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This work presents the history of the recognition of principal regulatory capacities of
estrogen hormones having been mistakenly regarded as breast cancer promoting agents
for more than 120 years. Comprehensive analysis of the results of clinical, epidemiological,
immunological and molecular studies justified that endogenous estrogens are the principal
regulators of embryonic development, survival and reproduction via orchestrating
appropriate expression and even edition of all genes in mammalians. Medical use of
chemically modified synthetic estrogens caused toxic complications; thromboembolic
events and increased cancer risk in female organs as they proved to be endocrine
disruptors deregulating estrogen receptors (ERs) rather than their activators. Synthetic
estrogen treatment exhibits ambiguous correlations with cancer risk at different sites,
which may be attributed to an inhibition of the unliganded activation of estrogen receptors
(ERs) coupled with compensatory liganded activation. The principle of estrogen induced
breast cancer led to the introduction of antiestrogen therapies against this tumor; inhibition
of the liganded activation of estrogen receptors and aromatase enzyme activity. The initial
enthusiasm turned into disappointment as the majority of breast cancers proved to be
primarily resistant to antiestrogens. In addition, nearly all patients showing earlier good
tumor responses to endocrine therapy, later experienced secondary resistance leading to
metastatic disease and fatal outcome. Studying the molecular events in tumors responsive
and unresponsive to antiestrogen therapy, it was illuminated that a complete inhibition of
liganded ER activation stimulates the growth of cancers, while a successful compensatory
upregulation of estrogen signal may achieve DNA restoration, tumor regression and
patient’s survival. Recognition of the principal role of endogenous estrogens in gene
expression, gene edition and DNA repair, estrogen treatment and stimulation of ER
expression in patients may bring about a great turn in medical practice.
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INTRODUCTION

The role of estrogen hormones in the carcinogenesis of female
breasts has long been debated based on the ambiguous results of
menopausal hormone therapy (MHT), however, the exact
mechanism of their tumor inducing effect is not entirely
clarified till now (1).

In 1896, a transient tumor regression was experienced in the
minority of premenopausal breast cancer cases via estrogen
withdrawal by oophorectomy (2). From that time onwards,
hypoestrogenism gained great popularity in the medical
practice of breast cancer care; however, recently the use of
aromatase inhibitors has become a less invasive means of
estrogen withdrawal (3). The shock of drastic estrogen
withdrawal by oophorectomy may result in a deceiving
transient tumor regression in certain breast cancer cases via a
quick compensatory estrogen synthesis at the extragonadal sites.
Nevertheless, mutilating surgical therapy could not achieve a
reassuring advance in breast cancer care (4).

In the early 1940s, the US Food and Drug Administration
(FDA) approved marketing of synthetic estrogens, non-steroidal
diethylstilbestrol (DES) and steroidal ethinylestradiol (EE) as well
as conjugated equine estrogens (CEEs) for medical purposes (5).

In 1944, Haddow et al. proposed the concept of “the estrogen
paradox” suggesting that in spite of the well known stimulating
effect of estrogen hormones on breast cancer, high doses of DES is
a promising therapy against this tumor (6). Despite the
experienced low tumor response rates (<30%) and serious
toxic side effects, the use of high dose synthetic estrogen
therapy turned into the standard of care for postmenopausal
breast cancer patients (7). CEE in high doses was not applied for
breast cancer therapy because of its natural hormone derivative
content.

In the meantime, the controversial results of great menopausal
hormone therapy (MHT) studies strengthened the presumed role
of estrogen treatment in the development and progression of
breast cancer (8, 9). Among postmenopausal women, the use of
exogenous estrogens having synthetic or natural origin and their
combinations with synthetic progestins resulted in ambiguous
clinical experiences. MHT yielded unforeseeable risks and
benefits concerning arterial and venous thromboembolism and
cancers of breasts and endometrium. According to the guidance
of Food and Drug Administration (FDA), the benefits of MHT
surpass their risks, while there were no comparative informations
regarding the efficacy and toxicity of bioidentical versus
conventional hormones (5).

Separated evaluation of the effects of specific HRT types
applying natural and synthetic hormones justified that horse
urine derived CEE alone is an outstanding formula decreasing
the risk for breast cancer, coronary heart disease and bone loss.
Conversely, synthetic estrogens and their combination with
synthetic progestins may have unforeseeable toxic and
carcinogenic impacts (10).

The presumed carcinogenic capacity of endogenous estrogens
promoted the introduction of current antiestrogen therapies
against breast cancer. In 1971, Cole et al. reported the use of
tamoxifen, a selective inhibitor of liganded activation of estrogen

receptor (ER) for the treatment of advanced breast cancer in
postmenopausal women (11). The experienced tumor response
rates were similarly low in patients treated with either tamoxifen
or DES (<30%), however, toxic side effects experienced in
tamoxifen treated patients proved to be less dramatic (12).
Tamoxifen became a preferred first line therapy for
postmenopausal breast cancer cases and it completely replaced
the use of high dose synthetic estrogen treatment (7).

Antiestrogen therapy of advanced breast cancer yielded
many difficulties and failures from the onset. Tamoxifen as a
first line therapy induced moderate tumor regression rate
(<40%–50%) even among the targeted ER-positive breast
cancer cases, while the remaining patients could not
exhibit tumor responses or experienced tumor growth.
Therapeutic failures were designated as de novo (primary)
antiestrogen resistance (13). During long term tamoxifen
administration, near all earlier responsive breast cancers
exhibited an “acquired (secondary) antiestrogen resistance”
resulting in rapid progression of the disease (14). In addition,
tamoxifen treatment induced various toxic side effects, which
could occasionally be life threatening, such as stroke,
coronary heart disease, pulmonary emboli and
malignancies at various sites particularly in the
endometrium (15).

Aromatase inhibitors (AIs) also were developed for the
therapeutic reduction of estrogen synthesis in breast cancer cases
(16). Among AI treated patients, the experienced tumor response
rate also was low (<30%) similarly to the results of other endocrine
therapies. AI treatment against breast cancer seemed to be
somewhat safer than tamoxifen use; it provoked somewhat lower
rates of thromboembolic complications and endometrial toxicity.
De novo or acquired resistance to AI treatment also developed in the
vast majority of patients with advanced breast cancer.

Following the failures in high dose estrogen treatment the
development of antiestrogen therapy could also not realize the
enthusiastic expectations for breast cancer defeat. In breast cancer
cases diagnosed and treated at the earliest stage, unforeseeable
tumor recurrence and fatal outcome may occur even after decades
(17). Tumor responses to antiestrogen treatment were transient
and inconsistent coupled with high toxicity in breast cancer cases
(18). These experiences strongly suggest that our therapeutic efforts
against breast cancer are not appropriate. Further insights into the
mechanisms of tumor growth and tumor recurrence are necessary
for the improvement of breast cancer care.

The comparison between the major anticancer capacity of
endogenous estrogens and the ambiguous effects of the endocrine
disruptor synthetic estrogens and antiestrogens shows some
parallelism with the history of Rosetta stone. It is a stele
composed of granodiorite inscribed with three versions of a
decree issued in Memphis, Egypt, in 196. The texts are in
ancient Egyptian hieroglyphic scripts, in Demotic scripts and
in Ancient Greek. The comparison of the three versions made
Rosetta stone a key to deciphering the ancient Egyptian scripts.1

1Rosetta Stone - Wikipedia. Available at: https://en.wikipedia.org/wiki/Rosetta_
Stone (Accessed October 9, 2014).
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ESTROGEN DEFICIENCY AND ER
RESISTANCE WERE RECOGNIZED AS
CANCER RISK FACTORS
In 2007, estrogen deficiency was exposed as a newly recognized risk
factor for oral cancer in a Hungarian clinical-epidemiological study
(19). Oral cancer exhibited increasing prevalence with ageing, while
premenopausal women with healthy cycles were strongly protected
from this disease compared to age matched men. The male-female
ratio of overall oral cancer cases was 3.8:1 showing a high male
predominance. Examining the male-female ration of oral cancer
cases in the different age groups, it was the highest between
35–40 years of age; 81% versus 19%. Above 50, the percentage of
female patients showed a slight increase, while above 70 a steeper
increase was observed till 80, when the oral cancer incidence was
equalized between male and female patients: 1:1. These data
suggested that with ageing, women lose their hormonal
protection against oral cancer attributed to their deepening
postmenopausal estrogen loss and the associated changes in gene
regulation (20). The significantly high rate of early menopause and
premenopausal hysterectomy in the anamnesis of elderly female oral
cancer cases also supported that estrogen deficiency is a causal factor
of this tumor.

Oral cancer induced by decreased estrogen levels seemed to be
highly controversial to the old principle of estrogen induced breast
cancer as the regulation of genomic processes may not be quite
different at various sites. Analyzing the literary data, defective estrogen
signaling proved to be a strong cancer risk factor for several organs
including female breasts (20). The correlation between premenopausal
hormonal defects and the increased risk for gynaecologic and breast
malignancies justified that organs with high estrogen need are
particularly endangered by the defect of estrogen signal (21).

Estrogen deficiency emerged as a new cancer risk factor
directly deteriorating the signaling functions of mammalian
cells. Moreover, results of clinical and experimental studies
justified that behind insulin resistance associated chronic
diseases a defect of estrogen signal may always be revealed
suggesting their strong partnership in cancer development (22).

Studies on breast cancer epidemiology suggested that the better
the reproductive capacity of women the lower is their breast cancer
risk. In healthy premenopausal women having higher estrogen
levels, the breast cancer risk is much lower as compared with
postmenopausal cases showing extremely low serum estrogen
concentrations (23). Studies examining the serum estrogen levels
in young and postmenopausal breast cancer cases, could not find
direct correlations between increased serum estrogen concentrations
and breast cancer development (24, 25). Parity and multiparity in
particular, are associated with strikingly decreased breast cancer risk
(26). Conversely, anovulatory disorders and nulliparity are well-
known risks for breast tumors and further female cancers (27, 28).

Immunohistochemical imaging of ERs, progesterone receptors
(PRs) and human epidermal growth factor receptors (HER2s) in
breast cancers provided further possibilities to clarify the risk
factors and therapeutic possibilities of variously differentiated
tumors (29).

Experimental and clinical studies examined the correlation between
ER expression and the development and progression of breast cancer.

The differences between ER-positive and ER-negative tumors
regarding their gene expressions and genomic mutations remained
to be clarified (30). However, ER-positive status in tumors is associated
with more differentiated and less invasive tumors, suggesting that ERs
may have rather a protective role against tumor growth andmetastatic
progression. In addition, ER-negative and even triple receptor negative
tumors (TNBCs) with lack of ER, PR and HER2 expression exhibit
poorly differentiated morphology and highly aggressive clinical course.
The risk of these aggressive breast cancers is increased in patients with
defective estrogen signaling including obesity, metabolic syndrome,
type-2 diabetes, breast cancer (BRCA) gene mutation and low
environmental light exposure (31). These observations and the high
frequency of tumor resistance to antiestrogenic treatment suggest that
estrogens and their receptors may have apoptotic action on breast
cancer cells rather than increasing their proliferative activity.

In postmenopausal women with decreased estrogen levels, the
majority of tumors proved to be highly differentiated with abundant
ER expression (32) showing a compensatory reaction in the estrogen
deficientmilieu. Conversely, premenopausal breast cancer cases with
preserved or even increased ovarian estrogen synthesis exhibit a
higher rate of ER-negative and even triple negative breast cancers
(TNBCs) (33). In these young cases, hyperestrogenism coupled with
clinical signs of estrogen deficiency suggest baseline serious defects of
ER expression/activation in the background as initiators of poorly
differentiated tumors (31).

In animal experiments, high estrogen concentrations in
pregnancy and short term exposure to pregnancy mimicking
high estrogen levels prevented mammary carcinogenesis induced
by either chemicals or tumor inoculation (34). Genetic studies
have demonstrated that ovarian estrogens exhibit strong interplay
with p53 tumor suppressor protein in rendering the mammary
epithelium resistant to carcinogenesis. In addition, estrogen
mediated genomic protection in mammary tissue was observed
even in mice with homozygous deletions in the gene of
p53 suggesting that estrogen treatment is a potent inhibitor of
tumorgenesis through multiple pathways (35). Analysis of the
failures of currently applied treatments for breast cancer,
exogenous estrogen was suggested as a causal therapy against
this disease (36).

In conclusion, either estrogen deficiency or ER-resistance to
estrogen activation may lead to genomic disorders increasing the
risk of breast cancer (37). Moreover, the stronger the defect of
estrogen signal, the higher is the risk for poorly differentiated ER-
negative and TNBC type tumors.

ESTROGEN ACTIVATED ERS ARE
PRINCIPAL REGULATORS OF ALL
GENOMIC PROCESSES PROVIDING
SURVEILLANCE FOR SOMATIC AND
REPRODUCTIVE HEALTH IN
MAMMALIANS

The genome of living organisms is inherited; however, it shows a
great plasticity through appropriate self-mediated changes
continuously updating the regulatory processes throughout the
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life. Bio-intelligence means that the genome of living creatures is
capable of perception of its environment (outer and inner) (38).
Genome has memory for evaluation of the observed changes, and
can decide and carry out mutational responses so as to improve
the possibilities for survival and reproduction.

Malignant tumor cells are mistakenly regarded as enemies
to be killed similarly like exogenous microbes. Presumably,
“hostile” tumor cells develop survival techniques so as to
escape from the regulatory commands of patient’s body. In
reality, tumor cells are dysregulated human cells having more
or less remnants of the same regulatory network like patients’
healthy cells have. The tumor initiator is an inherited or
acquired failure of the principal regulator of the genomic
machinery. Variously differentiated tumor cells exhibit
spontaneous efforts for the improvement of their genomic
regulation; however, this work in itself may rarely lead to a
successful tumor regression. Tumor cells need medical help for
the self directed repair of genomic alterations instead of crude
inhibition of their spontaneous gene repairing efforts (39).

Over the past decades, we acquired a deeper appreciation on
the roles of estrogen receptors in human physiology and
pathology (40). Estrogen activated ERs act as hubs in the
network of transcriptional and translational genomic
processes. ERs were favored by evolution as being integrators
between reproductive and somatic functions. ERs (ER-alpha and
ER-beta) are transcriptional factor proteins. In estrogen activated
form, they are capable of occupation of all human genes inducing
gene expression, ribonucleic acid (RNA) transcription and
translational protein synthesis, orchestrating the work of whole
genomic machinery.

In humans, ER-alpha and ER-beta isoforms are co-expressed
in many cells and tissues, and they control key physiological
functions in all organ systems in strong interplay. ER alpha
primarily drives and controls the proliferation and DNA
stability of cells, while ER beta regulates cell growth in
particular (41). Both ER isoforms are mandatory regulators of
cellular glucose uptake since all ER driven genomic processes
require an appropriate supply of fuel for metabolic processes
(42, 43).

ERα is the highly predominant isoform in mammary gland,
uterus, ovary (thecal cells), bone, male reproductive organs (testes
and epididymis), prostatic stroma, liver, and adipose tissue. By
contrast, ERβ is highly expressed in the prostatic epithelium,
bladder, ovary (granulosa cells), colon, adipose tissue, and
immune system. Both subtypes are markedly expressed in the
cardiovascular and central nervous systems (44). This latter
experience may explain the high vulnerability to even mild
defects of estrogen signal in the heart, arteries and brain. Strict
balance of the two receptor isoforms at different sites may be
responsible for a fine tuning of regulation affecting the individual
development, growth and function of different organs.

ERs have possibilities for liganded (estrogen bound) activation
through their activation function 2 (AF2) domain and for
unliganded activation by several transduction molecules
through the ancient activation function 1 (AF1) domain (40).
In the fetal life, differentiation is predominantly driven by the
ancient unliganded ER activation. In rapidly growing children,

the primacy of growth factors favors unliganded ER activation;
while in the adult, reproductive life period, estrogen activation of
ERs has a priority in both men and women. In estrogen deficient
periods, increased growth factor receptor (GFR) expression and
activationmay transiently maintain the appropriate ER activation
via unliganded pathway (45). Ligand-independent responses are
ER-mediated effects seen after activating other pathways, such as
insulin like growth factor IGF1 receptor–mediated signaling, that
results in ER-mediated transcriptional responses independent of
estrogenic steroid ligands (46). Balanced liganded and unliganded
activation of ERs stimulates estrogen synthesis and ER expression
ensuring DNA stabilization and upregulation of the whole
genomic machinery (47). Artificial inhibition of either
liganded or unliganded activation of ERs induces a strong
compensatory upregulation of the unaffected domain, while
the failure of restorative efforts may eventually lead to a
breakdown of the whole regulation.

REGULATORY CIRCUITS OF
ACTIVATED ERS

Activated ERs drive the network of whole genomic machinery
stimulating and silencing all physiological processes via
regulatory circuits (42). The principally important regulatory
circuits serve DNA stabilization, cell proliferation/silencing
and cellular fuel supply (Figure 1). In a healthy genome, there
is no unrestrained activation or blockade of cellular processes, but
rather ERs harmonize all physiological activities via upregulative
or downregulative circuits.

Regulatory Circuit of DNA Stabilization
There is a primacy of the DNA stabilizer circuit as unrepaired
DNA damages endanger the work of whole genomic machinery
and the life of living organisms (42). Estrogen activated ER-alpha
increases the expression and activation of genome stabilizer
proteins, such as BRCA1/2. BRCA proteins as transcriptional
factors are capable of increasing the expression and activation of
aromatase enzyme. Increased aromatase activation results in new
estrogen synthesis, further increasing the liganded activation of
ERs and new ER expression. In conclusion, the
E2ER–BRCA–aromatase–E2—ER circuit ensures the
continuous maintenance of both genome stabilization and
estrogen signal. In pregnancy, strong upregulation of estrogen
signal and DNA stabilization ensure the safety growth and
development of the fetus. Estrogen loss or ER resistance are
emergency situations leading to rapid mobilization of ER
expression and estrogen synthesis so as to restore the DNA
stabilizer circuit. In tumors, estrogen treatment induces
upregulation of the whole genomic machinery promoting self
directed apoptotic death in tumor cells (42).

Regulatory Circuit of Cell Proliferation
In the regulatory circuit of cell proliferation estrogen activated
ERs drive and control the growth and involution at all sites of the
body in strong interplay with membrane associated tyrosine
kinase growth factor receptors: epidermal growth factor
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receptors (EGFRs) and insulin-like growth factor-1 receptors
(IGF-1Rs) (48). Liganded ERs regulate the expression and
activation of both growth factors (GFs) and growth factor
receptors (GFRs). Transduction of growth factor signal
(GFS) induces kinase cascades via PI3-K/AKT/mTOR and
RAS/RAF/MEK/MAPK pathways conferring further
unliganded activation to nuclear ERs (39). In pregnancy,
extremely high estrogen level drives the enormous growth
of uterus, while a drop of estrogen level orchestrates its
postpartum involution (45). The emergency situation of low
estrogen level leads to increasing expression/activation of
GFRs so as to strengthen the estrogen signal via unliganded
activation of nuclear ERs. In genomically dysregulated tumors,
artificial blockade of estrogen signal activates growth factor
kinase cascades sending forewarning messages for nuclear ERs
via unliganded pathway (39).

Regulatory Circuit of Fuel Supply
In the regulatory circuit of fuel supply, activated ERs drive and
control all steps of cellular glucose uptake and the maintenance
of glucose homeostasis (49). Appropriate insulin assisted
glucose uptake is the prerequisite of all somatic and
reproductive cellular functions. Estrogen treatment defends
the vitality of pancreatic islet cells from lipid deposition (50),
and activates their insulin secretion (51). Estrogen increases
insulin stimulated cellular glucose uptake via facilitating the
expression and translocation of intracellular glucose
transporters (GLUTs) (52). Disorders of glucose uptake
always reflect the manifestation of a defective estrogen
signaling in the background (43). In insulin resistant status,
estrogen treatment provides liganded activation to ER-alpha,
which stimulates GFR signal and tyrosine kinase cascades
conferring even an unliganded activation to nuclear ERs

FIGURE 1 |Main regulatory circuits of liganded ER-alpha for DNA stabilization (A), cell proliferation (B) and fuel supply (C). Circuit of DNA stabilization (A) Estrogen
(E2) activated estrogen receptor alpha (ERα) upregulates estrogen signal via a regulatory circuit together with genome stabilizer protein (BRCA1) and aromatase enzyme
(A450). Activated ER-alpha induces messenger RNA (mRNA) expressions on ESR1,BRCA1 andCyp19A aromatase promoter regions upregulating the synthesis of ER-
alpha, BRCA1 protein and aromatase enzyme. Aromatase enzyme produces estrogen hormones for further ER activation. In addition, activated ER-alpha may
induce activating mutations on ESR1,BRCA1 andCyp19A genes through the expression and activation of appropriate long non-coding RNAs (lncRNAs). Moreover, ER-
alpha and BRCA proteins are capable of direct binding as transcriptional factors regulating each-other’s activity. Circuit of cell proliferation (B) Estrogen activated ERα is
the crucial regulator of increased and decreased cell proliferation in strong interplay with membrane associated tyrosine kinase growth factor receptors; EGFRs and IGF-
1Rs. ERs also regulate the expression and activation of growth factors (GFs) and their receptors. Transduction of growth factor signal (GFS) induces kinase cascades via
PI3-K/AKT/mTOR and RAS/RAF/MEK/MAPK pathways conferring unliganded activation for nuclear ERs and promoting specific gene expressions. Circuit of fuel supply
(C) Estrogen activated ERα is the regulator of all steps of cellular glucose uptake and the maintenance of glucose homeostasis. Estrogen regulated genes stimulate both
insulin synthesis and insulin receptor (IR) expression. Activated ERα stimulates the expression and translocation of glucose transporter 4 (GLUT4) facilitating cellular
glucose uptake. In addition, estrogen activated ERα at the plasma membrane stimulates the kinase cascade of PI3-K/AKT/mTOR pathway via insulin receptor substrate
1 (IRS-1) activation. These signals induce specific gene expressions in the nucleus conferred by unliganded ERα activation. Abbreviations: LBD, ligand binding domain;
CA, coactivator; AF2, activating function 2; AF1, activating function 1.
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(39). In MCF-7 breast cancer cell lines, 17β-estradiol treatment
activated glucose uptake via GLUT4 translocation and PI3K/
Akt signaling pathway (53). In tumor cells, estrogen induced
activation of glucose uptake helps the self directed repair of
genomic regulation instead of promoting unrestrained
proliferation (42).

ERs expressed in the adipose tissue mass regulate the energy
supply of the whole body of mammalians. Abdominally located fatty
tissue is a hub of the signaling network providing energy and ER
signal to the work of visceral organs. Fatty tissue in the pericardium
regulates heart, while fat positioned along great vessels drives and
controls the function of arteries and veins (54). Increasing estrogen
level in adipocytes activates ERs driving the expression of numerous
genes and the synthesis of signaling molecules such as sex steroid
hormones, adipokines, growth factors and cytokines (49).

Conversely, estrogen deficiency or ER resistance deregulates
the signaling functions of adipocytes. In women, menopause
associated estrogen loss may increase the risk for both
metabolic disorders and weight gain (55). Adipocytes with
excessive lipid deposition lose their regulatory function and
become insulin resistant. In obesity, adipose tissue mass
exhibits low grade inflammation with abundant macrophages
and T-cells. Macrophages produce cytokines generating a
compensatory increased activation of aromatase enzyme and
amplified estrogen synthesis (56). Increased estrogen synthesis
or exogenous estrogen treatment silences inflammation and
rapidly improves the signaling function of abundant fatty
tissue in obese patients (57).

SYNTHETIC ESTROGENS ARE
ENDOCRINE DISRUPTORS INHIBITING
THE UNLIGANDED ACTIVATION OF ERS
AND CAUSING ER DEREGULATION

From the early 1940s, synthetic estrogens DES and EE in high
doses were introduced as promising treatments for patients with
advanced breast cancer (58). High doses of synthetic estrogens
resulted in low rates of tumor response (<30%), while their side
effects reflected serious cardiovascular and gastrointestinal
toxicity as well as frequently life threatening clotting disorders
(59) suggesting a genome-wide deregulation of different organs.
Use of high dose synthetic estrogens against breast cancer
ensured the evaluation of the anticancer effects of synthetic
hormones without any information concerning the effects of
endogenous estrogens.

In female transgenic mice with inactivated AF2 domain of
ERs, DES treatment could not induce an estrogen-like
uterotrophic response through the activation of AF1 domain
(60). This experiment justified that DES may block the
unliganded activation of AF1 domain, while provoking a
compensatory liganded activation of the AF2 of ERs, thus
mimicking an estrogen-like effect at the expense of ER
deregulation (47). DES may be regarded as endocrine
disruptor compound instead of an estrogenic one, and the
higher the applied dose, the more serious is its toxicity.

In pregnant rats, exposure to excessive DES and EE induced
mammary tumor development in both mothers and their
offsprings. These synthetic estrogens equally provoked
persistent alterations in the expression of estrogen regulated
genes, in DNA methylation and histone modifications (61).
These observations underline that even the chemically
modified steroidal EE is an endocrine disruptor instead of
being a bioidentical estrogen (47). In human breast cancer
therapy, unbalanced inhibition and activation of ER domains
via high dose synthetic estrogen treatment led to controversial
tumor responses and serious toxic complications via alterations
in the expression of estrogen regulated genes.

Oral contraceptives (OCs) comprising steroidal EE were
developed in the early 1960s and EE became a standard
component of near all forms of contraceptive pills (7). OCs
comprising low doses of EE may usually work well, however;
in certain women they may induce unforeseeable arterial or
venous thromboembolic complications (62). OC use is
especially dangerous for women with metabolic syndrome,
type-2 diabetes and hypercholesterolemia (63). Use of OCs
exhibits ambiguous correlations with cancer risk depending on
the specific regulatory features of affected organs (47). In OC
users, overall breast cancer risk is slightly increased (64, 65), while
the risk of poorly differentiated ER-negative and triple negative
breast cancer (TNBC) type tumors is significantly increased
among them (33, 66). These findings suggest that in women
with inherited or acquired defect of liganded ER signaling, long
term OC use may increase the risk of poorly differentiated breast
tumors via an additive deregulation of ER activation (47).

In contrast, OCs comprising low doses of EE may decrease
endometrial cancer (67) and ovarian cancer risks (68). In
anovulatory women, artificial cycles formed by OC use
strongly improve insulin resistance and sex hormone
imbalances in the uterus and ovaries (69, 70). OCs may
reduce endometrial and ovarian cancer risks via a strong
compensatory upregulation of the AF2 domain of ERs.

In conclusion, EE is an endocrine disruptor compound even in
low doses as it is rather a partial antagonist of ER activation
instead of being an agonist. Since EE has been regarded as a
bioidentical estrogen, the experienced thromboembolic events
and increased breast cancer risk in OC users were mistakenly
regarded as complications of elevated estrogen levels (10).

Xenoestrogens deriving from the environment have endocrine
disrupting properties acting as false ligands of nuclear receptors
including estrogen receptors. Deregulation of estrogen receptors
lead to changes in DNA methylation and histone modification
leading to genomic instability. Environmental endocrine
disruptor compounds may be natural like phytoestrogens and
resveratrol or synthetic substances like solvents, pesticides,
cleaning products and cosmetics. Many observations are
suggesting that exposure to environmental endocrine
disruptors do contribute to cancer, diabetes, obesity, metabolic
syndrome and infertility (71).

During the development of menopausal hormone therapy
(MHT) both synthetic estrogens (EE, E2) and conjugated
equine estrogens (CEEs) with natural origin were applied (5).
Before 2000, the early MHT studies designated all estrogenic
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hormones simply as exogenous estrogens without distinction
between natural and synthetic formulas (10).

Increased endometrial cancer risk was reported in
postmenopausal women using miscellaneous exogenous
estrogens (72). From 1985, highly conflicting reports were
published concerning the cardiovascular risks (73) and benefits
(74, 75) in women using various estrogen formulas. In 1998, a
meta-analysis study summarized that unopposed estrogen
therapy, using different synthetic and natural formulas,
increases the risk for endometrial hyperplasia, endometrial
cancer, arterial and venous thromboembolic complications and
for breast cancer (76).

In 2002, the results of a great, prospective, placebo controlled
Women’s Health Initiative (WHI) study strengthened that
combined CEE plus medroxyprogesterone-acetate (MPA)
treatment (PremPro, Pfizer) increased the risk of breast and
colon cancer, thromboembolism, cardiovascular diseases and
hip fracture (9). Following these serious experiences, there was
a consequential precipitous decrease in MHT use among
postmenopausal women and a thorough re-evaluation of MHT
practice became necessary (5). Later, in a prospective MHT study,
highly toxic effects of MPA were published as compared with
other synthetic progestins (77). This finding illuminated that in
the WHI study published in 2002, the MPA component of
PremPro may be blamed for the catastrophic results of MHT
instead of the horse urine deriving Premarin (46).

Evaluating the controversial results of MHT studies; the FDA
US established several times that various approved estrogen and
progestin formulations may alleviate menopausal symptoms in
postmenopausal women. However, their use is associated with
ambiguous “risks and benefits” concerning coronary heart
disease, thromboembolism as well as for endometrial and
breast cancers (5).

In 2004, the results of a further great, prospective placebo
controlled WHI study showed strikingly decreased breast cancer
risk after using oral CEE alone; and the risk for total cancer also
was slightly reduced (78). Considering the outstanding findings
on breast cancer prevention by estrogen, WHI investigators
performed extended studies continuing the follow up of
surviving hormone treated and control patients. Further data
were published on the breast cancer risk reduction among re-
examined CEE treated patients in 2011 (79), in 2012 (80), in 2013
(81) in 2015 (82) and in 2020 (83). Despite the experienced
consistently decreased breast cancer morbidity and mortality in
the CEE treated group, WHI investigators did not support CEE
use for breast cancer risk reduction.

Critical analysis of the results of MHT studies revealed that the
use of estrogens with different origin and even their combinations
with synthetic progestins may explain the chaos of quite
controversial clinical experiences among hormone user women
(10). Premarin (CEE) treatment alone proved to be a key to
successful menopausal hormone therapy decreasing all health
risks of women having menopausal complaints (84).

In 2021, the results of a new WHI randomized, placebo-
controlled trial were published. Conjugated equine estrogen
treatment (N = 10,739) significantly reduced ER-positive, PR-
negative cancers and deaths from breast cancer also were reduced

by 40% (85). This finding has not been demonstrated for any
other pharmacological intervention. Considering the outstanding
breast cancer risk reducing capacity of Premarin, authors
eventually established “here is the time for change in our
breast cancer risk reduction strategies and clinical practice”.

ANTIESTROGENS ARE
CHEMOTHERAPEUTIC AGENTS
TARGETING THE LIGANDED ACTIVATION
OF ERS, WHICH IS THE PRINCIPAL MEANS
OF GENOMIC REGULATION

The pharmaceutical industry developed the first drugs for the
inhibition of estrogen induced activation of ERs and they were
introduced into the practice of breast cancer care. Tamoxifen was
regarded as a selective estrogen receptor modulator, while
letrozole worked as aromatase inhibitor reducing estrogen
synthesis in breast cancer patients (86).

Considering the whole population of breast cancer patients,
antiestrogen treatment could not surpass the “magic” 30% of
tumor response rate, similarly to the weaknesses of other
endocrine therapies; such as oophorectomy or high doses of
synthetic estrogens (87). The majority of even the targeted ER-
positive tumors were not responsive to the endocrine treatment
showing primary resistance (13). In addition, patients showing
earlier good tumor responses to antiestrogens later experienced
secondary resistance leading to metastatic disease and fatal
outcome.

Despite the 50 years practice and advance of antiestrogen
therapy, the inhibition of liganded ER activation could not
become the key to the tumor free survival of breast cancer
cases. Enormous efforts have been exerted worldwide to
overcome the tumor “resistance” to antiestrogen therapy,
which develops near in all ER-positive breast cancer patients
following long term treatment.

Systemic antiestrogen treatment with tamoxifen or aromatase
inhibitor, blocks the genomic processes in both the healthy cells
of patient’s body and in ER-positive tumor cells. In antiestrogen
responsive patients, a compensatory ovarian hyper stimulation
may be experienced (88), while tumors show clinical regression.
In the background, the whole body increases systemic and
mammary estrogen signal via higher expression of ERs and
activation of estrogen synthesis. In the meantime, the blockade
of liganded ER activation is a crisis even for tumors promoting the
upregulation of estrogen signal and DNA stabilization leading to
apoptosis. Tumor response may be regarded as a common success
based on the repaired genomic regulation of both patients and
their tumors (39).

In patients, non-responsive to antiestrogens, various toxic side
effects are experienced suggesting a genome wide blockade of the
estrogen signal in the whole body. Tumor cells remain without
regulatory help, similarly, like tumor cell lines in vitro. In tumors,
the predominance of blocked, tamoxifen-bound ERs aggravates
the failure of estrogen signal and DNA repair resulting in
unrestrained proliferation coupled with clinically observable
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tumor growth. The cancer bearing mammary tissue also suffers of
deregulation and cannot put up demarcation line against the local
spread of tumor. In addition, deregulated remote organs cannot
counteract the colonization of arriving tumor cell groups. In
conclusion, tumor growth, metastatic spread and fatal outcome
are the results of uncompensated blockade of liganded ER
activation (40).

Molecular events behind the response and resistance of
antiestrogen treated breast cancer cells were thoroughly
analyzed. Different mechanisms of endocrine resistance
were suggested, such as compensatory increased expression
of ER coactivators (89), and a counteractive stimulation of
aromatase activity (90). Recent reports identified mutations in
the ERα obtained from the recurrent tumors of AI treated
patients. These mutations enable the ERα to activate without
ligands and presumably auto-stimulate metastatic tumor
growth (91).

In tumor cells responsive to endocrine therapy, the increased
expression and activation of ERs were typical observations
counteracting the endocrine disruptor treatment (92). When
tamoxifen highly stimulates compensatory ER expression and
activation it may successfully arrest tumor cell survival and
proliferation (93, 94). In tamoxifen sensitive tumors, the
amplification of ER alpha encoding ESR1 gene is typically
coupled with highly increased expression and activation of ERs
(95, 96). Both estrogen withdrawal and tamoxifen induced ER
blockade recruits the coactivators of ERs so as to increase the
upregulation of estrogen signal (97–99). In ER-positive
tumors, tamoxifen shock provokes increasing expression of
certain microRNAs helping mRNA transcripts of ERs
facilitating new protein synthesis (40). Aromatase inhibitor
therapy of tumor cells induces an acquired amplification of
aromatase encoding CYP19A1 gene enhancing both enzyme
expression and estrogen synthesis (100). In conclusion, in
antiestrogen responsive, ER-positive tumors, the principal
response to the medical blockade of AF2 domain is a
compensatory increased expression and liganded activation
of ERs (92).

In breast tumors non-responsive to endocrine therapy, a long
term tamoxifen treatment continuously stimulates ER expression,
while tumors are progressively growing (101). Breast tumors
becoming tamoxifen resistant exhibit highly increased
expression and activation of GFRs, both IGFRs and EGFRs,
besides the abundance of ERs (93). This overwhelming GFR
expression is not a survival technique of tumor cells, but rather it
serves a compensatory activation of accessible ERs via unliganded
pathway (47).

In exhaustively treated non-responsive tumors, ERs mediate
activating mutation on ERBB2 gene of GFR tyrosine kinases
conferring a compensatory increased unliganded activation of
nuclear ERs (102). In endocrine refractory ER-positive breast
cancer, PIK3CA gene is frequently mutated upregulating the
components of the PI3K-AKT-mTOR tyrosine kinase cascade
further increasing the unliganded activation of ERs (103). In
tumors, under exhaustive aromatase inhibitor treatment, the
extreme estrogen loss turns the ligand binding domain (LBD)
of ERs responsive to GFR signal via an acquired mutation on

ESR1 gene (104). This gene edition is an effort for restoring the
crucial estrogen signal even in the absence of estrogen (39).

In conclusion, in antiestrogen resistant tumors, increased
expression and activation of ERs, GFRs and tyrosine
kinase cascades do not facilitate an increased proliferation
of tumor cells but rather they serve as strong feedback
signals to ERs via unliganded activation. Activating
mutations on the genes of ERs, GFRs and tyrosine kinases
serve desperate efforts for restoring estrogen signal and DNA
repair capacity.

Darwinian low of evolution, namely, the selection of more fit
genotype/phenotype of living organisms should be specially
adapted to tumors treated with endocrine disruptors. In
tumors, gene amplification or even acquired new mutations
occurring under antiestrogenic shock aims the restoration of
DNA stabilization and apoptotic death of tumor cells serving
the survival of patient (39). In conclusion, tumor cell indirectly
follows on the rule of all living organisms; survival and
reproduction are above all.

How can breast tumors exhibit either response or resistance to
tamoxifen therapy, when they exhibit a similar abundance
of ERs?

In ER-positive, antiestrogen responsive tumors, tamoxifen
treatment may provoke compensatory increased ER expression
and E2 synthesis via upregulating the circuit of E2ER-BRCA-
aromatase-E2-ER signal and the associated DNA stabilization.
Predominance of estrogen-bound ERs over tamoxifen-blocked
ones may achieve DNA repair, apoptotic tumor cell death
coupled with clinical tumor response.

In ER positive, antiestrogen resistant tumors, an
exhaustive tamoxifen treatment may induce abundant
expression of ERs; however, the continuous treatment may
achieve a predominance of tamoxifen-bound ERs over
estrogen-bound ones. ERs perceiving the blockade of
estrogen signal, drive increasing expression and activation
of GFRs as well, targeting the unliganded activation of ERs.
However, growth factor signal is incapable of stimulating
tamoxifen-blocked ERs. Without a compensatory activation
of ERs, the whole genomic regulation breaks down resulting
in unrestrained cell proliferation and clinically experienced
tumor growth.

Unexpectedly, estrogen treatment emerged as a key to
restore the response of anti-hormone resistant tumors in
both male prostatic cancer cases and female breast cancer
patients (105). Moreover, estrogen treatment induced
apoptotic death in breast cancer cell lines resistant to either
long term estrogen deprivation or tamoxifen treatment (106).
Considering the strong compensatory upregulation of both ER
and GFR expressions in antiestrogen resistant tumors,
estrogen gains an enormous potential for inducing a strong
balanced activation of ERs through both liganded and
unliganded pathways.

In 2021, Italian authors described the fact that all genes
required to maintain genome integrity belong to the estrogen-
controlled cellular signaling network requiring an upgrade
to the vision of estradiol as a carcinogenic “genotoxic
hormone” (107).
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FUNDAMENTAL ERRORS IN THE
PRINCIPLES OF CURRENT CANCER
THERAPY
1. Cancer cells are mistakenly regarded as enemies to be killed

similarly like exogenous microbes.

In reality, cancer cells are deregulated human cells having
more or less remnants of the same genomic regulation like
patients have in their healthy cells (42).

2. Erroneous concepts suggest that tumor initiation may be
attributed to the activation of certain altered genes and
their protein products.

Conversely, the vast majority of altered, mutated
genes in tumors serve spontaneous efforts for the
restoration of the defect of estrogen signal and DNA
replication (39).

3. Cancer cells are mistakenly regarded to be enemies escaping
from the regulatory control of the whole body and
developing survival techniques for their unrestrained
proliferation.

In reality, cancer cells have no ambitions for survival and
replication, but rather use all their preserved capacities for the
upregulation of estrogen signal, helping DNA repair and self
directed death (31).

4. All therapeutic efforts mistakenly inhibit the remnants of
crucial regulatory mechanisms in tumor cells.

In reality, the therapeutic upregulation of estrogen signal
stimulates all regulatory processes in healthy cells, while
induce apoptotic death in cancer cells in a Janus-faced manner
(37, 42).

5. Techniques for determining the gene expression profiles of
tumors have been developed and direct correlations were
supposed between altered genes and the progression of the
disease.

In reality, in tumor gene expression profiles, the genetic
alterations may reflect compensatory efforts for the restoration
of estrogen signal and DNA integrity, while these efforts may be
either successful or unsuccessful. There is no parallelism between
gene alterations and tumor progression (39).

6. Current genetic therapy targets amplified and mutated genes
in tumors; however, the results of these efforts are
controversial in clinical practice.

Conversely, endogenous estrogen upregulates the work of the
whole genomic machinery and it may induce defensive gene
amplification and gene edition in tumors exposed to genotoxic
therapy (39, 47, 92).

7. Drug resistance is an erroneously presumed reason
responsible for the failures of genotoxic therapy of breast
cancer and other solid tumors.

In reality, non-responsive tumors are not resistant to therapy,
but rather they are incapable of counteracting the shock of
artificial genomic destruction (18).

8. In tumors, increased expression and activation of
membranous growth factor receptors and their tyrosine
kinase cascades are mistakenly regarded as stimulators of
tumor growth.

By contrast, increased growth factor receptor activation in
tumors is a compensatory effect for upregulation of weak
estrogen signal via unliganded pathway (39, 47).

9. Therapeutic inhibition of growth factor receptors and their
gene expression is not successful in tumor therapy.

Tumors, non-responsive to GFR inhibitors are not resistant,
but rather their blocked GFRs are not capable of upregulation of
estrogen signal via unliganded pathway (47).

10. Increased endogenous estrogen concentrations are
mistakenly regarded as risk factors for the development
and growth of breast cancer.

In reality, high estrogen levels are physiological in pregnancy.
Pathologically increased estrogen level is a compensatory reaction
in patients with ER resistance. These patients show clinical signs
of estrogen deficiency in spite of their increased serum estrogen
levels (31, 37).

11. Thromboembolic complications and increased cancer risk in
synthetic estrogen user patients strengthened the misbelief
that even elevated endogenous estrogen levels may cause
serious diseases.

Chemically modified synthetic hormones are endocrine
disruptors causing deregulation of ERs via partial inhibition
instead of excessive stimulation (10, 47).

12. High ER expression in breast cancer cells is mistakenly
evaluated as an aggressive survival technique to be
therapeutically blocked.

In reality, high ER expression in breast cancers means a
promising regulatory capacity for the restoration of ER signal
in an estrogen deficient milieu and forecasts good prognosis for
the disease (31).

13. Tumor response to antiestrogen treatment is mistakenly
attributed to a successful blockade of liganded ER activation.

In reality, antiestrogen treatment is an emergency state
endangering the remnants of genomic regulation in tumors.
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Tumor response may be experienced when the compensatory
mechanisms are appropriate for the upregulation ER activation
(18, 39, 92).

14. In ER-positive tumors non-responsive to endocrine therapy,
the failure is mistakenly explained by the development of
resistance to treatment.

In reality, tumors non-responsive to antiestrogen therapy are
not resistant. The compensatory activation of estrogen signal is
weak or exhausted resulting in stagnation or growth of tumors
(18, 47, 92).

MEDICAL STIMULATION OF ER PROTEIN
EXPRESSION WOULD BE A PROMISING
METHOD FOR BREAST CANCER
PREVENTION AND THERAPY

Molecular classification of breast cancers helped to reveal that
increased ER expression is associated with a high
differentiation of tumors. Moreover, the higher the ER
expression of tumors, the better is the prognosis of the
disease. In breast cancers, there is a close association
between DNA repair capacity levels and ER expression
status. This finding justifies that ER-positive tumors are
capable of employing complex signaling pathways through
both genomic and non-genomic regulation (108). In contrast,
ER-negative and TNBC type tumors are poorly differentiated
and the lack of hormone receptors forecasts poor prognosis for
cancer patients. ER-negative and TNBC type tumors are
frequently observed in patients with estrogen resistance
showing low ER expression and/or decreased liganded
activation of ERs (31).

Exogenous estrogen receptor was transfected into a receptor
negative breast cancer cell line and estrogen activation could
decrease the invasive and metastatic potential of tumor cells
(109). These experimental results suggest that the medical
stimulation of ER expression in patients may be an effective
therapy against both ER-negative and TNBC type tumors.

In 1989, Malone and coworkers published a landmark
experiment on inducing protein production in cell cultures via
transfecting them with liposome protected messenger ribonucleic
acid (mRNA) template stimulating the expression of a foreign
protein via translation (110). In 1990, Wolff and coworkers
introduced the possibility of synthesizing mRNA in a
laboratory to trigger the production of a desired protein in
mouse muscle (111). These studies presented the earliest steps
towards mRNA vaccine development against COVID-19
pandemic (112).

The production of a desired protein via mRNA technology
may have great possibilities in human practice beyond

vaccination. Considering that ERs are the chief regulators of
all genomic processes, Malone’s mRNA technology may be an
excellent method for the stimulation of appropriate ER protein
production in patients. Theoretically, ESR1 mRNA treatment in
patients with low ER levels or ER resistance may prevent breast
cancer development by stimulation of ER production and
increase in estrogen regulated gene expression. In addition, in
patients with advanced ER negative and TNBC type tumors, a
preoperative ESR1 mRNA treatment may achieve marked tumor
regression coupled with stimulating defensive reactions in the
adjacent tissues. In the postoperative phase, local ESR1 mRNA
treatment improves the genomic functions in the remaining
breast tissue and inhibits the development of recurrent tumor.
In breast cancer cases with multiple metastatic lesions, systemic
ESR1 mRNA treatment may achieve regression of tumors at all
sites besides improvement of the metabolic and immunological
status of patients. The dream of perfectly selective tumor therapy
and the concomitant safeguarding of healthy tissues seem to be
realized.

CONCLUSION

The developing new trends in anticancer fight are targeting
mutated genes by gene therapy and attacking their altered
protein products by immunotherapy. However, the
accumulation of altered genes and their abundant protein
products in tumors may not show a parallelism with the
progression of the disease as they are rather spontaneous
compensatory efforts for DNA repair instead of oncogenic
activities. All developed new methods of gene therapies are
targeting the compensatory genome improving processes,
while tumor cells need rather medical help supporting their
DNA restoration so as to achieve apoptotic death.

Recognition of the molecular mechanisms of estrogen
receptor deregulation via synthetic estrogen and
antiestrogen treatment, helped to reveal the omnipotent
curing capacity of endogenous estrogens via balanced
liganded and unliganded activation of ERs.
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