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Dystonia is a network disorder presumed to result from abnormalities in multiple

brain regions and in multiple cell populations. The specific pathomechanisms

affecting the motor circuits in dystonia are, however, still largely unclear. Animal

models for dystonia have long been used to advance our understanding on how

specific brain regions and cell populations are involved in dystonia

symptomatogenesis. Lesioning, pharmacological modulation and electrical

stimulation paradigms were able to highlight that both the basal ganglia and

the cerebellum are pathologically altered in these animal models for dystonia.

Techniques such as optogenetics and chemogenetics now offer the opportunity

for targeted modulation of brain regions and most importantly cell populations

and circuits. This could not only allow for a better understanding of the dystonic

brain, but potentially improve and expand treatment options. In hopes that the

insights from these neuromodulation techniques will eventually translate into

therapies, we aim to summarize and critically discuss the findings fromdifferent in

vivo approaches used to dissect the network dysfunctions underlying dystonia.
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Introduction

Dystonia encompasses a heterogeneous group of hyperkinetic movement disorders

assumed to be caused by a dysfunctional motor network. The entire cortico-basal ganglia-

thalamo-cortical network, the brainstemwith regions such as the pedunculopontine nucleus

(PPN) as well as cerebellar regions have been implicated in the development of dystonia.

The degree to which these brain structures are involved is, however, still unresolved [1, 2].

Further studies are needed to clarify the specific cell populations within these

structures causing dystonia. This need is especially pressing since deep brain

stimulation (DBS) of the globus pallidus internus (GPi) and the subthalamic nucleus

(STN) represent the best therapeutic options for most forms of dystonia. However, the

response rate is variable and can be compromised by side effects as well as a secondary

failure of DBS [3]. Especially some monogenic forms of dystonia do not respond to GPi or

STN DBS. Elucidating the motor circuit changes involved in dystonia development and

understanding the mechanisms of action of DBS in dystonia could allow for better

neuromodulation protocols and alternative targets.
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Over the past decades, different approaches have been utilized in

order to study the network pathologies in rodent models for

dystonia. Within this review, we will summarize the findings

from brain structure lesions in animal models. We will further

present the advances in the field of in vivo, region- and cell-specific

neuromodulation. Lesioning of brain structures is a common

approach in animal models to understand the role of specific

brain regions in dystonia symptomatogenesis [4, 5]. DBS in

animal models is another method allowing for the modulation of

brain nuclei and circuits, albeit with lack of specificity and an

underlying mechanistic unclarity [6–9]. Allowing for a more cell-

specific intervention of the motor circuit are now optogenetic and

chemogenetic tools [10]. For optogenetics, a light-sensitive ion

channel is expressed in a specific cell population via targeted

injection of a viral vector [10–12]. Light pulses are then applied

via an implanted optical fiber, allowing for neuronal depolarization

or hyperpolarization of cells. Chemogenetic tools modulate distinct

cell populations via engineered receptors or channels, which are

selective for specific ligands [13]. This allows for reversible

modulation of the cells expressing these receptors or channels.

Viral vectors are used in order to express the receptors or

channels in the confined neural population. Cell population-

specific neuromodulation techniques have not yet been used

widely in dystonia basic research. In contrast, for Parkinson’s

disease, an optogenetic approach was recently applied to

specifically excite parvalbumin-expressing neurons and inhibit

lim-homeobox-6–expressing neurons of the globus pallidus

externus (GPe) simultaneously in a 6-hydroxydopamine (6-

OHDA) mouse model [14]. The authors were able to show a

long-lasting effect of stimulation even after DBS was turned off,

which could not be seen with conventional DBS. This publication

highlights how population-specific neuromodulation can advance

our understanding of the circuit defects underlying movement

disorders and advance DBS to more targeted stimulation

potentially allowing for a better response and less side effects.

Within this review, wewill discuss neuromodulation approaches

in animal models for dystonia and in some cases for levodopa-

induced dyskinesias. It can be assumed that dystonia and levodopa-

induced dyskinesias share some common pathomechanisms [15,

16]. This review only touches upon methods of pharmacological

modulation, however, does not discuss them at length. Many studies

have been performed studying the response of brain regions or cell

populations to different drugs [17–19]. We would like to refer to

other comprehensive reviews discussing the contributions of these

studies [20, 21].

Lesioning of brain regions in dystonia
rodent models

Multiple studies have been able to show that dystonia can be

elicited in wildtype, non-predisposed animals via lesioning of

different brain regions. In wildtype rodents, the injection of 3-

nitropropionic acid causes striatal damage and the emergence of

a dystonia-like phenotype [22, 23]. Mechanistically, 3-

nitropropionic acid primarily leads to a loss of GABAergic

striatal projection neurons [24]. In previously healthy

baboons, the neurotoxin 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) induces transient dystonia-like

manifestations [25, 26]. MPTP induces apoptosis in

dopaminergic neurons within the substantia nigra.

Development of transient dystonia in this model has been

reported to be associated with a striatal decrease of dopamine

and a transient reduction in D2 dopamine receptors, however,

the pathomechanisms have not been clearly elucidated. It has

been speculated that abnormal cortico-striatal plasticity might

underlie the phenomenon [27]. Both the targeted,

pharmacological inactivation as well as activation of the GPi

with a GABA agonist or antagonist, respectively, caused dystonic

movements of the upper limbs in wildtype monkeys [28, 29].

Contrasting findings such as these have led to the hypothesis that

the firing pattern of the GPi might be more relevant in dystonia

pathophysiology than the firing rate [16, 30]. Studies in wildtype

animals have also identified the cerebellum as a potentially

important player in dystonia development. Stimulation of the

cerebellum of wildtype mice using injections of the excitatory

glutamate agonist kainate led to a dystonia-like phenotype [5, 31,

32]. A hypothesized explanation for this phenomenon is an

aberrant firing of Purkinje cells, as dystonia was notably

absent in mice without these cells when exposed to kainate

[31]. Beyond basal ganglia and cerebellum, pharmacological

lesioning of the PPN in wildtype mice triggered dystonia-like

behavior in a tail suspension test [33]. In case of bilateral lesions,

decreased c-FOS activity, a marker for neuronal activity, was

found in the dorsolateral striatum, in the GPi, the STN and the

substantia nigra. The PPN is an important interface between the

basal ganglia and the cerebellum. Altogether, these studies in

non-mutated animal models have highlighted the role of the

basal ganglia, the cerebellum and the PPN in dystonia

development.

Further underlining these findings are studies in tottering

mice, which have a mutation in the Cacna1a gene impairing

calcium channel activity and resulting in paroxysmal episodes of

stress-induced dystonia-like movements. An aggravation of the

dystonia-like phenotype was achieved in tottering mice through

lesioning of the striatum by administration of substances such as

6-OHDA or quinolinic acid [5]. It is hypothesized that the

manifestation of dystonia in this model predominantly

originates from a secondary increased expression of calcium

channels within the cerebellum. Indeed, removal of the

cerebellum in these mice led to a complete remittance of

dystonic attacks [5]. Cerebellectomies were also effective in

eliminating dystonic attacks in genetically dystonic rats with a

suspected deficiency in the protein caytaxin, which was proposed

to be imperative for cerebellar cortex development and function

[34, 35]. The cerebellum was also found to underlie development
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of dystonia in a pharmacological mouse model for DYT/PARK-

ATP1A3 dystonia [36]. Blocking the α3-subunit of the sodium-

potassium channel with ouabain in the cerebellum led to the

development of generalized dystonia-like movements in wildtype

mice. The sodium pump dysfunction was shown to be associated

with erratic cerebellar activity. In this model, electrical lesions

bilaterally ablating the centrolateral thalamus were employed,

thus targeting the di-synaptic connection between the cerebellum

and the basal ganglia. These lesions yielded a significant

reduction in dystonia-like movements. Neurotoxic silencing of

the centrolateral thalamus achieved a similar result in the same

DYT/PARK-ATP1A3 mouse model, corroborating the findings

[37]. Interestingly, bilateral silencing of the motor cortex using

the sodium channel blocker tetrodotoxin reduced dystonia only

slightly, leading the authors to conclude that the role of the cortex

is less essential in DYT/PARK-ATP1A3 pathophysiology than

that of the cerebellum [36].

Overall, lesioning of various brain regions has allowed for

important strides in understanding whether specific brain

structures influence the development of dystonia. Focusing

primarily on the basal ganglia and the cerebellum, these

lesions have provided insights on the overall importance of

these structures in the dystonic network. However, it is

important to note that this approach, although valuable, is

somewhat imprecise in terms of anatomy and lacks specificity

for distinct cell populations. Moreover, it often results in

unwanted additional symptoms, such as hypokinesia in case

of nigrostriatal damage induced by MPTP or 6-OHDA.

Neuromodulation with DBS in
dystonia rodent models

Exploring various animal models of dystonia, researchers

have employed DBS targeting the entopeduncular nucleus (EP),

which serves as the rodent equivalent of the human GPi. The

classical DBS approaches in rodent dystonia models have

undergone extensive scrutiny in previous reviews [7, 8]. One

study utilized a genetically susceptible DYT-TOR1A rat model

and induced dystonia-like movements in the hindlimbs through

a peripheral nerve injury [38]. The underlying hypothesis here is

the second-hit hypothesis, suggesting the necessity of

extragenetic factors to trigger the development of dystonic

symptoms in a mutation carrier for dystonia [39, 40]. The

authors demonstrated that 3 weeks of high-frequency

stimulation effectively alleviated the dystonia-like phenotype

and reduced the pathologically enhanced theta power

observed in the EP of dystonic animals. An abundance of data

has been gathered from DBS of the EP in the dtsz mutant hamster

[41–46]. Summarizing the key discoveries, a study revealed

circuit plasticity effects following 10 h of unilateral EP-DBS.

Both dtsz mutant hamsters and control animals exhibited

increased c-Fos expression in the ipsilateral striatum, while dtsz

hamsters showed reduced c-Fos expression in the thalamus,

distinguishing them from the control group [42]. In vitro

measurement of field excitatory postsynaptic potentials from

the striatum immediately after 3 h-long high-frequency

stimulation in the dtsz mutant hamster revealed effects on

cortico-striatal synaptic communication and an increase of the

inhibitory tone in the striatal tissue of dystonic animals when

compared to non-dystonic hamsters [44].

A study reporting on DBS of the deep cerebellar nuclei and

the centrolateral thalamus in dystonia focused on a mouse model

targeting the olivocerebellar pathway [47]. A genetic approach

was used to specifically silence glutamatergic signaling at the

olivocerebellar synapses. The authors conditionally deleted the

vesicular glutamate transporter 2 from Ptf1a-expressing

excitatory neurons in the inferior olive, thus blocking the fast

neuronal communication from climbing fibers to Purkinje cells.

Mice with this targeted genetic silencing exhibited a strong

dystonia-like phenotype. The loss of climbing fiber

neurotransmission was found to cause highly irregular firing

of downstream neurons in the cerebellar nuclei. Interestingly,

dystonia was alleviated by either silencing the cerebellar nuclei

output with lidocaine or by DBS of the interposed nuclei of the

cerebellum as well as by DBS of the centrolateral thalamus.

In summary, DBS studies in dystonia animal models have

been used to validate the model used, to understand the acute or

chronic effects of DBS on different networks and to explore new

DBS targets. However, the lack of understanding of the

mechanisms of actions of DBS as well as the simultaneous

stimulation of more than one cell population can make it

difficult to draw conclusions about the underlying neuronal

dysfunction. Furthermore, DBS is primarily applied in already

symptomatic rodent models, where the network effect of

stimulation as well as the effect on the phenotype can be

evaluated. However, the most widely used animal model for

DBS studies in dystonia is the dystonic hamster dtsz, which is not

without its limitations, featuring only transient dystonia and an

unidentified genetic mutation [48].

Cell-specific neuromodulation in
dystonia rodent models

Only a handful of studies have looked at the cell populations

of the striatum in dystonia using optogenetics (Figure 1). Using

DYT-TOR1A knock-in mice expressing channelrhodopsin-2 in

cholinergic interneurons, Richter et al. applied bilateral

optogenetic stimulation to the dorsolateral striatum with the

aim of provoking a dystonia-like phenotype [49]. The striatal

cholinergic system has long been suspected to play a major role in

dystonia. Aside from anticholinergic drugs effectively alleviating

symptoms in some dystonia patients, DYT-TOR1A mouse

models have shown an abnormal excitation of cholinergic

interneurons and increased striatal acetylcholine [50]. By
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optogenetically stimulating the striatal cholinergic interneurons,

the authors aimed to increase the activity of these neurons as well

as the acetylcholine levels, thus studying whether this could

directly cause dystonia in genetically-predisposed mice. Burst

firing with increased release of acetylcholine was optogenetically

induced. DYT-TOR1A knock-in mice responded with transient

hyperactivity, while wildtype animals did not. On the other hand,

in a transgenic mouse model expressing cre-recombinase under

the control of the choline acetyltransferase promoter (ChAT-

Cre), channelrhodopsin-2 was selectively expressed in

cholinergic neurons in order to study the contributions of the

cholinergic system to levodopa-induced dyskinesias [51].

Intriguingly, following a unilateral 6-OHDA lesion, the

researchers demonstrated that optical pulses targeted at the

dorsolateral striatum increased the frequency of levodopa-

induced dyskinesias. These observations underline the

contribution of cholinergic interneurons to the development

of abnormal movement output, but reveal that a disturbance

of this population alone is insufficient for dystonia development.

Another group of striatal interneurons presumed to play an

important role in hyperkinetic movement disorders are

parvalbumin-positive, fast-spiking interneurons, which exert a

strong feedforward inhibition on medium spiny neurons. In the

dtsz hamster model of paroxysmal dystonia, a delayed maturation

of parvalbumin-positive interneurons coincides with an age-

dependent development of a dystonia-like phenotype and

abnormal basal ganglia output [52]. However, although

selectively inhibiting striatal parvalbumin-positive

interneurons led to a hyperactivation of cholinergic

interneurons in DYT-TOR1A knock-in mice compared to

wildtype controls, this manipulation failed to induce any

behavioral changes, particularly dystonia [53]. Interestingly,

optogenetic activation of the striatal D1 medium spiny

neurons triggered dyskinesias in 6-OHDA mice [54].

Conversely, the chemogenetic inhibition of D2 medium spiny

neurons triggered dyskinesia attacks in a mouse model for

paroxysmal non-kinesigenic dyskinesia [55]. So far, the direct

and indirect pathways have not been optogenetically targeted in

rodent models for dystonia.

Optogenetic stimulation of the right GPe with targeted

expression of ChR2 in the GABAergic neurons led to

hyperactivity and dyskinesias with torsion of the neck and of

the left forelimb in mice [56]. The authors found that stimulation

of the GABAergic neurons of the GPe reduced c-Fos expression

in the EP and increased c-Fos expression in the motor cortex and

the striatum.

Optogenetic stimulation of the cerebellar cortex in a mouse

model expressing ChR2 inmolecular layer interneurons was used

to locally suppress the activity of Purkinje cells. This inhibition of

Purkinje cell activity was shown to induce involuntary

movements in mice [57]. Using single-unit extracellular

activity recordings, the authors determined that suppression of

FIGURE 1
Different cell populations and regions of the central motor circuit have been targeted with optogenetics in rodent models for dystonia or
levodopa-induced dyskinesias (LID). The figure was created with biorender.com.
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Purkinje cell activity leads to increased firing, i.e., a disinhibition,

of the downstream neurons of the deep cerebellar nuclei of the

cerebellum. Conversely, chronic optogenetic stimulation at theta

frequency of Purkinje cells expressing ChR2-YFP led to a

significant improvement of dyskinesias in a mouse model for

levodopa-induced dyskinesias [58]. The effect even outlasted the

end of cerebellar stimulation by 2 weeks. The authors found that

chronic Purkinje cell stimulation specifically influenced the

aberrant firing patterns recorded in the interposed nuclei of

the cerebellum, in the motor cortex and in the parafascicular

thalamus in mice with levodopa-induced dyskinesias. Specific

chemogenetic inactivation of projections from the deep

cerebellar nuclei to the parafascicular thalamus prevented the

beneficial effect from chronic Purkinje cell stimulation

highlighting the importance of the cerebello-thalamic pathway

in hyperkinetic movement disorders. Indeed, optogenetic

activation of the parafascicular thalamus induced abnormal

involuntary movements in wildtype rats [59].

The three nuclei making up the deep cerebellar nuclei are the

fastigial nucleus, the interposed nucleus and the dentate nucleus.

The neurons of the dentate nucleus were targeted with

optogenetic stimulation in an asymptomatic and a

symptomatic state in a DYT-GNAL knock-out mouse model

[60]. In their asymptomatic state, DYT-GNAL mice revealed

increased excitability of the cerebello-thalamic pathway upon

low-frequency stimulation of the dentate nucleus compared to

wildtype controls. Dystonia-like movements were transiently

induced by a nonselective cholinergic agonist, which led to a

long-lasting further increase in cerebello-thalamic excitability

when stimulation was applied 2 days post drug exposure in

DYT-GNAL mice. Theta-burst stimulations of the dentate

nucleus were able to reduce cerebello-thalamic excitability and

the dystonia-like phenotype in symptomatic DYT-GNAL mice.

In tottering mice with stress-induced attacks of dystonia,

optogenetic stimulation of the serotonin (5HT)-positive dorse

raphei nuclei inputs to the fastigial nucleus led to an increase in

the frequency of dystonic attacks [61]. Single-unit recordings

revealed an enhanced firing rate of the neurons of the fastigial

nucleus upon photostimulation. On the other hand, bilateral

photoinhibition of the 5HT-positive inputs to the fastigial

nucleus reduced dystonic attacks. Bilateral knockdown of

5HT-2A receptor genes in the fastigial nucleus using short

hairpin RNA reduced the frequency of dystonia attacks. The

authors conclude that stress increases the excitability of the deep

cerebellar nuclei via 5HT, which was directly correlated with the

development of transient dystonia.

Taken together, cell population-targeted studies have led to

compelling findings such as the involvement of the cerebello-

thalamo-striatal pathway in dystonia development and the 5-HT

positive projections to the deep cerebellar nuclei as possible

targets for DBS [60, 61]. The challenge in targeting single cell

populations in dystonia might be the final interpretation of the

findings, since dystonia is assumed to be a network disorder with

a possible malfunction of multiple structures and multiple cell

populations [62].

Discussion

The advent of cell-specific stimulation and inhibition

techniques holds great promise in unraveling the intricate

involvement of specific neuron populations in dystonia. These

techniques hold the potential to pave the way for the exploration of

optimized stimulation techniques for DBS in human patients. As

exemplified by the study of Spix et al. for Parkinson’s disease,

showing advantages of a cell-population specific stimulation in the

GPe compared to conventional DBS, the answer to better

stimulation paradigms might not necessarily be a different

target, but a more specific stimulation technique [14]. On the

other hand, in the field of dystonia, there are first encouraging

studies exploring new targets such as the optogenetic theta-burst

stimulation of dentate nucleus neurons in a symptomatic mouse

model for DYT-GNAL [64]. DYT-GNAL is a form of monogenic

dystonia known to have a very variable response to GPi DBS in

humans [63]. Of course, both optogenetic- and chemogenetic-

mediated neuromodulation do have limitations, such as, for

example, the need for an invasive application of a viral vector

into the target brain structure. Additionally, interpreting the

findings in animal studies in dystonia remains an overall

challenge due to the difficulties in clearly defining a dystonic

phenotype. The scientific community still has not defined a

common set of parameters for dystonia manifestation in animal

models [4]. However, embracing these advancements is key to

moving our understanding and treatment of dystonia forward.

Aside from the insights cell specific neuromodulation techniques

may give into dystonia pathophysiology in animal models, it has

even been proposed that these techniques may eventually be

applicable in patients [64, 65].
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