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Purpose: Remdesivir use in COVID-19 is associated with cardiac conduction

abnormalities from unclear mechanisms. A proposed mechanism is the

bioaccumulation of the intermediate metabolite GS-441524 resulting in

exogenous activation of cardiac adenosine A1 due to the structural similarity

between adenosine and GS-441524. The prolonged half-life of GS-441524 can

result in sustained activation of adenosine A1 receptors. In this study, we used

molecular modeling of adenosine, GS-441524 and the adenosine A1 receptor

to assess the potential mechanistic association of the proposed mechanism.

Methods: Adenosine and GS-441524 structures were acquired from the

PubChem database. Ligand docking was carried out using UCSF Chimera.

Models were chosen based on greatest binding affinity and minimum root

mean square deviation. Figures of resulting structural models were prepared

using UCSF Chimera or PyMOL 2.3.5.

Results: By modeling the interaction between the A1 G protein complex and

both adenosine and GS-441524, we found that the proposed mechanism of

exogenous A1 receptor activation is feasible based on docking compatibility.

Conclusion: The proposed mechanism of exogenous cardiac A1 receptor

activation from bioaccumulation of GS-441524 as a cause of observed

cardiac conduction abnormalities with the use of remdesivir in COVID-19 is

viable. Further studies are needed to assess causality.
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Background

Remdesivir is a nucleoside analog which continues to hold key importance in

the management of COVID-19 infection among hospitalized patients (1, 2).

Recent literature has reported cardiac conduction abnormalities including PR

interval prolongation, QTc prolongation, and profound sinus bradycardia
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attributed to remdesivir administration (3–7). These effects

have been postulated to be a result of exogenous activation of

G-protein coupled adenosine A1 receptors by the

intermediate metabolite GS-441524(4) due to its prolonged

half-life and structural similarity to adenosine as seen in

Figure 1.

This paper reviews the relevant pharmacologic

characteristics of remdesivir, GS-441524, and adenosine and

demonstrates that the proposed mechanism is feasible based

on molecular modeling of GS-441524 with the cardiac adenosine

receptor.

Remdesivir pharmacology,
pharmacokinetics

Remdesivir, previously known as GS-5734, is a

phosphoramidate prodrug of GS-441524, a 1′-cyano-
substituted adenine nucleoside analogue. As a

phosphoramidate prodrug, intravenous remdesivir is rapidly

hydrolyzed in the serum by extracellular kinases to a

nucleoside monophosphate (GS-441524), which then

undergoes intracellular conversion to the antiviral,

pharmacologically active nucleoside triphosphate metabolite

FIGURE 2
Adenosine receptor - G protein complex (PDB ID: 6D9H) with adenosine ligand.

FIGURE 1
Chemical structures of adenosine and GS-441524 ligands. Molecular models and graphics were created as described in the Methods.
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(GS-443902). Remdesivir and GS-441524 are bioisosteres of

monophosphates, meaning that they can more quickly be

activated and undergo intracellular conversion to the active

metabolite. By competing with endogenous nucleosides, GS-

443902 can incorporate into viral RNA via inhibition of

RNA-dependent RNA polymerase (8–12).

All remdesivir metabolites confer greater selectivity to RNA-

dependent RNA polymerase in comparison to human

polymerases (8). The presence of exoribonuclease (ExoN)

within virus cells acts to correct RNA chain errors to assist in

preventing antiviral activity (13). The activity of remdesivir is

only minimally affected by ExoNs, as it can more effectively

incorporate into viral RNA than other nucleotide analogs (14,

15). This effective incorporation into RNA allows for improved

antiviral activity against single-stranded RNA viruses, including

Middle East respiratory syndrome coronavirus (MERS-CoV),

severe acute respiratory distress syndrome coronavirus (SARS-

CoV) and SARS-CoV-2 (9, 11).

Upon intravenous administration, remdesivir concentrations

decline quickly (half-life ~1 h) as extracellular kinases work to

actively metabolize it to GS-441524 (half-life ~27 h (11, 16).

Remdesivir is highly protein bound (80%–90%), though GS-

441524 is not (<5%) (16). It acts as a substrate to several

cytochrome (CYP) P450 enzymes in vitro, including CYP2C8,

CYP2D6, and CYP3A4. However, the specifics of these pathways

are yet to be quantified but are thought to be minor given the

rapid metabolism of the prodrug. GS-441524 is not a substrate of

major CYP enzymes, suggesting that GS-441524 does not

undergo extensive hepatic metabolism (8, 11, 16, 17).

FIGURE 3
Adenosine receptor - G protein complex (PDB ID: 6D9H) with GS-441524 ligand/Pre-docking.

FIGURE 4
Adenosine receptor - G protein complex with GS-441524
ligand/Post-docking – Axial view.
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Remdesivir byproducts are predominantly excreted via urine,

primarily as GS-441524 (49%), followed by remdesivir (10%) and

GS-704277 (2.9%). Excretion via feces is negligible (16).

Pharmacologic activity of adenosine on
A1 receptors

Adenosine is an endogenous purine nucleoside. It is

composed of an adenine molecule with a ribose sugar moiety

and is an essential component of adenosine triphosphate (ATP)

and cyclic adenosine monophosphate (cAMP) (18, 19).

Adenosine activity in the body is widespread, including

activity to reduce blood pressure and heart rate, regulation of

the sympathetic nervous system, and induction of

vasodilation (18).

Adenosine binds to four receptor subtypes that are found on

the surfaces of most cells within the body: A1, A2A, A2B, and A3.

A1 receptor activation leads to negative chronotropic and

dromotropic effect, A2 receptor activation leads to inotropic

effects and vasodilation, and A3 receptors are minimally

expressed in the myocardium. The adenosine A1 receptors are

Gi protein-coupled receptors on cell surfaces with inhibitory

functions when activated, leading to negative chronotropic and

dromotropic effects (18, 20, 21). A1 receptors are expressed in the

brain, spinal cord, kidney, spleen, and heart and have a strong

affinity for adenosine (20).

In the heart, adenosine binds to A1 receptors primarily

expressed in the atria, leading to decreased cAMP production,

inhibition of protein kinase A and voltage-gated calcium

channels, and subsequent opening of ATP-sensitive potassium

gated channels. The inhibition of this calcium influx and

increased potassium current mediates the inhibition of

atrioventricular (AV) node conduction, causing a shortened

action potential duration with refractoriness (18, 20, 21).

Methods

Ligand binding docking and structural
modeling

The human adenosine A1 receptor-Gi2-protein complex

(PDB ID: 6D9H) (22) was used as the target receptor. The 3D

structural coordinates for both adenosine (compound CID

60961) and GS-441524,(2R,3R,4S, 5R)-2-(4-aminopyrrolo

[2,1-f][1,2,4]triazin-7-yl)-3,4-dihydroxy-5-(hydroxymethyl)

oxolane-2-carbonitrile (Compound CID 44468216) structures

were acquired from the PubChem database at the NIH NCBI

(23). GS-441524 was the only metabolite tested due to the lack

of structural plausibility for the other metabolites. Prior to

modeling, both ligand structures were minimized using

WebMO (24). Ligand docking was carried out using UCSF

Chimera (25) and AutoDock Vina (26). The AutoDock Vina

search volume was centered on the A1 adenosine binding site,

as described previously (22). The search volume dimensions

were set to encompass both the putative binding site and the

adjacent trans-membrane helical protein regions. Maximum

binding modes was set at ten, with a maximum energy

difference of 2 kcal/mol. Models were chosen on the basis

of greatest binding affinity and minimum root mean square

deviation. Figures of resulting structural models were

prepared using UCSF Chimera or PyMOL 2.3.5. Datasets

are available upon request: The raw data supporting the

conclusion of this article will be made available by the

authors, without undue reservation.

FIGURE 5
Adenosine receptor - G protein complex with GS-441524 ligand post-docking.
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Ligand binding docking and structural
modeling—Results

Our team simulated the interaction between both adenosine

and GS-441524 with the A1 receptor. Figure 2 shows the

adenosine molecule (purple) binding within the G protein

complex.

Figure 3 demonstrates GS-441524 (green) in its pre-docking

state with the A1 G protein complex. The adenosine docking site

is highlighted in this figure by a green square.

Figures 4, 5 demonstrate GS-441524 (green) in its docking

state within the A1 G protein complex.

By modeling the interaction between the A1 G protein

complex and both adenosine and GS-441524, we found that

the proposed mechanism of exogenous A1 receptor activation is

feasible based on docking compatibility.

Discussion

Molecular modeling described above demonstrates a high

level of binding affinity for GS-441524 as an exogenous ligand of

the adenosine A1 receptor. Bioaccumulation of GS-441524 is

postulated to result in transient, exogenous activation of cardiac

adenosine A1 receptors. Stimulation of these receptors is known

to have amyocardial depressant effect by slowing conduction and

suppressing cardiac pacemaker function (21). This hypothesis is

supported by clinical evidence of negative chronotropy, AV

conduction delay, ventricular depolarization delay. In our

study, we provide supporting evidence for bioaccumulation of

GS-441524 as an important factor in the observed incidence of

cardiac conduction abnormalities and proarrhythmic effects in

patients treated with remdesivir for COVID-19.

There are several potentially important contributors to

cardiac conduction delay in these cases and is likely multi

factorial. Conduction abnormalities appear to be more

common in those with baseline cardiac conduction system

disease (e.g., left bundle branch block, right bundle branch

block, etc.) (27). Additionally, both hypoxia and inflammation

have been shown to induce increased adenosine metabolism and

signaling (28, 29). We hypothesize that the well-characterized

cytokine-mediated inflammatory state and the hypoxia induced

by COVID-19 increases the endogenous adenosine, which in

combination with exogenous GS-441524 bioaccumulation results

in transient conduction delay. Our modelling approach provides

novel insights into the effects of remdesivir and increases the

likelihood of a potential mechanistic explanation of cardiac

conduction abnormalities observed with COVID-19 and

remdesivir use. Further studies are needed to confirm our

findings.
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