current study, it should be
noted that the antibiotics AMX and AZT did not show significant
dissipation in the dark. AMX presented a half-life under simulated
sunlight that ranged between 7.7 and 8.7 h, with the lowest value
associated to the highest pH in the range investigated (pH 7.2). On
the other hand, AZT presented a higher half-life, with values that
ranged between 250 and 456 h, showing the highest value for an
intermediate pH (5.5). AMX completely dissipated after 50 h of
simulated sunlight, but the evaluation of the TOC values indicates
that the mineralization ranged between 30% and 35%, which
corresponds to the formation of intermediate compounds.
However, AZT did not completely dissipate even for the longest
contact time used (216 h) for the three pH values tested (4.0, 5.5, and
7.2). The presence ofNaCl had a favorable effect on the dissipation of
both antibiotics, with an increase in degradation of 44% and 51% for

FIGURE 5 | Azithromycin (AZT) degradation under simulated sunlight and in the dark, in the presence of the inorganic salts: (A) NaCl; (B) CaCl2; (C) NaNO3; (D)
Na2HPO4; (E) FeCl3; and in the presence of (F) humic acids.
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AMX and AZT, respectively. The presence of CaCl2 increased the
dissipation of AMX by 21%, and 47% for AZT. NaNO3 caused the
total dissipation of AMX when this salt was present at high
concentrations, while it had no effect on AZT. The presence of
Na2HPO4 had no effect on the dissipation of the two antibiotics
studied, while FeCl3 drastically increased AMX dissipation both in
the dark and under simulated sunlight, and had no effect on AZT.
The presence of humic acids only slightly increased the dissipation of
AMX, both in the dark (17%) and under simulated sunlight (4%),
having a similar effect for AZT in the dark (6% increase in
dissipation), and being more pronounced under simulated
sunlight, with an increase in dissipation of 68% for the highest
concentration of these substances (10 mg L−1). These results can be
considered relevant to understand and predict the fate of both
antibiotics when they reach environmental compartments, and
could help to define appropriate conditions to achieve the
inactivation/degradation/removal of these emerging pollutants.
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