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Since its outbreak in late 2019, the SARS-CoV-2 virus has been themain subject

of interest for a number of studies. Clinical manifestations are ranging from

asymptomatic to mild and severe. Major risk factors for developing severe

COVID-19 are age and comorbidities, although younger people suffer from

severe COVID-19 as well. One of the explanations for why can be the

composition of respiratory tract microbiota. In this article, we review studies

linking respiratory tract microbiome and its changes during COVID-19

infection. The respiratory tract microbiome helps shape immunity and it is

assumed that it can affect the outcomeof several viral infections. Several studies

show differences in the microbial composition of the respiratory tract between

COVID-19 patients and healthy individuals. The diversity of the respiratory tract

microbiome is reduced with increasing severity of COVID-19.
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SARS-CoV-2

In late December 2019, several patients with symptoms of novel pneumonia were

reported to health authorities in Wuhan, Hubei Province, China (Zhou et al., 2020). The

majority of the initial patients were associated with the Huanan seafood and wildlife

market inWuhan City. Through retrospective analysis, they were able to identify a patient

whose symptoms began as early as 1 December (Zhang and Holmes, 2020). Isolation of

viral RNA and next-generation sequencing identified this viral pathogen as a novel

coronavirus (Zhou et al., 2020). The International Committee on Taxonomy of Viruses

named this novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) (Gorbalenya et al., 2020).

SARS-CoV-2 belongs to the viral family Coronaviridae. Members of the family

Coronaviridae are single-stranded positive-sense RNA viruses up to 32 kb in length.

In addition, this family can be divided into two subfamilies: Coronavirinae and
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Torovirinae. Subfamily Coronavirinae is divided into four genera:

Alphacoronavirus, Betacoronavirus, Gammacoronavirus,

Deltacoronavirus and subfamily Torovirinae, which consists of

the genus Torovirus (Payne, 2017). Alphacoronavirus and

Betacoronavirus can generally infect mammals, whereas

Gammacoronavirus and Deltacoronavirus mainly infect birds

(Ludwig and Zarbock, 2020). In humans, they are the cause of

mild to severe respiratory infections. By 2019, in the 21st century,

humanity experienced two spreads of novel coronaviruses: severe

acute respiratory syndrome (SARS) in 2002 and Middle East

respiratory syndrome (MERS) in 2012 (de Wit et al., 2016; Hu

et al., 2020). SARS occurred in China in 2002, sickening nearly

8,000 people and killing 774. The natural reservoir for SARS-CoV

was Chinese horseshoe bats (Lau et al., 2005), but transmission to

humans occurred via intermediate hosts, civets (Kan et al., 2005).

MERS-CoV emerged in Saudi Arabia in 2012 and infected

approximately 2,500 people with a mortality rate of 30% (Lu

et al., 2020). As in the case of SARS, the MERS-CoV virus persists

in nature in bats and as an intermediate host serve dromedaries

(Sabir et al., 2016). A study by Zhou et al. (2020) showed that

SARS-CoV-2 is 96.2% identical to bat coronavirus at the whole

genome level, further supporting the theory that bats are natural

reservoirs for coronaviruses. It is unknown whether SARS-CoV-

2 was transmitted directly from a bat to a human or whether

there is another intermediate host. Recent studies speculated that

intermediate hosts could be rodents (Huang et al., 2021),

pangolins (Liu et al., 2020) and raccoon dogs (Wang et al.,

2022), but there could be multiple intermediate hosts.

Next-generation sequencing revealed 79% nucleotide-level

identity between SARS-CoV-1 and SARS-CoV-2 and 50%

between SARS-CoV-2 and MERS-CoV (Lu et al., 2020). The

genome of SARS-CoV-2 resembles that of a typical coronavirus

genome and contains at least nine open reading frames and four

structural proteins with the gene sequence 5′-ORF1ab-S-E-M-N-

3′ (S-spike, E-envelope, M-membrane, N-nucleocapsid protein)

(Figure 1) (Li et al., 2020). ORF1a and ORF1b are two overlapping

ORFs encoding polyproteins pp1a and pp1ab, which are cleaved

into 16 non-structural proteins (NSP) (Ziebuhr and Siddell, 1999;

Abu Turab Naqvi et al., 2020; Dutartre et al., 2020; Yadav et al.,

2021). These NSPs (1-16) are responsible for viral replication

(Yadav et al., 2021). The spike (S) protein ensures the entry of the

virus into the target cell. The S protein consists of two subunits, the

N-terminal S1 subunit and the C-terminal S2 subunit. The S1 unit

recognizes and binds to the cell surface receptor angiotensin-

converting enzyme-2 (ACE-2), the same one that binds the

spike protein of SARS-CoV-1, followed by fusion of viral and

host cellular membrane. Binding to the ACE-2 receptor requires

S-protein priming by the host cellular serine TMPRSS2 protease.

This priming involves cleavage at the S1/S2 furin cleavage site,

making the closed form of S1 open and accessible to the ACE-2

receptor (Benton et al., 2020; Hoffmann et al., 2020; Guruprasad,

2021). ACE-2 is expressed in epithelial tissues that form protective

barriers. ACE-2 is localized in many cells and tissues such as the

heart, kidneys, intestinal tract, gallbladder, testis, and most

importantly, respiratory tract epithelium in the nose, mouth,

and lungs. In the lungs, it is strongly expressed in the

pneumocytes in the alveoli (Hikmet et al., 2020; Wang et al.,

2020). Proteins M and E form the viral envelope, while protein N

protects viral RNA (Kirtipal et al., 2020).

SARS-CoV-2 has various manifestations in patients, from

mild to severe. Unlike SARS and MERS, the mortality rate of

SARS-CoV-2 is significantly lower, with most patients having

mild symptoms or being asymptomatic. Symptoms vary from

patient to patient and depend on various factors such as age,

gender, blood type, and other comorbidities (diabetes,

hypertension, cardiovascular disease, etc.) (Huang et al.,

2020). The most common symptoms are fever, dry cough,

fatigue, sputum production, and loss of taste and smell. Less

common symptoms include headache, sore throat, diarrhea,

chills, nausea, and vomiting (Hu et al., 2020; Ludwig and

Zarbock, 2020).

Respiratory tract

The respiratory tract (RT) is a part of the respiratory system,

whose main function is the exchange of oxygen and carbon

dioxide. It is structurally divided into the upper respiratory

tract (URT) and the lower respiratory tract (LRT). The UTR

consists of the nostrils, nasopharynx, oropharynx, and the

portion of the larynx above the vocal cords. The LRT, on the

other hand, includes the portion of the larynx below the vocal

cords, the trachea, bronchi, bronchioles, and lungs with alveoli

(Robinson and Furlow, 2007). The entire surface is covered by

bacterial communities, with the UTR having the highest density of

bacterial communities. Different anatomical structures of the

respiratory tract contain specialized bacterial communities. The

humanmicrobiome is the collection of allmicroorganisms that live

in association with the human body. The microbiome includes

eukaryotes, archaea, bacteria, and viruses (https://www.hmpdacc.

org/overview/). The most studied parts of the microbiome are

bacteria, commensal or pathogenic. The RT microbiota is thought

to play a role in respiratory development and in shaping local

immunity (Olszak et al., 2012). During bacterial or viral infection

of the human respiratory tract, the first step for these pathogens is

usually colonization of the UTR before causing infection of the

UTR and LTR. The process of inhibiting this first step is also

referred to as colonization resistance and its mechanisms involve

competition for the attachment site, nutrition, or production of

antibacterial peptides (Stadio et al., 2020).

Composition of RT microbiota

Colonization of the URT begins at birth and is influenced by

the mode of delivery. During vaginal delivery, the child is
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exposed to the maternal vaginal microbiome, and during

cesarean delivery, the infant is exposed to the maternal skin

and environmental microbiome. During the first week of life, the

nasopharynx is colonized by Staphylococcus aureus regardless of

the mode of delivery. Although S. aureus is primarily known as a

pathogenic bacterium, it may be an important commensal

bacterium in the nasopharynx during early life. Wang et al.

(2013) showed that S. aureus significantly attenuates influenza-

mediated immune injury of the lung in mice by inducing alveolar

macrophages. In later weeks, the abundance of S. aureus

decreases and species such as Corynebacterium,

Dolosigranulum, and Moraxella increase. Increased abundance

of these three species is important for the healthy development of

the nasopharyngeal microbiota in later stages of life. In the first

months of life, infants born by cesarean section exhibited a

variable microbial profile and a loss of abundance of

Corynebacterium and Dolosigranulum, resulting in an increase

in respiratory infections. The abundance of S. aureus is not

significantly reduced, while Prevotella, Veillonela, and

Porphyromonas begin to emerge (Bosch et al., 2017). In

contrast, infants born naturally and breastfed showed a higher

abundance of beneficial bacteria (Bosch et al., 2016). This could

also be due to the transfer of beneficial microbiota, such as

Lactobacillus and Bifidobacterium, in milk during breastfeeding

(Biesbroek et al., 2014). Breastfed children also have a higher

abundance of Corynebacterium and Dolosigranulum and a lower

incidence of respiratory diseases compared to formula-fed

children. The microbiota of children can be influenced by

many different aspects, such as the type of birth and feeding

mentioned above, presence of siblings, previous infections, use of

antibiotics, vaccinations, season, exposure to different

environments (home, kindergarten, park), etc. In the first year

of life, exposure to microbial communities is crucial for the

formation of the immune system (Shukla et al., 2017).

The human body is colonized by five phyla of bacteria:

Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and

Proteobacteria (Ibironke et al., 2020). In healthy adults, the

nasal cavity microbiome consists of bacteria associated with

the skin, mainly Actinobacteria with the most abundant

families being Corynebacteriaceae and Propionibacteriaceae,

followed by Firmicutes and Proteobacteria (Bassis et al., 2014).

The nasopharynx differs from the oral cavity in terms of bacterial

niche composition. In spring, the dominant phyla in the

nasopharynx are Bacteroidetes, and in fall, Proteobacteria and

Firmicutes. At the genus level, Moraxella is the most widespread

(Bogaert et al., 2011). Firmicutes, Proteobacteria, and

Bacteroidetes are represented in the oropharynx. The

oropharynx has a greater bacterial diversity compared to the

nasopharynx (Charlson et al., 2010). Commonly known

pathogenic bacteria such as Pneumococcus, Haemophilus

influenzae, and Neisseria meningitidis can be considered

commensal bacteria of the URT (Table 1). Despite the dogma

that the lung is sterile, it has quite a dynamic microbiome. The

microbiome of the lung is similar to the microbiome of the

nasopharynx in terms of ecological composition (Dickson et al.,

2014). The most dominant phyla in the lung are Firmicutes and

FIGURE 1
The genome of SARS-CoV, MERS-CoV and SARSCoV- 2 (Created with BioRender.com).
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Bacteroidetes with a low biomass of Prevotella, Veillonella, and

Streptococcus. Bacteria enter the lungs mainly through the UTR

(Cui et al., 2014). However, Tropheryma whipplei was found in

the lung as part of the microbiota, but not in the nasopharynx or

oropharynx (Charlson et al., 2011). When comparing the

microbiota of middle-aged people and seniors, seniors had the

lowest abundance, especially in the anterior nares. In the anterior

nares of elderly people, the relative abundance of

Propionibacterium and Corynebacterium decreases and

Streptococcus increases. The genus Streptococcus was depleted

in the oropharynx. The anterior nares are barriers between the

external environment and the respiratory tract, so changes in

their microbiome may be one of the causes of the higher

incidence of respiratory infections in seniors (Whelan et al.,

2014).

The nasal mucosa and its microbiota are the first to come into

contact with the infection. Viral infection of the respiratory tract

alters the composition of the microbiota in RT, mainly through

the decrease of alpha diversity (the average species diversity

within a given area) and the loss of beneficial microbiota,

mainly anaerobes and the genus Prevotella. On the other

hand, pathogenic bacteria such as Staphylococcus aureus,

Haemophilus influenzae, Streptococcus pneumoniae,

Corynebacterium propinquum and Moraxella catarrhalis are

enriched (Edouard et al., 2018). These changes contribute to

the ease of shifting infection from the UTR to LTR and allow

bacterial pathogens to translocate as well, leading to secondary

bacterial infection (Cyprian et al., 2021) and drastically altering

the mortality of viral infections (Gupta et al., 2008).

The microbiota can reduce pathogens by alerting the host

immune system or directly inhibiting or killing pathogens. A

study by Larsen et al. (2012) showed that Prevotella can reduce

Haemophilus-induced production of proinflammatory cytokines

in dendritic cells by ~50% (Larsen et al., 2012). The signaling

pathway, by which the commensal activates the host immune

response is unclear, but it activates cells of host immunity, for

example, macrophages, mucosa-associated invariant T cells,

group 3 innate lymphoid cells, and natural killer cells. Murine

studies have shown that mice with a lowered abundance of

microbiota reduced by antibiotic use had lower expression of

macrophage-induced viral genes upon influenza virus infection

than the control group (Abt et al., 2012). In addition,

Staphylococcus epidermidis activates the production of

interferon in the nasal epithelium, increasing resistance to

influenza A in mice (Kim et al., 2019). Two main ways in

which bacteria compete with each other are exploitation and

interference. In exploitation, bacteria extract nutrients from the

environment. Corynebacterium produces siderophores and

inhibits Staphylococcus growth due to decreased bioavailability

of iron as a result of the chelation of iron by siderophores in vitro

(Stubbendieck et al., 2019). In contrast, competing bacteria

produce molecules during interference that inhibit growth or

kill competitors. Bacteria can produce bacteriocins and

ribosomally synthesized antimicrobial peptides that can inhibit

growth or kill other bacteria, but do not harm the bacteria

themselves through specific immunity proteins (Benítez-Chao

et al., 2021; Soltani et al., 2021). Staphylococcus salivarius

produces bacteriocins and thus inhibits Staphylococcus

pneumoniae (Santagati et al., 2012). Other mechanisms of

interference include biofilm disruption, enzyme secretion,

hydrogen peroxide production, and virulence gene

downregulation (Khan et al., 2019).

COVID-19 and respiratory
microbiome

As mentioned earlier, the microbiota of the respiratory tract

plays a crucial role in maintaining respiratory health. Multiple

studies have shown that the composition of respiratory

microbiota can affect susceptibility to respiratory infections

including COVID-19. Understanding interactions between the

TABLE 1 Composition of microbial communities in various anatomical structures in different stages of life.

Child Adult Elderly

UTR Nasal cavity Streptococcus, Corynebacterium,
Dolosigranulum

Corynebacterium, Propionibacterium,
Staphylococcus aureus,

Streptococcus, Prevotella, Veillonella,
Staphylococcus

Nasopharynx Staphylococcus aureus, Corynebacterium,
Dolosigranulum,Moraxella, Propionibacterium,
Bifidobacterium, Streptococcus, Haemophilus,
Enterococcus

Streptococcus, Haemophilus influenzae,
Moraxella cat., Corynebacterium,
Dolosigranulum, Neisseria, Staphylococcus,
Cutibacterium

Streptococcus, Prevotella, Veillonella

Oropharynx Rothia, Corynebacterium, Prevotella,
Porphyromonas, Streptococcus, Veillonella,
Haemophilus, Moraxella

Prevotella, Leptotrichia, Veillonella,
Streptococcus, Rothia, Neisseria, Haemophilus,
Porphyromonas

Propionibacterium, Corynebacterium,
Bifidobacterium, Prevotella, Streptococcus
(44%), Staphylococcus, Veillonella, Moraxella,
Pseudomonas

LTR Trachea Veillonella, Prevotella, Fusobacterium Low biomass: Prevotella, Veillonella,
StreptococcusLungs
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host, virus and respiratory microbiome may provide insight into

new potential therapeutic targets in the prevention and treatment

of those infections. SARS-CoV-2 enters the human body

primarily through the respiratory tract, oral cavity, and nose.

The microbiome is the first entity to confront infection. It plays

an important role in stimulating the immune system and

protecting against pathogens. When microbiome homeostasis

is disturbed (microbial dysbiosis), pathogens overgrow and

colonize the respiratory tract, eventually leading to infection

of the LTR. In samples from patients with severe COVID-19

bacterial alpha diversity decreased. Furthermore, alpha diversity

is reduced in a severity-dependent fashion—the lower diversity,

the higher severity. As with most infections, the trend of

beneficial bacteria decreasing and pathogens increasing can be

seen in SARS-CoV-2 as well.

The severity of COVID-19 is related to age and

comorbidities. Since the elderly have low diversity of the

microbiome in RT, this may be the reason for their high

susceptibility to SARS-CoV-2 and their higher probability

of ending up in the intensive care unit (ICU). At the same

time, young patients with no apparent risk factors suffer

complications and end up in the ICU on automatic

ventilation. The role of the microbiome in the host immune

response suggests that a healthy microbiome may positively

influence the progression of COVID-19. On the other

hand, dysbiosis may lead to a higher rate of severe cases in

individuals without obvious risk factors. The URT microbiome

may impact the symptoms experienced during SARS-CoV-2

infection by modulating the host immune response.

For example, the ACE-2 receptor, as an entry site for SARS-

CoV-2, is stimulated by interferon and therefore may be

affected by the microbiome. Respiratory tract viral infections

may predispose patients to bacterial superinfections. One of

the most important mechanisms is the structural and functional

disruption of the mucosal epithelium (Bakaletz, 1995). In

previous studies, coronavirus enhanced streptococcal

attachment to epithelial cells, resulting in pulmonary

infections (Golda et al., 2011). Patients with additional

coinfection have a higher risk of severe COVID-19 and a

higher mortality rate. In the study by Zhou et al., 50% of

COVID-19 patients had a secondary bacterial infection. The

three most common bacteria in patients’ lungs were Klebsiella

pneumoniae (9.9%), Streptococcus pneumoniae (8.2%), and

Staphylococcus aureus (7.7%) (Tang et al., 2022).

In a study in which Gupta et al., 2022 analyzed microbial

composition at the bacterial strain level, there was an increased

abundance of Proteobacteria and decreased abundance of

Bacteroidetes. In mice, Bacteroidetes can downregulate ACE-2

receptor expression, this reduction can promote severe SARS-

CoV-2 infection. COVID-19 patients’ nasal microbiome is

enriched in pathogenic bacteria, Acinetobacter, Rothia,

Moraxella, Haemophilus, Stenotrophomonas, and Pseudomonas

(Rhoades et al., 2021; Gupta et al., 2022).

In the nasopharynx, Corynebacterium and

Dolosigranulum are negatively correlated with COVID-19

severity (Smith et al., 2021). Corynebacterium and

Dolosigranulum are among the most important commensal

bacteria in healthy RT (Shilts et al., 2022). Corynebacterium

accolens can inhibit the growth of Staphylococcus aureus and

Staphylococcus pneumoniae (Bomar et al., 2016). In addition,

COVID-19 patients show a significant reduction in abundance

of Proteobacteria (Kolhe et al., 2021) and Fusobacteria at the

phylum level compared to controls (Nardelli et al., 2021).

Leptotrichia and Haemophilus are significantly reduced and

species such as Streptococcus, Prevotella and Campylobacter

are enriched (Nardelli et al., 2021; Xiong et al., 2021).

Overexpressed Prevotella proteins can increase COVID-19

severity by interacting with NF-kB (Khan and Khan, 2020;

Ventero et al., 2021). The study showed that two Streptococcus

strains, S. suis and S. agalactiae, can stimulate the expression

of ACE-2 in VERO cells (Xiong et al., 2021), which could be

another reason for severe COVID-19. Campylobacter is

known to cause inflammation and diarrhea, one of the

symptoms of COVID-19. In COVID-19 patients, several

pathways were significantly downregulated in the

nasopharyngeal metabolome, including platelet activation

pathway (Liu et al., 2021).

The bacterial communities in the oropharynx show a higher

relative abundance of Streptococcus, Gemella, Haemophilus, and

Neisseria, and a lower relative abundance of the phylum

Proteobacteria (Liu et al., 2021). In addition, a study by Shi

et al. presented three predominant bacteria in the oropharynx in

COVID-19 patients with mild symptoms: Streptococcus,

Veillonella, and Haemophilus (~60%). In addition,

Campylobacter (including C. rectus and C. fetus) and

Roseburia were limited at the genus level in patients with a

higher viral load of SARS-CoV-2 (Shi et al., 2022). SARS-CoV-

2 intensive care patients showed complete depletion of

Clostridium and Bifidobacterium. In addition, the

Pseudomonadaceae family was found exclusively in ICU

patients compared with hospitalized patients and healthy

controls (Rueca et al., 2021). Members of the

Pseudomonadaceae family are known to cause a pathological

condition and reduce microbial diversity (Borges et al., 2018) In

their study Ren et al. identified Streptococcus as the most enriched

microbiome at the time of admission in the oropharynx of a

patient recovered from COVID-19 (Ren et al., 2021). In the

oropharynx of COVID-19 patients, specific amino acid metabolic

pathways were enriched compared to healthy control and

influenza patients. Tyrosine, phenylalanine, beta-alanine,

phosphonate, and phosphinate metabolic pathways were those

enriched in COVID-19 patients, suggesting that specific amino

acids are metabolized by the microbiome in the oropharynx of

COVID-19 patients (Ma et al., 2021). The amino acid imbalance

was the reason for increased intestinal inflammation via ACE2-

dependent changes in epithelial immunity (Hashimoto et al.,
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2012). Moreover, the oropharyngeal microbiome of COVID-19

and flu patients showed relatively depleted nucleotide

metabolism, replication and repair, and greatly depleted

membrane transport and cell motility. These findings suggest

a lowered ability to process genetic information and transport

ions, lipids, sterols, peptides, proteins and carbohydrates (Ma

et al., 2021).

In the lungs of deceased patients with COVID-19, the

most common bacteria were Actinobacter (Fan et al., 2020).

The difference in lung microbiome composition between

healthy individuals and patients with COVID-19 suggests

lung dysbiosis during infection with SARS-CoV-2.

Intubated patients have lower microbiome diversity,

respiratory pathogens such as Staphylococcus, Klebsiella,

and Stenotrophemonas and typical bacterial communities

for UTR such as Corynebacterium and Prevotella are

present. Prevotella is known for its ability to promote viral

infections by interacting with NF-κB (Bertelsen et al., 2020).

Some patients had a high abundance of Enterococcus, which

causes bloodstream infection in critically ill COVID-19

patients (Merenstein et al., 2021). Patients on automatic

ventilation have elevated levels of Serratia, Streptococcus,

Enterobacter, Veillonella, Prevotella, and Rothia (Feehan

et al., 2021), but it is not known whether this is directly

from COVID-19 or from intubation and pulmonary

ventilation. Serratia marcescens is known to cause

pneumonia (Goldstein et al., 1982). A study by Haiminen

et al. (2021) focused on altered lung microbiome pathways;

patients with COVID-19 had downregulated pathways related

to glycan biosynthesis and metabolism and lipid metabolism

and increased carbohydrate metabolism (Haiminen et al.,

2021).

During infection, the LRT produces mucus by activating

various immune cells (Li and Tang, 2021). The presence of

mucus in LTR promotes the growth of anaerobic bacteria and,

at the same time, reduces the growth of aerobic bacteria. This

supports the findings that Staphylococcus, Prevotella, and

Peptostreptococcus are increased in COVID-19 patients in

critical condition (Smith et al., 2021). Prevotella and

Peptostreptococcus are anaerobic bacteria (Brook, 2001),

Staphylococcus grows best in the presence of oxygen but can

live in anaerobic conditions as well.

Changes in UTR microbiota during SARS-CoV-

2 infection are extensively studied, but little is known about

changes in metabolome in COVID-19 patients. The main

target of metabolomic studies is the focus on the gut

metabolome. Recent studies suggest that changes in the

respiratory tract microbiome and its metabolites may be a

contributing factor to the severity of COVID-19. A study by

Clausen et al. (2020) shows that heparan sulfate (HS) is

needed for the binding of SARS-CoV-2 to the

ACE2 receptor. SARS-CoV-2 infection and binding of the

virus to the receptor can be eliminated by the removal of HS

from the cell surface (Clausen et al., 2020). Bacteria have co-

localized set of genes, called polysaccharide utilization locus

(PUL), that are responsible for the degradation of complex

carbohydrates, including HS (Terrapon et al., 2015; Martino

et al., 2020). PULs are prevalent in Bacteroidetes, the

incidence of which is lower in patients with COVID-19.

In a study by Liu et al. (2008) in a macrophage-derived cell

line, proinflammatory cytokine production was induced by

histone-like DNA binding protein produced by Streptococcus

intermedius. Therefore, elevated levels of Streptococcus can be

one of the reasons for higher inflammation in COVID-19

patients.

Another metabolite produced by respiratory microbiota such

as Lactobacillus spp. is lactic acid (Abedi et al., 2017). Lactic acid

can inhibit the growth of pathogenic bacteria by maintaining low

pH in the respiratory tract and enhancing the activity of immune

cells. Lactic acid-producing bacteria can regulate the population

of natural killer cells and thereby inhibiting the influenza A virus

(Miyazaki, 2017). Natural killer cells are one of the first

components of immunity to respond also to SARS-CoV-

2 infection and are important in controlling the first stages of

the infection.

Nitric oxide (NO) has an important role in modulating

immune response through various mechanisms. NO is

produced by cells of innate immunity (macrophages,

neutrophils and natural killer cells). Macrophages activated by

pathogen release NO, therefore, which inhibits the replication of

the pathogen (Tripathi et al., 2007; Wink et al., 2011; Rosier et al.,

2020). In their study, Åkerström et al. (2005) infected cells with

the SARS-CoV virus and then the cells were treated with different

concentrations of the NO donors S-nitroso-N-

acetylpenicillamine (SNAP). SNAP inhibited viral replication

of SARS-CoV in a dose-dependent manner. When SNAP was

used on cells infected with SARS-CoV-2, the results show the

same SNAP dose-dependent reduction of SARS-CoV-2 viral

RNA copy numbers. The same was seen when observing the

correlation between SNAP and the development of viral

cytopathic effect. However, if noninfected control cells were

treated with 400 µM SNAP, SNAP exhibited a cytotoxic effect.

However, cells treated with 200 µM SNAP showed no decrease in

viability (Akaberi et al., 2020). Reactive nitrogen species (RNS)

can be formed if NO interacts with reactive oxygen species

(ROS). When cells are exposed to oxidative stress, RNS may

have a cytotoxic effect (Ricciardolo et al., 2004). Several bacteria

can produce NO by denitrification of nitrate to nitrite and to NO

(Zumft, 1993). Human saliva contains nitrate and oral

microbiota (Veillonella spp., Staphylococcus aureus and

Staphylococcus epidermidis, Nocardia spp., Corynebacterium

spp., Neisseria spp., Actinomyces spp., Haemophilus spp.) is

responsible for its conversion to nitrite (Macknight et al.,

1997; Hyde et al., 2014).
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Conclusion

Respiratory microbiota is a powerful tool in the defense

system against viruses. Recent studies show different RT

microbial compositions in patients infected with coronavirus

SARS-CoV-2, for example, reduced or increased prevalence of

bacteria involved in mechanisms that are able to change the

progression of COVID-19 disease. Results from these studies are

ambiguous, with conflicting conclusions. The composition of the

microbiota can be influenced by many factors, including the

method of sampling. COVID-19 outbreak as a global pandemic is

studied around the globe, but the microbiota of healthy

individuals is altered between individuals from different

environments. So, studies from different countries with

different conditions will not be coherent. Moreover, some

studies did not conduct a thorough background investigation,

so they do not have information about previous infections or

antibiotic use prior to the infection with SARS-CoV-2. Antibiotic

use changes the microbiome 4 weeks after administration of the

last dose. The sample size was small in most studies as well.

However, the most important finding is that the

microbiome is altered in patients infected with COVID-19.

Changes in bacterial composition may be the cause of a wide

variety of COVID-19 manifestations. It is unknown whether

this change contributes to SARS-CoV-2 infection or is the

consequence of COVID-19. Nevertheless, alpha diversity is

reduced as well as the number of commensal bacteria, while

the relative abundance of pathogens increases. Pathogens that

are not fully controlled by commensals exacerbate the

manifestation of COVID-19.
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