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Nowadays, gas turbines intake jet air at high temperatures to improve the power output as
much as possible. However, the excessive temperature typically puts the blade in the face
of unpredictable damage. Film cooling is one of the prevailing methods applied in
engineering scenarios, with the advantages of a simple structure and high cooling
efficiency. This study aims to assess the uncertain effect that the three major film
cooling parameters exert on the global and fixed-cord-averaged film cooling
effectiveness under low, medium, and high blowing ratios br. The three input
parameters include coolant hole diameter d, coolant tube inclination angle θ, and
density ratio dr. The training dataset is obtained by Computational Fluid Dynamics
(CFD). Moreover, a seven-layer artificial neural network (ANN) algorithm is applied to
explore the complex non-linear mapping between the input flat film cooling parameters
and the output fixed-cord-averaged film cooling effectiveness on the external turbine blade
surface. The sensitivity experiment conducted using Monte Carlo (MC) simulation shows
that the d and θ are the two most sensitive parameters in the low-blowing-ratio cases. The
θ comes to be the only leading factor of sensitivity in larger blowing ratio cases. As the
blowing ratio rises, the uncertainty of the three parameters d, θ, and dr all decrease. The
combined effect of the three parameters is also dissected and shows that it has a more
significant influence on the general cooling effectiveness than any single effect. The d has
the widest variation of uncertainty interval at three blowing ratios, while the θ has the largest
uncertain influence on the general cooling effectiveness. With the aforementioned results,
the cooling effectiveness of the gas turbine can be furthermore enhanced.
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INTRODUCTION

In gas turbine applications, since the intake gas temperature positively correlates with the power
output, the temperature of the intake gas is expected to be as high as possible in pursuit of a better
power output of a gas turbine. However, such temperature typically exceeds the melting temperature
of turbine blades, which would cause the blade to melt and even lead to potential dangers in a gas
turbine (1). Therefore, it is crucial to develop effective cooling methods to prevent potential
overheating problems and avoid operating in overheated environments. Among a diverse
selection of cooling methods, film cooling is the preferred and widely accepted choice in
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practical applications. A jet of coolant is extracted from the
compressor and sprayed out from the coolant hole drilled on
the flat blade in a designed geometric orientation. This jet of
cooling air soon conflates the mainstream and then quickly
covers the top surface of the blade, serving as an interlayer
between the superheated mainstream air and the blades to
prevent the blades from making direct contact with the hot
mainstream. This process helps to prolong the service life of
the blade.

Nonetheless, the process of predicting the cooling effects from
a given flat plate hole parameter set is complicated by the
complexity and unpredictability of the vortex structure and
gas mixing motion. Previous studies have shown that two
categories of input parameters matter to the resulting film
cooling efficiency. They include the property of the coolant jet
and the coolant injection method. The thermal property of the
coolant includes coolant temperature (2) or coolant-to-
mainstream temperature ratio (3). Garg et al. (2) delved into
the impact of coolant temperature exerted on adiabatic
effectiveness of the gas turbine blades by applying Navier-
Stokes codes. Han et al. (3) concluded that the mainstream-to-
coolant jet temperature ratio impacts the film cooling
effectiveness greatly, and better cooling performance is
achieved at higher temperature. The dynamic coolant
properties of coolant contain coolant density ratio (4) and
blowing ratio (5). Sinha (6) found that increasing the density
ratio would create a negative lifting effect that promotes the
spreading of the coolant jet heavily, and thus, impaired the film
cooling effectiveness significantly. Cao et al. (7) outlined that with
the continuous increasing of blowing ratio, the film cooling effect
first rises and then falls. The coolant injection method contains
the cooling hole shape (8), compound angle (9), inclination angle
(10), and exit lateral diffusion angles (11). Gritsch et al. (8)
concluded that hole shapes significantly impact the film
cooling effectiveness. Most studies have shown that coolant
hole diameter, coolant tube inclination angle, density ratio,
and blowing ratio play a good role in film cooling
effectiveness. Thus, a performance analysis on these elements
is warranted.

Uncertainty analysis is of great importance in gas turbines
(12). Different parameters influence the behavior of the gas
turbine differently. Even slight variations of some specific
parameters could bring considerable differences in the
performance of the gas turbine. However, most previous
uncertainty quantification studies are conducted based on
conventional and inefficient Polynomial Chaos Expansion
(PCE) models. Akbar et al. (13) surveyed seven uncertainty
parameters in total and performed the uncertainty
quantification analysis by the PCE method for film cooling.
Shi et al. (14) used a PCE method to evaluate the uncertain
effect of the conical angles etc. on discharge coefficient and
adiabatic cooling effectiveness. Mathiodakis et al. (15)
implemented research on the effect of ambient humidity on
gas turbine performance and found that under high working
temperatures, the impact that humidity has on the gas turbine is
much more severe compared with low working temperatures.
Huang et al. (16) also applied uncertainty quantification in their

study of the heat transfer performance on rotor blade
squealer tips.

However, the computation time and computation load
increase exponentially in cases of higher dimensions, and the
traditional PCE methods are commonly used to solve the “single
output” problem, i.e., it is more widely used to obtain the overall
cooling temperature of the research region only, instead of the fix-
cord-averaged temperature analysis. Even though theoretically,
the PCE methods can also be utilized to produce laterally
averaged results, the computational cost is relatively higher.
Many beneficial attempts are conducted to solve the
difficulties in high-dimensional cases, such as the surrogate-
based optimization method and artificial neural network et al.,
to conclude the complex non-linear correlation between the input
coolant parameter configurations and the resulting cooling
effectiveness using semi-empirical correlations. Mellor et al.
(17) accomplished that by finding and validating a semi-
empirical correlation. However, the computation is still very
complicated.

In recent years, deep learning has emerged and is making a
favorable contribution in pushing the process of various
application fields forward (18). In fluid mechanics, a surrogate
model based on deep learning is a beneficial tool for setting up the
complicated non-linear, and obscure relation between two data
sets. Ma et al. (19) investigated the behavior of the combustion
chamber in a rocket. They utilized a convolutional neural
network to forecast relations between coolant jet film and
mainstream hot jet. Dolati et al. (20) studied the film cooling
effectiveness by building a GMDH-type neural network to model
the plasma actuator effects over a flat plate. Yang et al. (21)
employed convolution modeling to predict the plugging
problems and cooling efficiency of transpiration film cooling
in the study. Wang et al. (22) utilized a GRU neural network
model to research a variety of cooling parameters in one
dimension to forecast the trench film cooling effectiveness. It
is deduced that it is accessible to use deep learning methods in
film cooling research. Furthermore, Wang et al. also applied a
supervised ANN on a SVG cooling configuration to explore the
non-linear mapping between parameters and performance and
conclude that when the blowing ratio is low, the radius of SVG
dominates the cooling effectiveness (23).

This paper constructed and validated a deep-learning-based
ANN model to obtain the dataset to identify a non-linear
mapping to link the four cooling parameters to cooling
effectiveness. The application of the ANN model greatly
enhanced the reliability of the correlation between parameters
and the performance of the flat film cooling. The four cooling
parameters include coolant hole diameter d, density ratio dr,
coolant tube inclination angle θ, and blowing ratio br, and then
we conducted uncertain effects of these film-cooling parameters
at different blowing ratios. Test Case Definition and Turbulence
Model Selection section defines all the geometries and parameters
related to the test case in detail. The training dataset is generated
using CFD simulations. Then, in Deep Learning Modeling and
Validation section, a seven-layer ANN algorithm is built to obtain
a non-linear mapping. Finally, uncertainty quantification is
conducted in Uncertainty Analysis section to compare the
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effect of uncertain deviation of the three major film cooling
diameters, including single hole diameter, inclination angle,
and density ratio at different blowing ratios. Conclusions are
drawn in Conclusion section.

TEST CASE DEFINITION AND
TURBULENCE MODEL SELECTION

Test Case Geometry Setups
In previous research, the density ratio, blowing ratio, inclination
angle, and diameter of the coolant tube hole are proven to have
the most significant impact on the general temperature
distribution near the external surface of the blade (24, 25). So
in this paper, those four parameters were chosen to be researched.
Given that successive combinations of several repeating units
form the actual configuration of the blades, Figure 1 shows the
three-view drawing of the minimal periodic reference model. The
mainstream chamber and the coolant chamber are modeled as
two cuboids of dimensions 39d0 × 6d0 × 5d0 and 8d0 × 6d0 ×
11.5d0, respectively. Here, d0 stands for the standard diameter of
the circular cross-section of the coolant inlet tube, and d0 =
12.5 mm. 13d0 is measured from the mainstream inlet’s front side
to the coolant tube’s central point. The coolant inlet tube is
inclined at an angle θ concerning the x-z plane. The length of the
coolant tube is 3.8d0. The mainstream inflow has a density of ρm
and velocity of Vm, and the coolant inflow has a density of ρc and
velocity of Vc. Due to the deviation of the cross-section area, this

paper guarantees that the velocity of the jet inflow right at the
coolant exit would accelerate to Vc. The flow direction of the
mainstream flow is defined as going right, and the coolant jet
flows upwards. All values mentioned above remain stationary as
referenced except for the diameter, inclination angle, density
ratio, and blowing ratio. Table 1 summarizes the deviation
interval of these four parameter inputs. These settings are the
same as other scholars’ research (19, 21, 24, 25). When one
parameter is adjusted, to keep mono-variate, other parameters
remain unchanged. This is achieved by slightly adjusting Vc and
Tc. For example, when dr is changed from 1.1 to 1.2, Vc and Tc are
adjusted to ensure that br, d, and θ are all unchanged.

Computational Assumptions and Variables
Ansys Fluent software is proven to have excellent performance in
solving cooling problems (28-30). The problem is solved by
applying steady-state solvers, which function by performing

FIGURE 1 | Schematic of the flat plate film-cooling configuration: (A) Front view; (B) Left view; (C) Top view; (D) Stereogram.

TABLE 1 | Values of the film cooling parameters used in CFD.

Cooling parameters Values

Blowing Ratio, br [0.5,1.0,1.5]
Film Cooling Diameter, d/(mm) [10.5, 11.5, 12.5, 13.5, 14.5]
Coolant Inclination Angle, θ/(degree) [15, 25, 35, 45, 55]
Density Ratio, dr [1.1, 1.2, 1.3]
Mainstream Temperature, Tm/(K) 313
Mainstream Velocity, Vm/(m/s) 20

Zhejiang University Press | Published by Frontiers March 2023 | Volume 1 | Article 111943

Wang et al. Aerospace Research Communications Film Cooling Uncertainty Analysis



several iterations until the result converges. The standard to
determine convergence is by comparing the continuity residual
with 10−4 (27). If using a machine with 56 CPU to obtain the
225 datasets, it takes approximately 675 (225 × 3) hours. The
mainstream and coolant inlet are assumed as velocity boundary
conditions, and the mainstream outlet pressure is set to be 1 atm.
Adiabatic and no-slip wall boundaries are applied for the
mainstream and coolant chamber walls. Both flows are treated
as superheated ideal gas, which follows the ideal gas law and is
incompressible for low speed. The buoyancy effect is not assumed
followingWang et al. (22, 27) and Yang et al. (26, 29). The Prandtl
number of the turbulent is set to 0.667.

The dr and br are defined as shown in Eqs 1, 2. dr is defined as
the temperature ratio at the mainstream versus the coolant jet.
ρm and ρc mean the mainstream jet gas density and coolant jet gas
density, respectively. The subscripts “m” and “c” denotes
mainstream and coolant, which remain the same for
temperature T and velocity V which are defined later.
Furthermore, the definition of br can be interpreted as the
product of dr and the velocity ratio at the coolant jet and
mainstream.

dr � ρc
ρm

� Tm

Tc
(1)

br � ρc × Vc

ρm× Vm
(2)

To avoid using a complicated high dimensional temperature
matrix to represent the cooling efficiency, T* and T* are defined in
Eqs 3, 4. T is the gauged temperature of the adiabatic and no-slip
wall, with * denoting “dimensionless”, and short bar overhead “−”
labeling “fixed-cord-averaged.” To represent the wall temperature,
the output is interpolated as a 64 × 256-dimensional matrix from
0 <z < 6d0, 13d0 <x < 39d0.

T* x, z( ) � T x, z( ) − Tc

Tm − Tc
(3)

T* x, z( ) � 1
64

∑64
1

T* x, z( )dz (4)

Besides, the film cooling effectiveness at a single point,
together with the fixed-cord-averaged and general film cooling
effectiveness are derived according to dimensionless temperature
T*, as shown below in Eqs 5–7.

η x, z( ) � Tm − T
Tm − Tc

� 1 − T* x, z( ) (5)

�η x( ) � 1
64

∑z�64
z�1

η x, z( ) (6)

ηav �
1
64

( ) ×
1
256

( ) ∑z�64
z�1

∑x�256
x�1

η x, z( ) (7)

Equation 8 defines the Mean Absolute Error (MAE), which is
the index chosen to quantify the performance of a method. In the
equations, m denotes the total sample size, ai is the training data
gained by Reynolds-Averaged Navier-Stokes (RANS) model, and

yi is the data acquired via the Large Eddy Simulation (LES)
carried out by Wang et al. (31).

MAE � 1
m
∑m
i�1

ai − yi
∣∣∣∣ ∣∣∣∣ (8)

Turbulence Model Validation
Following other studies, the Fluent ® 18.0 software is applied to all
cases (21, 31). A validation experiment is conducted on the
downstream central line’s temperature and jet velocity
distributions. This validation experiment aims to find the most
suitable turbulence model for the following ANN and uncertainty
quantification (UQ) analysis. The reference conditions are d =
d0 = 12.5 mm, θ = 35°, dr = 1.2, and br = 1.0, which follows Wang
et al.’s settings (27). The three candidate numerical methods are
the SA model, the RNG k-ε model, the SST k-ω model, the
Realizable k-εmodel, and the experimental data from Ito (32, 33)
and Sinha et al. (6) are used for comparison. The plot is shown in
Figure 2, where x denotes the x-coordinate of the coolant jet
outlet. The ratio x/d0 is set as an x-axis parameter in two plots to
realize parallel comparison under different d0 selections. The
coordinate interval researched is concentrated from 13d0 < x <
39d0, 0< z < 6d0. The data located in the region where x < 13d0 is
truncated because the constant mainstream temperature is
assumed. In Figure 2A, the central-line film cooling
effectiveness of the outer surface of the blade is computed via
four numerical methods and two sets of experimental data.
Figure 2B compares the four numerical models’ mean average
values (MAE). The results indicate that the MAEs for the SA and
Realizable k-ε models are larger than the SST k-ω and RNG k-ε
models. Furthermore, the trend of the RNG k-ε model results
matched better with the data obtained from the experiments. The
MAEs for the SST k-ω and the RNG k-ε models are 0.0106 and
0.0117, respectively. In comparison, the MAE for the Realizable
k-ε model and SA model are 0.0241 and 0.0228, respectively,
which are almost twice as large as the RNG k-ε and the SST k-ω
model. Therefore, the RNG k-ε model is utilized in this study.

Grid Independence Study
In this study, the unstructured hybrid mesh is utilized. The y+
value for the near-wall cell is 1. Moreover, the grid stretch ratio is
measured as 1.2 away from the solid wall. The grid cell number
must be determined carefully since a massive number of grid cells
raises the computational time meaninglessly, while too limited
cell number conveys limited temperature distribution
information and causes inaccuracy (34, 35). Therefore, the 2,
4.5, 6, and 7.5 million grid sizes are studied on the centerline of
the flat plate model. The result is shown in Figure 3.

When the location is right downstream of the coolant hole, the
2-million case obviously differs from 4.5, 6, and 7.5-million cases,
whereas the difference narrows as the distance increases. The
7.5 million grid cell case has the most significant fluctuation
among all, which implies that the 7.5-million case is the most
sensitive to react. This paper sets the grid cell number at a 6-
million grid size for analyzing training and validation CFD data.
Figure 4 is the mesh schematic from three views: Axonometric,
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Front, and Top. It can be observed that a more accurate mesh
resolution is located near the coolant hole.

DEEP LEARNING MODELING AND
VALIDATION

Data Preparation
Given the enormous computational amount of the CFD
method, this paper adopts ANN to reduce the
computational burden. The input is a matrix containing
coolant tube diameter, coolant tube inclination angle,
density ratio, and blowing ratio. The output is a
64 × 256-dimensional matrix, with each entry representing
the grid’s temperature at the flat plate model’s external
surface. Cooling effectiveness can thus be obtained from

this output matrix by applying Eqs 3–7. The input data are
normalized within (0, 1) before plugging into the input matrix.
In Eq. 9, each parameter with the subscript “norm” stands for
the corresponding parameter after normalization. The
learning domain is set in the rectangular region, with x and
z coordinates fulfilling 13d0<x < 39d0, 0<z < 6d0.

θnorm � θ − θ min

θ max − θ min
� θ − 15
55 − 15

� θ

40

brnorm � br − br min

br max − br min
� br − 0.5
1.5 − 0.5

� br − 0.5

dnorm � d − d min

d max − d min
� d − 10.5
14.5 − 10.5

� d − 10.5
4

drnorm � dr − dr min

dr max − dr min
� dr − 1.1
1.3 − 1.1

� dr − 1.1
1.2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

Structure of ANN
The ANNmodel is utilized to build the non-linear relationship
between four flat plate configuration inputs, and the output
temperature distribution matrix near the flat plate surface. The
ANNmodel has seven layers in total, including one input layer,
five hidden layers and one output layer. The first layer contains
the four input parameters clarified above, and the information
is propagated forward to the next layer through weighting,
biasing, and activation (29). The activation of the first six
layers is accomplished by applying the “Rectified Linear Unit”
(ReLU) to intensify the non-linear regression before the output
layer. A sigmoid function accomplishes the activation of the
output layer.

Equation 10 shows the forward propagation process in the first
six layers, where the weight matrix and bias matrix are denoted
usingW and b, respectively. The yh denotes the output of the 2nd,
3rd, 4th, 5th, and 6th layers. Equation 11 shows the forward
propagation in the output layer. The yout stands for the output
layer. In the output layer, final weighting and biasing are
implemented. Then the result will be plugged into a sigmoid

FIGURE 2 | Comparison between model validation: (A) Dimensionless temperature comparison between models on center line results; (B) MAE comparison
between models.

FIGURE 3 | Centerline dimensionless temperature with 2, 4.5, 6, and
7.5 million grid cells.
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function to generate the predicted temperature distribution as the
output value.

Batch normalization and dropout are implemented in the five
hidden layers to enhance learning and avoid the neural network
collapsing by big data. Mean square error (MSE) is deployed as a
loss function to assess the difference between predicted
temperature T and the CFD simulated value P, as shown in
Eq. 12. The dropout is set to 0.1 in case of overfitting. The

regression starts from 4 neurons and then multiplies until
256 neurons in the output layer. Figure 5 graphically
illustrates the regression process. 45,176 parameters in total
are yet to be defined.

ReLU x( ) � 0, x < 0
x, x ≥ 0

{
yh � ReLU Wx + b( )

⎧⎪⎨⎪⎩ (10)

FIGURE 4 | Mesh schematic with enlarged part.

FIGURE 5 | Structure of the 7-layer ANN model.
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σ x( ) � 1
e−x + 1

yout � σ Wx + b( )

⎧⎪⎨⎪⎩ (11)

MSE � T − P| |2 (12)

Training and Validation
In the training process, the learning rate is one of the most
significant hyperparameters that needs to be determined when
applying ANN (36, 37). In this study, the learning rate is set to
0.01, and it is reset to 10% of its former value after every
1,000 epochs to keep convergence. The MSE is used to be the
error index to evaluate whether the convergence of the model is
accomplished. Figure 6 shows that as the number of epochs
increases, the MSE value converges. There is a noticeable
fluctuation before the epoch reaches around 500. However,
with the continuous growth of epochs, the value of MSE and
the fluctuation keep falling.

According to the result, the 0.01 learning rate and reduction to
10% of its last value every 1,000 epochs is a good choice. Quoted
error (QE) is proposed in Eq. 13 to measure the ANN model’s
absolute error. QE also serves as an index to help find the optimal
hyperparameter settings. In the expression of QE, T is the
temperature derived from CFD simulation, and P is the
predicted temperature result at the final layer of the ANN.
η *
min is a fixed number 0, and the upper bound of η *

max is 1.
The result is scaled to a hundred percent of the corresponding QE
value.

QE � T − P| |
η *

max − η *
min( ) × 100% (13)

The ANN model uses QE to find the optimized
hyperparameter settings containing splitting ratio, dropout,
and batch size. The splitting ratio is acquired by dividing the
amount of validation dataset by the whole dataset. A higher
splitting ratio means a relatively lower portion of data is utilized

in the training process. Thus, a balance in training and validation
must be determined to achieve better prediction efficiency and
accuracy. An experiment aiming at finding the optimal splitting
ratio is conducted, and the result is shown in Figure 7A. The QE
value of the case with splitting ratio = 0.2 is the highest compared
with the situations whose splitting ratios are 0.1 and 0.3, which
indicates that there is no simple proportional relationship
between the magnitude of the error and the magnitude of
splitting ratio. Besides, it is found that the QE value of the
validation dataset is always higher than the training dataset by
the ANN algorithm, regardless of which splitting ratio is chosen.
Results show that a splitting ratio of 0.3 is believed to be the best
among the three splitting ratios researched.

Similar experiments are designed for dropout and batch size.
Figure 7B is the result of finding the ideal dropout. There is an
apparent disparity between the case where the dropout is
0.1 compared to cases with 0.2 and 0.3 dropouts. The QE for
the training dataset with 0.1 dropout is 0.31%, and the QE for the
validation dataset with 0.1 dropouts is 0.33%. The QEs for the
other two cases vary from 0.52% to 0.55%, which are much larger
than those with a dropout of 0.1. This proves that the case with a
dropout of 0.1 has the least error between the predicted
temperature and the simulated value.

For Batch size, three different batch sizes are studied, and
Figure 7C plots the result. The QE values of three different batch
sizes are all located at [0.31%,0.38%], which implies that the batch
size does not serve as a significant parameter with a considerable
influence on the output in the ANN model. In the case with
32 batch size, the MSEs for the validation and training datasets
are 0.33% and 0.31%, respectively. Therefore, the optimal batch
size of 32 is chosen. For learning rate, as shown in Figure 7D, it is
easily found that the varied learning rate could provide the best
performance over the fixed learning rate such as 0.01, 0.001, and
0.0001. In all, the optimal hyperparameters are: dropout = 0.1,
batch size = 32, splitting ratio = 0.3, and a varied learning rate.

Moreover, the structure of the ANN has been investigated to
obtain the best performance. With these optimal parameters, the
number of layers is determined to be 7 and the modes are
determined according to the symmetry aiming for best
training results. The information of different layers and nodes
selection is shown in Table 2 below. We chose 2, 3, 4, 7, and
9 layers because under these cases, the nodes arrangements are
symmetric from 4 nodes to 256 nodes. In the experiment, we find
that when the layer number comes to 7, the quoted error value
(QE) reaches its minimum. However, we find that the quoted
value of the 9-layer case increases, which is because too much
layer increases the number of parameters and the iteration error.
In the process of training, it is also reasonable in practice that
some parameters are lost. After comparison, we find that the QE
value of the 7-layer case is quite acceptable, so we consider
7 layers as the best layer number choice.

To further visualize the prediction accuracy using the designed
ANN model, the fixed-cord-averaged film cooling effectiveness
achieved by the ANN and CFD method simulation are compared
for training and validation datasets. Six cases with diverse input
parameter sets containing θ, d, dr, and br are randomly selected.
The fixed-cord-averaged film cooling effectiveness on the upper

FIGURE 6 | Loss of the ANN model.
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surface of the turbine blade under six different cases are shown in
Figure 8. All the six plots in Figure 8 are about the fixed-cord-
averaged cooling effectiveness results. The blue dotted lines in the
plots represent the CFD cooling results, while the red line
indicates the ANN results.

Figure 8A is for training datasets, and Figure 8B is for
validation datasets. The result shows that the temperatures
predicted using the ANN model for the training and
validation datasets almost overlap with the temperatures
obtained from CDF simulation. For example, in the case
where d = 10.5 mm, θ =15 °, dr = 0.3, br = 0.5, the fixed-cord-

averaged cooling effectiveness derived by CFD is 0.108 when x/d0
is positive zero, compared with the result derived by the ANN
model of 0.130. While x/d0 increases up to 15, the two curves
almost overlap, and the error is negligible. After x/d0 goes beyond
15, the error expands to its maximum value of 4.28%, where x/d0
equals 17.4. Then, as x/d0 keeps increasing, the error minimizes
continuously. At the back end of the research region, the error is
close to zero again. For fixed-cord-averaged film cooling
effectiveness, the QE for training datasets is 0.29%, while for
the validation dataset it is 0.32%. Conclusion can be drawn that
even though fluctuation still occurs inevitably, the regression

FIGURE 7 | QE values under different hyperparameters setups: (A) Splitting ratio; (B) Dropout; (C) Batch size; (D) Learning rate.

TABLE 2 | Layers and nodes information and corresponding QE values.

Number of layers Nodes details QE for training group (%) QE for validation group (%)

2 4-256 0.91 0.96
3 4-128-256 0.35 0.40
4 4-16-64-256 0.32 0.36
7 4-8-16-32-64-128-256 0.31 0.33
9 4-8-16-16-32-64-64-128-256 0.34 0.45
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performance of the ANN model in fixed-cord-averaged film
cooling effectiveness is delighted under all randomly selected
cases.

Besides the fixed-cord-averaged cooling effectiveness, the
general cooling effectiveness is also studied to enhance the
above conclusion. Figure 9 compares the overall film cooling
effectiveness from CFD and ANN methods downstream the
coolant hole. The relationship between general film cooling
effectiveness and computation numbers is plotted in Figure 9.
225 (3 × 5 × 5 × 3) cases of 0.3 splitting ratio are included, which

means that Figure 9A includes the 156 training data, Figure 9B
includes the 69 validation data. And they are ranked according to
the magnitude of their general film cooling effectiveness to exhibit
the results in a visual-friendly way. We labeled each data point
using Computation No. from 1 to 156 and from 1 to 69 as shown
on the horizontal axis. So, two lines are both discrete lines. Even
though it is inevitable for the ANN and CFD results to have
differences because the ANN’s training data are derived from
CFD. The results show that the general film cooling effectiveness
derived from the ANNmodel is accurate enough for both training

FIGURE 8 | Fixed-cord-averaged cooling effectiveness results comparison by the ANN and CFD model; (A) Training datasets; (B) Validation datasets.

FIGURE 9 | General results comparison by the ANN and CFD model; (A) Training datasets; (B) Validation datasets.
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and validation data, regardless of the computation number. For
general film cooling effectiveness, the QE for training datasets is
0.35%, while for the validation dataset, it is 0.30%.

UNCERTAINTY ANALYSIS

Monte Carlo Simulation and Sample Size
As the designing and manufacturing processes are deterministic,
the variety of structures is usually not considered. For products
with simple designs, the function could be achieved. However, the
performance of sophisticated appliances such as gas turbines
could vary significantly due to the uncertain deviation of their
parameters. The best way to analyze and reduce unexpected
uncertainty is to conduct an uncertainty quantification analysis
of all related parameters (38, 39). In this paper, the parameters
studied are d, θ, dr, and br.

Monte Carlo (MC) simulation is an extensively utilized
technique to quantify the engineering field’s uncertainty
among various kinds of uncertainty quantification methods
(40). MC simulation conducts statistical analysis to sample
datasets obtained by repeated random sampling (41). MC
simulation shows excellent advantage in mathematics and
engineering due to its concise methodology, broad
application domain, and various software choices (38). The
mean and standard deviation of the mean squared pure error
(MSPE), namely MSPEμ andMSPEσ are studied instead to
impair its harmful effect. The random samples are generated
in the following way: Firstly, a sample vector �x is formed from
the normalized training dataset, which is �x = (d, θ, dr, br), and
each entity is normalized with a value ranging from 0 to
1 according to Eq. 9. Secondly, enough sample vectors �x are
generated in the same way and are arranged to form a
distribution X for the following MC simulation. The
sample size is defined as the number of sample vectors in
each distribution. Therefore, parallel experiments are
conducted, and the MSPE is proposed to quantify how

well the MC simulation behaves. The mean and the
standard of MSPE are defined in Eq. 14. The experiment
results are shown in Figure 10. It can be observed that even
though the MSPEσ andMSPEμ almost remain at a steady
level, when the sample size is below 10,000, the fluctuation of
bothMSPEσ andMSPEμ are very large, which represents that
a sample size smaller than 10,000 is not suitable for MC
simulation. As the sample size increases, however, the
undulations of both the mean and the standard deviation
narrow and remain stable continuously. Therefore, 10,000 is
chosen as the optimal sample size for this research.

yavg � ∑n
i�1yi

n

MSPEσ �
��������������������
1

n − 1
× ∑n

i�1 yi − yavg( )2√
MSPEμ � 1

n − 1
∑n

i�1 yi − yavg( )2
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Sensitivity Analysis by Sobol Method
After the parameter distribution is settled, the Sobol method is
utilized to investigate how the sensitivity of br, d, θ influences
the film cooling effectiveness under three different values of dr.
The Sobol method shows excellent performance in the
sensitivity analysis (42, 43). The sample vector x is firstly
transferred into the uncertainty input vector {X1, X2, X3 },
where X1, X2, and X3 denote coolant hole diameter, inclination
angle, and density ratio, respectively. A functional mapping
Y = f(X) is constructed to represent the relation between X and
Y, where Y is the general film cooling effectiveness, ηav, defined
in Eq. 7.

Sobol indices are defined in Eq. 15, where Si and STi are the first
and total-effect variance-based Sobol indices, respectively. The Sobol
index is used to quantify the sensitivity of a parameter. The larger the
Sobol index is, the more significant impact its corresponding
parameter has. Xi is the input parameter among the uncertainty

FIGURE 10 | MSPE values for MC for diverse sample size: (A) Mean of MSPE (B) Standard deviation of MSPE.
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input set {X1, X2, X3 }, X~i denotes the set of all the input variables but
Xi. By applying uncertainty deviation to each of the four-parameter
sets, Y is affected to vary accordingly. Hence, the variances of Y
under diverse scenarios are defined in Eq. 16.

Si � 1
Cov Y,Y( ) × CovXi EX~ 1 Y|Xi( ), EX~ 1 Y|Xi( )( )

STi � Cov Y, Y( ) − CovXi EX~ i Y|Xi( ), EX~ i Y|Xi( )( )
Cov Y, Y( )

⎧⎪⎪⎨⎪⎪⎩ (15)

FIGURE 11 | Sodol Indices for d, θ, dr at (A) br = 0.5; (B) br = 1.0; (C) br = 1.5.

Zhejiang University Press | Published by Frontiers March 2023 | Volume 1 | Article 1119411

Wang et al. Aerospace Research Communications Film Cooling Uncertainty Analysis



Vi � CovXi EX~ i Y|Xi( ), EX~ i Y|Xi( )( )
Vij � Cov EX~ ij Y

∣∣∣∣Xi,Xj( ), EX~ ij Y
∣∣∣∣Xi,Xj( )( ) − Vi − Vj

Cov Y, Y( ) � ∑n
i�1
Vi +∑n

i< j

Vij + V1,2,...,n

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (16)

In addition to Si and STi, the temperature distribution near the
blade also needs attention. If the blade surface is well covered by
the cooling jet, its life span and reliability could be extended and
increased heavily. To set up computation, the Probability
Distribution Function (PDF) is introduced to represent the
distribution of cooling effectiveness of every grid point on the
flat surface of the turbine blade. The PDF are defined in Eq. 17.
Where y denotes the general film cooling effectiveness predicted
by the ANN model, μ and σ is the mean value and standard
deviation of the y.

PDF y( ) � 1
σ

���
2π

√ e−
y−μ( )2
2σ2

μ � 1
n
∑n
i�1
yi

σ �
�����������
1
n
∑n
i�1

yi − μ( )2√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

Test Case Definition and Turbulence Model
Selection
By applying the uncertainty Sobol method to represent the three
geometric parameters at blowing ratios of [0.5, 1.0, 1.5], the
results of experiments are plotted in Figures 11A–C.

Figure 11A shows that at the low blowing ratio, the coolant
hole diameter d has the largest value for both the Si and STi. It
means that among the three geometric parameters, the deviation
of coolant hole diameter has the largest uncertainty influence on
the global film cooling effectiveness at a low blowing ratio.
Followed by the hole diameter is the coolant jet inclination
angle. Regardless of Si or STi, the uncertainty Sobol indices are
both around 35%. The deviation of the density ratio is the weakest
of all three parameters, the Sobol indices of which are less than
2%. In all, when the blowing ratio is set to 0.5, the trends of Si and
STi for d and dr show high similarity. d is the dominant index
which composites nearly 64%, θ yields around 35%, and dr has
the most minimal effect on the uncertainty result.

For the medium-blowing ratio of 1.0, the order of the impact
of the three geometric parameters changes utterly. Figure 11B
shows that the difference between the Si and the STi is tiny. Still,
the θ affects the result far more than the other two parameters.
The Si and STi of θ both exceed 80%, which are approximately
eight and fifteen times more than those of d and dr. It can be
concluded that when the br is 1.0, the uncertain deviation of θ has
the most significant impact on the general film cooling
effectiveness.

Figure 11C indicates that for a large blowing ratio of 1.5, the
corresponding result can be interpreted as a magnified one of a
blowing ratio of 1.0. The coolant hole inclination angle is still the

primary parameter, but its Sobol index is furthermore prominent
than the medium-blowing ratio case. This time, the first-order
and overall Sobol indices for θ outstrip 95%. Compared with the
Sobol indices under the medium blowing ratio br, the hole
diameter d and density ratio dr, which are all less than 3%,
show negligible influence on the general cooling effectiveness.
Moreover, it is found that when the blowing ratio increases, the Si
and STi for all parameters increase accordingly.

In the gas turbine application, in a low blowing ratio case, both
the coolant hole diameter and inclination angle significantly
impact cooling effectiveness. However, the uncertain deviation
of coolant hole diameter has a more significant effect. As for a
high blowing ratio, usually more than 1.5, the coolant hole
inclination angle needs special attention. In medium and high
blowing ratio cases, the coolant inclination angle dominates the
results, and its dominant effect increases as the blowing ratio
increases, in all three cases. The trends of the first-order and the
total-effect index are very similar. Thus, the same conclusion can
be drawn.

Figure 12 shows the flow field of the flat plane. Since there are
up to 225 cases in total, a reference case for the flow field example
is defined with the following parameters: d = 14.0 mm, θ = 40+,
dr = 1.2, br = 0.5. Figure 12A is the top view. It can be found that
the flow field is highly symmetric on the top surface, and the
green region is the widest temperature region, which occupies
more than half the length of the region downstream of the
confluence on the centerline. Moreover, the lateral diffusion is
not evident since the width of the coolant stream keeps nearly
equal to the hole diameter. Figure 12B is the front view of the
flow field. It is detectable that right downstream the coolant hole,
a reverse vortex pair is generated that drives the coolant jet away
from the blade. A portion of the coolant on the top blends into the
mainstream. The flow field shows that as the two jets move
forward, the convergence of the two streams becomes more
pronounced. Thus it is true that the coolant jet performs well
only at a limited distance downstream of the confluence point.
The reference case has a blowing ratio of less than 1, which means
that the mainstream moves faster than the coolant jet, so
Figure 12C indicates in the cross-section view that the general
effect of gas motion is moving from the coolant jet to the hot
mainstream. This leads to the coolant jet’s diffusion and thus
significantly impairs the cooling effectiveness. While in the cross-
section view, we can also find that the coolant jet, which stays near
the surface of the turbine blade, is rotating in a closed loop, that
ensures that coolant is not lifted away from the blade, and
achieves better cooling effectiveness at the surface layer of the
blades.

During the experiment and analysis, it is found that under the
small blowing ratio case of br = 0.5, the coolant hole diameter d
has more impact sensitivity on the general film cooling
effectiveness, compared with the coolant inclination angle.
However, under a larger blowing ratio of 1.0, the coolant
inclination angle has more effect than hole diameter. To
further explain the flow physics that account for this result,
the flow field of the cases under low and high blowing ratios,
including d = 10.5 mm and 11.5 mm, coolant inclination angles of
20° and 30°, and in both x-z and y-z direction are compared and
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analyzed. From a top view, by comparing Figures 13A,B and
Figures 13A,C, we find that the low-temperature region at the
center of the coolant hole expands to a larger degree under the
influence of diameter change. This discovery implies that under a

small blowing ratio of br = 0.5, the change in cooling effectiveness
due to diameter change is larger than the change due to
inclination angle. As for the case where the blowing ratio is as
large as br = 1.0, Figures 13D,E and Figures 13D,F shows that

FIGURE 12 | Details of flow fields under different views: (A) X-Z; (B) X-Y; (C) Y-Z.

FIGURE 13 |Comparison of the top-view flow behavior at y/d = 0 in x-z plane. (A) br = 0.5, d = 10.5 mm, θ = 20°; (B) br = 0.5, d = 11.5 mm, θ = 20°; (C) br = 0.5, d =
10.5 mm, θ = 30°; (D) br = 1.0, d = 10.5 mm, θ = 20°; (E) br = 1.0, d = 11.5 mm, θ = 20°; (F) br = 1.0, d = 10.5 mm, θ = 30°.
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the influence of the inclination angle is larger than the influence
of the diameter, because the coolant flow in (F) shrinks
dramatically, while the ones in (D) and (E) are similar to each
other. Figure 14 shows the cross-section view of the same 6 cases
in Figure 13. When the blowing ratio is low, the difference of
width of the CVP between Figures 14A,B is larger than the
difference between Figure 14A,C; whereas, under a large blowing
ratio, the coolant CVP is lifted to a larger degree in the case of
increasing the angle instead of increasing thecoolant hole
diameter. As shown in Figure 14F, the height of the CVP
center climbs higher under the influence of the inclination
angle compared with Figure 14E. Furthermore, the CVP is
rotating upward, which results in the additional lifting of the
coolant flow at the location of x/d = 19. This impairs the cooling
effectiveness as well.

In addition to utilizing Sobol indices on behalf of the
sensitivity, the control variate method is deployed to further
research the individual effect of the three independent geometric
parameters on the general effectiveness of cooling under three
different blowing ratios in terms of the probability
distribution(44). The reference values for d, θ, and dr are

12.5 mm, 35°, and 1.2 respectively. While varying one of the
three, the others are set as the value in the reference case to
achieve uniformity. Figure 15 shows the probability distribution
of general cooling effectiveness at different blowing ratios. The
four subplots study the three single-parameter effects and the
combined effect.

As shown in Figure 15A, the PDF distribution of the
coolant hole diameter is studied. When the blowing ratio is
0.5, the 95% confidence interval due to hole diameter is [0.070,
0.113]. However, those for blowing ratios of 1.0 and 1.5 are
[0.030, 0.049] and [0.014, 0.017], respectively. The
corresponding interval length for the three blowing ratios
are 0.043, 0.019, and 0.003, respectively. The result shows
that as br is increasing, the 95% confidence interval due to hole
diameter narrows rapidly, almost halving each time, and the
mean of general cooling effectiveness decreases continuously,
indicating that the uncertainty caused by hole diameter
decreases.

For the hole inclination angle, as shown in Figure 15B, when
the br increases, the uncertainty effect maintains a high level due
to the hole inclination angle. The confidence intervals remain

FIGURE 14 |Comparison of the side-view flow behavior at x/d = 16 in y-z plane. (A) br = 0.5, d = 10.5 mm, θ = 20°; (B) br = 0.5, d = 11.5 mm, θ = 20°; (C) br = 0.5,
d = 10.5 mm, θ = 30°; (D) br = 1.0, d = 10.5 mm, θ = 20°; (E) br = 1.0, d = 11.5 mm, θ = 20°; (F) br = 1.0, d = 10.5 mm, θ = 30°.
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wide for all low, medium, and high blowing ratios. This is
different from the case for hole diameter. With the increase of
br, the range of variation of general film cooling effectiveness of
inclination angle decreases from 0.030, 0.029 to 0.023 after simple
calculation. It can be concluded that with the increasing of the
blowing ratio, the uncertainty caused by the inclination angle θ
reduces, but with a lower decreasing speed than the hole diameter.

Figure 15C shows that the magnitude of the length of the
confidence interval of the density ratio is the smallest among all
parameters. However, the PDF value of the density ratio is the

highest, the minimum value of which still exceeds 160 in the case
of the br = 1.0.

The uncertainty of the combined effect decreases as br
rises, and the combined effect is more prominent than all
three single effects. In Figure 15D, for example, the 95%
confidence intervals are [0.062, 0.112], [0.023, 0.058], [0.004,
0.027], and the interval lengths are 0.060, 0.035, and 0.023,
respectively. Compared with the single effect caused by the
inclination angle θ, the interval length of the combination
becomes wider.

FIGURE 15 | PDF distribution of general film cooling effectiveness at three blowing ratios: (A) d; (B) θ; (C) dr; (D) Combined effect.
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CONCLUSION

This study aims to improve the gas turbine performance by
strengthening the film cooling effectiveness, especially by
focusing on the uncertainty of the three significant parameters,
including single hole diameter, density ratio, and inclination angle,
on the film cooling effectiveness under low, medium, and high
blowing ratios. The uncertainty analysis was conducted using a
deep-learning-based ANN model and uncertainty quantification
method. Firstly, all related indices and research regions are defined
at the beginning. Due to its best performance, the six-million grid
size and the RNG k-ε model are chosen for the turbulence model.
Secondly, a high-performance ANNmodel is delicately constructed
for training and to seek the non-linear correlation between the
parameter input and the cooling effectiveness output. CFD provides
training and validation datasets. Finally, the sensitivity of three
parameters is quantified, and uncertainty quantification is
conducted to quantify the single and combined effect of the
uncertainty of these three parameters on the general cooling
effectiveness. The following conclusions are drawn.

1. After careful hyperparameter selection and training, the ANN
model built in this study shows excellent performance in
predicting the general and fixed-cord-averaged film cooling
effectiveness according to input parameters compared with
the data simulated by the CFD method. The QE value for
fixed-cord-averaged film cooling effectiveness in training and
validation datasets are 0.29% and 0.32%. The QE value for
general film cooling effectiveness in training and validation
datasets are 0.35% and 0.30%.

2. The Sobolmethod based onMC simulation shows that at a small
blowing ratio, the coolant tube’s diameter and inclination angle
are two main factors to the cooling effectiveness, and the former
has amore dominant effect. Atmedium and large blowing ratios,
the inclination angle is the only leading factor to the film cooling
effectiveness. Furthermore, the maximum effect of the
inclination angle increases as the blowing ratio grows.

3. Uncertainty quantification reveals that the uncertainty of hole
diameter, inclination angle, and density ratio all decrease as
the blowing ratio rises. Moreover, the combined effect shows a
higher impact on the general cooling effectiveness than any
single effect. Within three parameters, the variation of the
uncertainty interval of the hole diameter at three blowing
ratios is the most obvious. Furthermore, the inclination angle θ
has the most extensive uncertain influence on the general film
cooling effectiveness among the three single parameters
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NOMENCLATURE

d film cooling diameter

d0 standard Value of d

θ coolant tube inclination angle

br coolant-to-mainstream blowing ratio

dr coolant-to-mainstream density ratio

ρc density of coolant jet

ρm density of mainstream jet

Vc velocity of coolant jet

Vm velocity of mainstream jet

T gauged temperature

Tc temperature of coolant jet

Tm temperature of mainstream jet

T* dimensionless temperature

T* fixed-cord-averaged T*

η film cooling effectiveness

�η fixed-cord-averaged η

ηav general film cooling effectiveness

MSE mean square error

QE quoted error

Si first-order sensitive index

STi total-effect sensitive index

MSPE mean squared pure error

MSPEσ standard deviation of MSPE

MSPEμ mean of the MSPE

μ mean

σ standard deviation

PDF probability distribution function
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