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The primary target for deep brain stimulation (DBS) for medication refractory dystonia has
traditionally been the globus pallidus internus (GPi), however alternate targets have also
been explored with the hope they might offer similar or superior outcomes with less side
effects and reduced battery demands. Recent studies have shown comparable outcomes
with both pallidal and subthalamic (STN) DBS, although the level of evidence is still superior
for the GPi. There may not be an “optimal target” for all dystonia patients, with both targets
offering the potential for excellent control of dystonia but more comparison studies are
needed. In this review, we will discuss the history, efficacy, as well as target specific
benefits and possible side effects of STN DBS for dystonia.
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INTRODUCTION

Over the last 10 years, STN DBS has emerged as a promising stimulation target for dystonia and has
now been performed for various types, including isolated dystonia (1-4), dopa responsive dystonia
(5), dystonic tremor (6), tremor associated with dystonia (7), tardive dystonia (8), neurodegeneration
with brain Iron accumulation (9) and others. In this article, we will review the history of STNDBS for
dystonia, the outcomes and discuss site-specific benefits and side effects in conditions such as isolated
dystonia as well as acquired dystonia (10) Almost all studies report non-blinded outcomes and assess
only STN as a target in a single cohort of patients. The debate if one target is superior (GPi or STN)
for improving dystonia continues for any given individual but both targets offer the potential to
provide excellent dystonia control. Other emerging targets (Thalamic/cerebellar) are also being
explored. With newer imaging software and sensing systems now available, we are continuing to
learn about the pathophysiology of dystonia and the mechanism of DBS across multiple “circuit
nodes.”

HISTORY OF STN DBS FOR DYSTONIA AND OUTCOMES

GPi DBS for dystonia was first reported in 1999, when neurosurgeon Philip Coubes reported
improvement of an 8 year old girl with refractory status dystonicus (11). He later reported successful
treatment of seven patients with generalized dystonia with bilateral pallidal DBS. Simultaneously
Krauss et al reported successful treatment of three patients with refractory cervical dystonia (12).
Pallidal DBS is now a recognized and validated therapy for medication refractory isolated generalized
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TABLE 1 | Subthalamic nucleus DBS for Isolated dystonia.

Author Number
of pts

Type
of study

Dystonia
distribution

Length
of follow

up
(*mean)

BFMDRS-M
pre-op

BFMDRS-
M post op

Mean
%

BFMDRS-
M

QoL BMFDRS-
D pre-op

BFMDRS-
D post op

BFMDRS-
D

mean %

TWSTRS
–S

Pre-op

TWSTRS
–S

post op

TWSTRS-
S

mean%

TWSTRS-
D

Pre op

TWSTRS-
D

post op

(25) 12 Case series Generalized,
2 tardive

28.8 Exact scores
not listed

86.6%

(2) 4 Case series
(blinded rater)

Cervical
dystonia

12 24.3 33.3 (ND
in 1 pt)

+ 8 4.7 24.3 19.25 19.5 12.5

(4) 9 Prospective Cervical
dystonia

Included
below, in
long term
data

+ 53.1 (total
score)

19.6 (total
score)

62/9%

(35) 4 Case series Generalized
dystonia s/p
bilateral
Pallidotomies

>32 Total
BFMDRS 93

Total
BFMDRS
33.8

Total 65.3%

(34) 27 Retrospective Generalized
dystonia

68.4 49.2 10.3 79% + 13.9 4.2 69%

(37) 12 Prospective
double blind
cross over
study

6 Cervical
dystonia,
6 generalized,
1 multifocal

6 44% ± 50/9%

(3) 20 Prospective Cervical
dystonia,
generalized
dystonia

52 17.9 7 70.4% + 5.4 2.6 41 13.7 66.6%

4 pts DYT1 +
(36) 14 Retrospective Generalized

dystonia
>360 91.4% + 88.5%

(38) 14 Retrospective Meige syndrome 28.5 19.3 5.5 74% + 15.6 6.1 60.9%
(39) 15 Retrospective Meige syndrome 14 Not listed + 70.9% total

BFMDRS
score

Meige
syndrome

(40) 30 patients
(16 STN and
14 GPi)

Matched
retrospective
cohort

Generalized 12 31.8 6.5 84% + 9.8 2.7 74%

(41) 32 Retrospective Meige syndrome 16.3 17.9 3 80.7% 4 1 75%
(42) 9 Retrospective Pediatric

generalized
dystonia

120 49.5 2.25 90.4% 14 1.5 86.5%

(43) 11 Retrospective Meige syndrome 30 17.3 5.1 69.9% 20.3 5.7 71.7%
(44) 15 Retrospective Meige syndrome 15 15.3 5.2 68.6% 6.9 3.5 51.7%

Meige
syndrome

(45) (8 pts STN,
5 pts GPi,
1 dual
stimulation

Long term open
label follow up
(Schjerling
cohort)

Generalized and
cervical dystonia

120 Mean: 42.6
(including
8 pts w STN,
excluding
dual stim
patient)

Mean 19.6 Mean 36%
(23% for
STN, 53%
for GPi)

26% (26%
for STN and
25% for GPi)

+ refers to improved Quality of Life outcomes (QoL), - to negative outcomes in QoL. BFMDRS: Burke-Fahn Marsden Dystonia Rating scale. BMDRS-M + motor subscore, BFMDRS-D: disability subscore, TWSTRS: Toronto Western
Spasmodic Torticollis Rating Scale. TWSTRS-S: motor severity subscore. TSWSTRS-D: Disability subscore. . Empty boxes means data not included in publication.
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or cervical dystonia (13-20), with Level 1 evidence (21) and long
term benefits documented a decade and more post implantation
(22-24).

The earliest studies of STN DBS in dystonia were published in
2007 (25). Sun et al reported a single center retrospective case
series of 14 patients with generalized dystonia (two patients w
tardive dystonia and 12 with primary generalized dystonia) with
robust response to STN DBS. The mean improvement on the
Burke Fahn Marsden Dystonia Rating scale (26) (BFMDRS) was
reported to be 88% with a mean follow up of 28 months. That
same year, Kleiner-Fisman (2) et al reported outcomes in four
patients with predominantly cervical dystonia treated with STN
DBS. Blinded rating with BFMDRS and Toronto Western
Torticollis Rating Scale (TWSTRS) (27) at 12 months showed
significant improvement only in the TWSTRS. The majority of
patients in this study had significant comorbidities including
fixed skeletal abnormalities, likely limiting benefit.

These early studies, the observation that Parkinson’s Disease
associated dystonia could be improved with STN DBS (28, 29),
and the limited benefit in some patients with GPi DBS (20), all
prompted further investigation into the STN as an alternate
dystonia target. Also, as the field gained more experience
treating dystonia with GPi DBS, over time in some patients,
new stimulation induced side effects began to be appreciated.
This included development of bradykinesia most notably in
previous non dystonic body regions, micrographia and other
handwriting difficulties, trouble getting out of a chair, moving in
bed, as well as gait changes (sometimes freezing of gait) (30-32).
Often side effects could bemanaged with stimulation adjustments
such as reducing frequency of stimulation (33), but not in all
cases. This prompted wider interest in exploring alternative
dystonia DBS targets including the STN.

STN DBS IN ISOLATED CERVICAL AND
GENERALIZED DYSTONIA

Table 1 includes all published cases of STN DBS in isolated
dystonia that describe four or more patients (25, 34-45). The first
blinded prospective study of STN DBS in dystonia was published
in 2011, describing one-year outcomes in nine patients with
predominantly cervical dystonia (4). The total TWSTRS score
improved a mean of 62.9%, with most of the improvements
achieved by 3 months. STN DBS was well tolerated and there
were no serious adverse events. Three patients experienced
marked weight gain and all patients experienced transient
stimulation induced dyskinesia. Later the same group
published a continuation of this study, which then included
20 patients who were followed prospectively for 3 years (3).
The cohort included a majority of cervical and craniocevical
dystonia patients, but also included generalized, bibrachial,
segmental dystonia subtypes, and some with a
DYT1 mutation. At 36 months, BFMDRS motor score
improved by a mean of 70.4% and the TWSTRS by 66%,
similar to previously reported outcomes with bilateral pallidal
DBS (13, 17-20). No significant device related complications
occurred, but one patient experienced persistent dysphoria

when turning on the left STN lead. Non-responder rate was at
10%, which is lower than what has previously been described with
pallidal DBS at 27% (12). Benefits noted by authors included
more rapid improvement in dystonic symptoms with initiation of
therapy as well as lower IPG drainage due to lower required
stimulation settings. No reports of bradykinesia were reported,
however, stimulation induced dyskinesia (SID) occurred as can be
seen in other conditions treated with this target (46). A sub-study
of the same cohort showed dystonia control was greater with high
frequency subthalamic DBS compared to low frequency
stimulation (47).

The longer-term (10 years) benefit of STN-DBS for
generalized dystonia were retrospectively studied in a series of
nine pediatric patients with generalized dystonia (42). The mean
age at surgery was 15.9 years and the mean improvement in
BFMDRS motor score was 77.1% at 1 year and 90.4% at 10-year.
BFMDRS disability scores were also reduced by 87% at 10-year.
Notably only two of the nine patients carried the TOR1A
mutation for DYT1. As with several pallidal studies (48, 49), a
negative correlation was found between the duration of disease to
age of surgery ratio and the degree of BFMDRS motor and total
score improvement. Stimulation related adverse events reported
at 10 years included dysarthria, dysphagia (n = 4) and gait
changes (n = 4). There were no significant surgery related side
effects and, eight of the patients needed IPG replacement during
follow up. One patient reported weight gain, and one patient
experienced a lead breakage. Interestingly clinical efficacy was
maintained after IPG depletion in one patient, and while the DBS
was temporarily turned off in another, highlighting the possibility
of STN DBS inducing functional brain changes even after
cessation of neuromodulation (42), though this may not be
target specific effect, as it has also been reported with pallidal
DBS (50).

MEIGE SYNDROME

Evidence for both STN and GPi DBS in Meige syndrome (an
adult-onset segmental dystonia manifesting predominantly with
oromandibular dystonia and blepharospasm) remains primarily
retrospective or based on case reports (38, 39, 43, 44, 51). The
largest report has been from China describing 32 Meige
syndrome patients treated with bilateral STN DBS with a
mean improvement in the BFMDRS of 79%. Ten of the
patients experienced stimulation induced dyskinesia. The mean
voltage for development of dyskinesia was 1.7 V and stimulation
of ventral STN was more likely to induce dyskinesia (41).

ACQUIRED AND NEURODEGENERATIVE
DYSTONIA (FORMERLY SECONDARY
DYSTONIA)
Tardive dystonia (TD) is a disabling and irreversible iatrogenic
movement disorder typically caused by exposure to dopamine
blocking agents. Often axial musculature is predominantly
affected, such as neck, jaw and trunk (45). Robust, rapid and
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sustained improvement of TD has been reported with pallidal
DBS, with a mean percentage improvement in BMFDRS-motor
sub score of 83% at a mean follow up of 41 months (46, 47).
Similar outcomes appear to be possible with STN DBS with over
17 cases of TD treated with STN now published in the literature
(26, 48-50). Deng et al reported long-term outcomes of
10 patients with tardive dystonia treated with bilateral STN
DBS, with the mean follow up being 65 months (range
12–105 months). Mean improvement in BFMDRS motor sub
score at last follow up was 88%. Patients showed a statistically
significant improvement in Quality of Life as measured by the SF-
36, and notably both Hamilton Anxiety Scale and Hamilton
Depression scale displayed significant reductions (51). Several
TD patient outcomes are described in mixed patient reports that
also include patients with isolated dystonia describing, all with
robust response to STN DBS(26)(48).

The STN has sometimes been targeted and implanted when
the patient has existing damage to the pallidum noted on
MRI(52) (53). Liu et al reported outcomes of three patients
with PKAN implanted with STN DBS, with a mean
improvement in BFMDRS motor scores of 58%, a more robust
response than in the prior multicenter retrospective reports of
GPi DBS in PKAN (54, 55) with authors suggesting the STN
might be a good target especially for patients with prominent
appendicular rather than axial dystonia (56). STN DBS has also
been reported to be beneficial in two patients with
Neuroacanthocytosis (57) including lingual dystonia (58).

Several case reports documenting outcomes of STN DBS for
other cases of acquired or neurodegenerative dystonia have been
published, with variable duration of follow up and efficacy (5, 9,
52, 53, 59-63). The improvement in dystonia rating scales is
generally less robust than what is experienced in isolated dystonia
(64), although meaningful improvements in quality of life is often
seen- similar to what has been reported in pallidal DBS (Table 2).

STUDIES DIRECTLY COMPARING
PALLIDAL AND SUBTHALAMIC DBS IN
DYSTONIA
To date, two prospective crossover studies of STN and GPi DBS
in isolated dystonia have been conducted. The first reported by
Schjerling et al performed a prospective double blind crossover
study of 12 patients with focal, multifocal or generalized dystonia
(37). Electrodes were implanted bilaterally in both the GPi and
STN and each patient then randomly assigned to receive either
6 months of pallidal or subthalamic stimulation, followed by
stimulation of the other target for the subsequent 6 months.
No statistically significant difference in dystonia motor
outcomes was found. Both targets showed improvement in
dystonia motor severity and quality of life measures. All
12 patients accepted six-month subthalamic stimulation,
compared to only seven with pallidal DBS. Among those who
rejected pallidal stimulation, due to worsening dystonia, three
accepted dual GPi and STN stimulation (unblinded). In 2022, a
long-term open label follow-up results of the same cohort
including some additional subjects was published (45).

Twenty-one patients enrolled in the protocol, of which nine
had generalized dystonia and 12 had cervical dystonia.
Eighteen patients completed the one-year randomization
study. Eleven patients chose chronic subthalamic stimulation;
six chose pallidal stimulation and one patient opted for dual
target stimulation. Fourteen out of 18 patients participated in the
long-term follow up study, with a mean follow up of over
10 years. Efficacy between targets was reported to be similar
with a mean improvement of 36% in BFMDRS motor sub
score and a similar safety profile. Mean duration of dystonia
prior to surgery was 19.3 years and age at time of surgery 50.1.
The group of patients with cervical dystonia were significantly
older than the group with generalized dystonia. Age at surgery
predicted a smaller improvement inmovement score. Duration of
dystonia prior to surgery negatively correlated with improvement
in motor score, although not significantly. The authors
commented, the more rapid response in dystonia with STN
DBS might have favored its use compared to GPi DBS (45).

The second prospective study by Liu et al investigated the
response of short-term (several days) pallidal or subthalamic
stimulation in eight patients with isolated dystonia (65). The
group implanted electrodes into all four nuclei, performed test
stimulation using externalized leads, with determination of
optimal target and removal of less efficacious electrodes prior
to IPG implantation, around 10–14 days after the initial surgery.
Stimulation was performed in three phases; patients were
randomly assigned to receive either pallidal or subthalamic
DBS, followed by a sham phase, followed by the other target.
Stimulation parameters were increased until maximal benefit or
side effects occurred at which parameters were left static for 24 h
prior to rating scale assessments. There was no statistical
difference in BFMDRS motor sub score outcome with a mean
improvement of 50.6% with pallidal and 43.7% with subthalamic
DBS; however, a higher incidence of adverse events including
dyskinesia and dysphoria were noted in the STN group. These
side effects were generally mild and responsive to adjustments.
The main side effects associated with STNDBS were dyskinesia in
five patients and dysphoria in two patients. Permanent target
selection was then made based on benefit and side effect profile.
Of the eight patients, only one patient received subthalamic
stimulation long-term (1 year follow-up) (65). Given the
smaller size of the subthalamic nucleus and the more rapid
response rate, it is not surprising that more side effects
occurred with STN stimulation and thus the study design may
have favored pallidal stimulation.

Several retrospective cohort studies have also compared target
outcomes. Lin et al performed a single center matched retrospective
cohort study of 14GPi and 16 STNDBS generalized dystonia patients
implanted over a three-year period. Five patients were lost to follow
up. Both targets achieved significantmotor symptom improvement at
12months, with amean improvement in BFMDRSmotor subscore of
84%with STN and 72%with GPi DBS. STNDBSwas noted to have a
more rapid onset of improvement within the first month from
programming initiation as well as significantly lower amount of
total energy delivered but showed that pallidal stimulation was
more effective in treatment of axial symptoms. Both targets
improved quality of life (40). Tian et al performed a retrospective
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study of 17 consecutive patients treatedwithDBS forMeige syndrome
that included 11 patients treated with STN DBS. Outcomes for both
targets were similar, with a mean improvement in BFMDRS-motor
score of 69.9% for STN and 71.7% for GPi DBS. BFMDRS disability
subscore improvement was 71.6% with STN and 68.4% with GPi
DBS. The stimulation voltage was significantly higher as expected in
the GPi group (43).

There have been several meta-analyses published comparing
outcomes. Tsuboi et al in 2020 summarized the evidence of STN
(N = 24) versus GPi DBS (N = 184) for cervical dystonia. Only
articles reporting TWSTRS outcomes were included. The authors
concluded approximately 80–90% of patients with cervical dystonia
are expected to experience a clinically meaningful improvement

(defined asmore than 25% improvement in TWSTRS) in symptoms
following DBS of either target and that both STN and GPi DBS
improve motor symptoms, disability, and pain, with similar efficacy.
A meta-regression of long-term outcomes of isolated dystonia
treated with either pallidal or subthalamic DBS was published in
2019. Authors included papers reporting baseline and follow-up
BFMDRS scores up to three or more years and that included 10 or
more patients. Three studies of STN DBS and 19 studies with GPi
DBS were included. Treatment of both STN and GPI DBS, dystonic
symptoms were improved and efficacy was maintained at 3 years.
The results showed a positive correlation between a greater
treatment effect and shorter disease duration. Authors observed
greater improvement in the STN subgroup on univariate regression

TABLE 2 | Subthalamic nucleus DBS for acquired and neurodegenerative dystonia. BFMDRS: Burke-Fahn Marsden Dystonia Rating scale. BMDRS-M + motor subscore,
BFMDRS-D: disability subscore.

Author Number
of pts

Type
of

study

Cause Length
of follow

up
(months)

BFMDRS
motor
pre-op

BFMDRS
motor
post op

Percentage
improvement

BFMDRS
disability
pre-op

BFMDRS

Motor
subscale

Disability
post op

(59) 9 Case
series

2 pts Tardive, 3 post
hypoxic, 1 post-traumatic,
1 Kernicterus 1 lesion
lentiform nucleus
1 unknown

3–36 Only reported
outcomes in
3 patients w
satisfactory
outcomes, 6 patients
only “mild to modest
improvement”

90% (only 2 pts with
tardive and post
traumatic dystonia
responded)

(52) 1 Case
report

Methylmalonic acidemia 9 105 Notes marked
improvement in
dystonia not reflected
in BFMDRS

(9) 1 Case
report

PKAN 36 Total
BFMDRS
115

Total BFMDRS 18

(5) 1 Case
report

Dopa responsive dystonia No scores listed.
“improvement in
dystonia noted from L
STN DBS stimulation,
(contralateral DBS
removed due to
infection)

Reduced
medications,
improved
weight post op

(60) 1 Case
report

Fahr’s disease 24 105 *improvement not
captured by
BFMDRS

Meaningful
improvements Per
parents

30 *not captured w
scale

(64) 2 Case
series

GM1 Gangliosidosis Type
3, dystonia and
parkinsonism

0.5 Pt 1:86 Pt
2: 29

Pt 1: 62 Pt 2: 29 STN leads added to
help akinesia in patient
1, dual GPi and STN
leads placed in pt 2

(63) 1 Case
report

Tardive dystonia 156 70.5 0 100% 28 0

(56) 3 Case
series

PKAN 22–44 42 20.3 58.3%

(53) 2 Case
series

Post Hypoxic/ischemic 9 Total
BFMDRS

Total BFMDRS 45.3%

70 43.5
(8) 10 Case

series
Tardive dystonia 65 36 7.6 88% 10.4 2.6

(61) 2 Case
series

Post traumatic dystonia 24.5 8 65.5 13 3.5

(62) 3 Case
series

Post Infarct dystonia 38 34 25.3 25.5% 8.3 6.7

(57) 2 Case
series

Chorea acanthocytosis 12 41.3 17 58.9% 14 9
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analysis, but due to the high correlation/association between disease
duration and DBS target, no difference in relative efficacy in
BFMDRS outcomes between sites was found (66).

Some groups have explored using a dual targeting strategy
with bilateral GPi and STN in neurodegenerative dystonia. Two
patients with secondary parkinsonism and dystonia due to
GM1 Gangliosidosis showed greater improvement with STN
versus the GPi stimulation (64). Ozturk et al reported
outcomes of pallidal versus subthalamic DBS in acquired and
neurodegenerative dystonia in studies published between
2005 and 2020. The authors found 72 studies reporting
outcomes of 264 cases treated with pallidal DBS (average
follow up 19 months) and reported a mean BFMDRS
improvement of 52%. Ten studies of STN DBS in acquired or
neurodegenerative dystonia were identified, reporting outcomes
in 146 secondary dystonia cases. The mean BFMDRS
improvement was 66% (minimum 28%, maximum 98%) with
an average follow up of 20 months (67).

SPECIFIC CONSIDERATIONS FOR
NEUROMODULATION IN DYSTONIA

Relative to other movement disorders, patient selection and DBS
programming can be more difficult in dystonia. The etiology of
dystonia is sometimes unclear and the dystonia clinical features
can vary widely (i.e., dystonia phenotype, distribution, age of
onset, genetic status), Prognostic factors associated with better
outcomes fromDBS in dystonia include DYT1 genetic status (68),
shorter disease duration (48) and absence of fixed skeletal
abnormalities(69). Given the rapid evolution of dystonia
genetics and with more available genetic testing, other
prognostic markers are likely to emerge in the future.

CONSIDERATIONS IN TARGET SELECTION

Specific limitations with pallidal DBS include higher energy
stimulation and thus higher IPG drainage, although IPG
lifetime and availability of rechargeable systems make this a
less important consideration in target selection currently. The
rate of hemorrhage during DBS lead implantation maybe slightly
higher with pallidal DBS implantation, although thankfully the
hemorrhage rate is low across both targets (70). The sometimes
slow and insidious onset of benefit with pallidal stimulation can
also offer challenges for DBS programmers, given the lack of
immediate feedback while programming in some cases. STN DBS
may offer a more rapid response and be helpful in optimizing
stimulation parameters in a more timely fashion (4).

STIMULATION INDUCED DYSKINESIA

While GPi DBS has been reported to cause bradykinesia (30, 32),
STN DBS can cause stimulation induced dyskinesia (SID) as
previously reported with STN DBS in PD (71), Obsessive
Compulsive Disorder (72) and Huntington’s disease (73).

Similar SID can also occur with STN DBS in dystonia as we
have mentioned (46, 41). The phenomenology of these
hyperkinetic movements can be both varied and complex and
can complicate optimizing DBS programming. Bledsoe et al
reported athetotic movements of fingers, chorea, rapid jerks as
well as more sustained dystonic posturing (46). These movements
often occurred in previously non-dystonic or hyperkinetic areas.
Importantly all patients in this case series did experience SID with
initial programming; however, some experienced delayed onset of
SID several months after last programming session. The latter is
an important finding as it should prompt programmers to
evaluate the patient in the OFF stimulation state, to establish
if the new hyperkinetic movements are due to SID versus spread
or worsening of dystonia. Programming strategies proposed to
combat SID included slow increase in amplitude of stimulation,
use of bipolar configuration as well as activating the dorsal
contacts (4, 46). Programming the dorsal STN using
interleaving has previously reported to be anti-dyskinetic in
PD, likely due to activation of pallidofugal fibers (74) can also
be applied. The dorsolateral STN has been reported to offer
optimal dystonia control (40). Newer segmented directional leads
may also help minimize SIDwithmore exact stimulation delivery.

WEIGHT CHANGES

Weight gain has frequently been reported with STN DBS for PD
(75) and similar changes have been reported with some patients
treated with STN DBS for dystonia and appears to be target
specific (76). Three of nine patients in Ostrem et al initial
prospective trial experienced 10% increase in body weight (4).

NEUROPSYCHIATRIC CONSIDERATIONS

Neuropsychological outcomes after STN DBS are scarce. In the
prospective study of STN DBS for dystonia, no consistent
neuropsychological deficits occurred. Although transient
worsening of depression was observed in several patients, the
Beck depression Inventory (77) did not worsen at 12 months (4).
Contrarily, the Hamilton Depression Scale and the Hamilton
Anxiety Scale showed significant reduction at last follow up
(>5 years) in 10 patients treated with STN DBS for TD(79).
Although there have been many published reports of cognitive
concerns in vulnerable patients after STN DBS in PD (79, 80), a
study of working memory and attention using a dual task
paradigm in eight cervical dystonia patients both ON and OFF
STN DBS showed no significant worsening of cognitive function
(81). Multiple studies have reported sustained improvement in
quality of life post STN DBS in dystonia, usually reported by the
SF-36 questionnaire (36, 78).

ROLE OF RESCUE LEADS

A multi-center cohort study of 132 patients with DYT1 dystonia
treated with pallidal DBS found a suboptimal (less than 30%
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improvement in BFMDRS) long term response in 8%
(11 patients). All 11 of these patients experienced an initial
response of more than 30% postoperatively, with subsequent
worsening. Younger age of onset, faster disease progression and
cranial involvement were felt to represent a more aggressive
phenotype of DYT1. Off stimulation evaluation showed
worsening of dystonia, despite missing the 30% improvement
threshold, thus indicating some continued benefit. All 11 patients
underwent further DBS surgeries, either targeting the STN or the
GPi, Additional leads did not offer meaningful improvement, if
the initial leads were optimally placed (82).

DISCUSSION

Both pallidal and subthalamic bilateral and unilateral DBS are
FDA approved under the Human Device Exemption (HDE) for
treatment of drug refractory isolated dystonia, including
generalized, cervical and hemidystonia in patient’s age seven
and above. (https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfhde/hde.cfm?id=H020007).

Pallidal DBS has Level I evidence for both generalized and
cervical dystonia(18, 83) whereas STN DBS has level IV for
generalized dystonia(3) and level III for cervical dystonia(4).
Over 80 patients with generalized, 24 with cervical, 87 with
Meige syndrome and 17 with tardive dystonia treated with
STN DBS have been reported in the literature (Table 1, 2).
Most studies have concluded outcomes after STN DBS in
dystonia to be similar to GPi DBS. Challenges now exist for
clinicians to choose from multiple effective targets for
dystonia—much like we have for other disorders (PD, and off
label Tourette syndrome and obsessive-compulsive disorder) (84-
86), See Table 3. Not discussed in this review is also the
application of thalamic DBS for dystonia (87) and dystonic
tremor (88), cerebellar DBS (89, 90) as well as cortical
stimulation (91) which may increase clinical options in the
future. Although dystonia subtypes are often grouped together
on the basis of their motor manifestations, pathogenesis may
differ among the subtypes. Current understanding of the
neuroanatomical basis of dystonia have evolved from a focus
on dysfunction of the basal ganglia to include a broader motor
network model involving the basal ganglia, cerebellum, cerebral
cortex, and other brain regions (92). Important concepts in the
pathophysiology include the impairment of sensorimotor
integration, a loss of inhibitory control on several levels of the
central nervous system including the basal ganglia, cortex and

brain stem as well as changes in synaptic plasticity (93, 94).
Reduced function of the indirect pathway with decreased pallidal
inhibition of the thalamo-cortical circuitry as well as hyper
functional activity of the direct basal ganglia pathway has been
proposed to contribute to abnormal motor cortical excitability in
dystonia (95). In addition, primate research has shown the STN
receives substantial direct cortical projections, via the
“hyperdirect” pathway(96) and cortical areas projecting to the
STN have been implicated in dystonia pathophysiology(97).

Recent research has also highlighted the importance of the
cerebellum in the genesis of dystonia (98). Previously it was
thought the basal ganglia and cerebellum only communicated
through higher order cortical relay and functioned somewhat
independently by relaying projections to cortical areas via
separate thalamic nuclei, however recently a is a disynaptic
connection from the motor STN, via pontine nuclei, to the
cerebellar cortex has been described (99, 100). Additionally,
the cerebellar dentate nucleus has a disynaptic connection, via
the intralaminar nucleus of the thalamus, directly to the
striatum (100).

It is interesting that such diverse therapeutic effects are
possible from multiple DBS targets and can improve both
hypokinetic and hyperkinetic movement disorders. The exact
mechanism of how DBS exerts its therapeutic effect remains
unknown but evidence is mounting that DBS is suppressing
pathological oscillatory activity within these brain networks
(101). Current DBS systems have the ability to record local
field potentials (LFP) from target nuclei and low frequency
theta activity (3–8 Hz) has been shown to be associated with
dystonia and suppressed by therapeutic DBS (102). Theta
spectral activity has been recorded from both STN (103)
and GPi (104) targets and correlated with clinical severity
(105, 106). A recent proof of principle study showing adaptive
DBS of the STN in cervical dystonia controlled by cortical theta
oscillation showed improved clinical rating compared to
continuous DBS as well as increased peak amplitudes
without inducing SID (107).

CONCLUSION

Deep Brain stimulation represents a powerful treatment option for
dystonia, regardless of target. The optimal target for
neuromodulation remains unknown and future head-to-head
studies are needed. Thus far, pallidal DBS still has significantly
more robust evidence over STNDBS.Other emerging targets outside

TABLE 3 | Pros and cons of STN or GPi DBS for dystonia.

Target STN GPi

Benefits More rapid onset of action Class I evidence for isolated dystonia with proven long term benefit
Lower IPG drainage

Limitations Less robust evidence Stimulation induced bradykinesia
Stimulation induced dyskinesia Delayed onset of clinical benefit
Possible weight gain Slightly increased rate of hemorrhage

IPG, implantable pulse generator.
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of the basal ganglia known to be important n dystonia, such as the
cerebellum has also gained recent attention. Modulating brain
circuits by targeting one of several different nodes within the
network can offer powerful symptomatic benefit. Given that
targeting multiple areas within the circuit have been shown to
both disrupt the abnormal pathological oscillatory activity and
offer robust and similar clinical efficacy, clinicians are now faced
with determining a final target based on multiple factors including
the best side effect profile, ease of surgical targeting, and
programming for an individual patient. Emerging tools including
improved imaging approaches such as connectomics as well as more
sophisticated neurophysiology may help guide ideal nodes to target
with DBS on an individual basis in the future.
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