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The ability to manipulate fluids has always been one of the focuses of scientific research
and engineering application. The rapid development of machine learning technology
provides a new perspective and method for active flow control. This review presents
recent progress in combining reinforcement learning with high-dimensional, non-linear,
and time-delay physical information. Compared with model-based closed-loop control
methods, deep reinforcement learning (DRL) avoids modeling the complex flow system
and effectively provides an intelligent end-to-end policy exploration paradigm. At the same
time, there is no denying that obstacles still exist on the way to practical application. We
have listed some challenges and corresponding advanced solutions. This review is
expected to offer a deeper insight into the current state of DRL-based active flow
control within fluid mechanics and inspires more non-traditional thinking for engineering.
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INTRODUCTION

Despite many successful research efforts in the past decades, modifying the dynamics of flows to
induce and enforce desired behavior remains an open scientific problem. In many industrial fields,
researchers have placed great expectations on flow control techniques for engineering goals [1–3],
such as drag reduction, noise suppression, mixing enhancement, energy harvesting. Due to the
aggravation of carbon emissions and the greenhouse effect, controlling transportation drag or
aerodynamic lift has become increasingly imperative.

Driven by the urgent demand from industry, active flow control (AFC) is being developed rapidly
to harvest benefits for aviation or marine. As shown in Figure 1, Boeing and NASA tested a
pneumatic sweeping-jet-based active flow control system on the vertical tail of the modified
Boeing 757 ecoDemonstrator in April 2015. Active flow control was used to enhance the control
authority of the rudder by mitigating flow separation on it at high rudder deflection, and side
slip angles, which provided the required level of rudder control authority from a physically
smaller vertical tail [4]. Whether using fluidic [5], micro blowing [6] or plasma actuators [7],
the critical problem of active flow control is to design a reasonable control policy. The
predetermined open-loop manner is the most straightforward choice. Still, the external
actuation might be invalid if the evolution deviates from expectations and there are no
corrective feedback mechanisms to modify the policy to compensate [8, 9]. A practical
alternative is to adopt the closed-loop control manner [10–12], where the response is
continuous compared with the desired result. Specifically, the control output to the process
is informed by the sensors recording the flow information, then modified and adjusted to
reduce the deviation, thus forcing the response to follow the reference.
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In both ways, extensive work has been carried out by
numerical simulations and experiments on exploring the
nonlinear dynamics and underlying physical mechanisms of
the controlled system with effective control law. For example,
Xu et al. [13] investigated the separation control mechanism of a
Co-flowWall Jet, which utilized an upstream tangential injection
and downstream streamwise suction simultaneously to achieve
zero net-mass-flux flow control. It was found that the Co-flow
wall Jet had a mechanism to grow its control capability with the
increasing adverse pressure gradient. Sato et al. [14] conducted
large-eddy simulations to study the separated flow control
mechanism by a dielectric barrier discharge plasma actuator.
From flow analysis, it was seen that an earlier and smoother
transition case showed more significant improvements in the lift
and drag coefficients. Moreover, the lift coefficient was improved
since the actuation induced a large-scale vortex-shedding
phenomenon.

While in many engineering applications, traditional large-
scale physics-based models are intractable since it is required
to evaluate the model to provide analysis rapidly and prediction
[15–17]. The model reduction offers a mathematical foundation
for accelerating physics-based computational models [18–20].
Alternatively, the model-free approach does not rely on any
underlying model description of inputs to outputs. A

significant advantage of a model-free manner in flow control
is that it can avoid detailed identification of high-dimensional and
nonlinear flow attractors, which would even shift during the
regime. Moreover, with the development of machine learning
techniques, it is possible to gain massive data. The control policy
must grasp the embedded evolution rules and form data-driven
logic. Namely, these model-free algorithms can simulate, extend
and expand human intelligence to some degree.

As a critical branch of artificial intelligence, deep
reinforcement learning (DRL) simplifies a stochastic dynamical
system by using the framework of the Markov decision process
(MDP) [22, 23]. DRL algorithms can explore and adjust control
policies by interacting with the environment like a child, which
gets a penalty when making mistakes. In a continuous process of
trial and error, the control law in DRL learns how to get sweet
lollipops (high reward) and avoid penalties. Besides, DRL utilizes
the artificial neural network(ANN) as a function approximator
[24]. Based on the such setting, the DRL is embedded as a state
representation technology, which makes it possible to deal with
high-dimensional complex problems, like Go, StarCraft, Robotics
[21, 25–27]. As shown in Figure 2, Vinyals et al. [21] adopts a
multi-agent reinforcement learning algorithm to train an agent
named AlphaStar, in the full game of StarCraft II, through a series
of online games against a human player. AlphaStar was rated at

FIGURE 1 | A kind of flight-test AFC (Active Flow Control) system layout with photographs of hardware as installed [4].
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Grandmaster level for all three StarCraft races and above 99.8% of
officially ranked human players. Similarly, DRL has highlighted
its strong potential in fluid dynamics applications, including drag
reduction, collective swimming, and flight control. Many
excellent pioneers have reviewed the work related to the
application of reinforcement learning in active flow control
[28–32]. The present paper will further review the latest
developments and demonstrate some challenges to
constructing robust and effective DRL-based active flow policies.

What needs to be mentioned is that there are many other
algorithms still active on the stage that achieve great performance
and have more potentials to exploit as well, such as a gradient-
enriched machine learning control [33], Bayesian optimization
control [34], RBF-NN adaptive control [35], ROM-based control
[36]. In some work, reinforcement learning has also been
compared with some algorithms, such as Bayesian
optimization [37], genetic programming [38, 39], Lipschitz
global optimization [39], etc. In particular, genetic
programming algorithms, closely related to reinforcement
learning, can achieve optimal decisions under the condition of
an unknown model as well. Although the randomness of
exploration brings low efficiency, evolutionary algorithms such
as genetic programming are very popular in some problems like
multi-objective optimization and global optimization [40, 41].
Not only in the field of flow control but algorithms combining
evolutionary algorithms and reinforcement learning have also
always been expected [42, 43]. For brevity, detailed comparison

and discussion about the above model-free algorithms are not
considered in this review, readers can refer to these papers
[29, 39].

The rest of this review is organized as follows: Section Deep
Reinforcement Learning presents some basic concepts and
algorithms of DRL. Section Applications of DRL-based Active
Flow Control offers the application of DRL on fluids problems,
and Section Challenges on DRL-Based Active Flow Control shows
some innovations and solutions to fluids problems to make DRL-
based active flow control more effective. Finally, a summary and
potential directions of DRL-based active flow control are drawn
in Section Conclusion.

DEEP REINFORCEMENT LEARNING

This section introduces some basics concepts of typical
reinforcement learning framework, and popular deep
reinforcement learning algorithms, such as proximal policy
optimization (PPO) [44] and soft actor-critic (SAC) [45]. First,
the general terms and concepts are presented in Section Markov
Decision Process. The optimization methods of reinforcement
learning for policies are generally divided into Section Value-
Based Methods and Section Policy-Based Methods. Either of the
two methods has the ability to find the optimal control strategy.
Still, their respective shortcomings must be addressed, like a
relatively large gradient variance in policy method, etc. [46].

FIGURE 2 |Grandmaster level in StarCraft II using multi-agent reinforcement learning. The agent observes the game through an overviewmap and a list of units. To
act, the agent outputs what action type to issue (for example, build), who it is applied to, where its objectives are, and when the next action will be issued [21].
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The actor-critic method discussed in Section Actor-Critic
Methods, aims to combine the advantages of both ways and
search for optimal policies using low-variance gradient
estimates, which has been one of the most popular
frameworks in reinforcement learning. Furthermore, two
advanced deep reinforcement learning algorithms on the
actor-critic framework are detailed in Section Advanced Deep
Reinforcement Learning Algorithms.

Markov Decision Process
Reinforcement learning solves problems modeled as Markov
decision processes (MDPs) [47]. The system state s, action a,
reward r, time t, and reward discount factor γ are the basic
concepts of MDPs. Under the intervention of action a, the system
state s is transferred with a reward r. Reward r defines the
goodness of action, and this transition is only related to action
a and current state s, which refers to the memoryless property of a
stochastic process. Mathematically, it means

p st+1|st, at, st−1, at−1, . . . , s0, a0( ) � p st+1|st, at( ), (1)
p rt|st, at, st−1, at−1, . . . , s0, a0( ) � p rt|st, at( ). (2)

Markov property helps simplify complex stochastic dynamics
that are difficult to model in practice. The role of reinforcement
learning is to search for an optimal policy telling which action to
take in such an MDP. Specifically, the policy maps from state s
and action a to the action probability distribution π, as at ~ π(·|st).
In the discounted reward setting, the cost function J is equal to the
expected value of the discounted sum of rewards for a given policy
π; this sum is also called the expected cumulative reward

J π( ) � Eτ~π ∑∞
t�0

γtrt⎡⎣ ⎤⎦. (3)

where the trajectory τ = (s0, a0, r0, s1, a1, r1, s2, / ) is highly
correlated to the policy π. And γ ~ [0, 1) denotes the reward
discount factor.

Over time, several RL algorithms have been introduced to
search for an optimal policy with the greatest expected cumulative
reward. They are divided into three groups [47]: actor-only,
critic-only, and actor-critic methods, where the words actor

and critic are synonyms for the policy and value function
(policy-based and value-based), respectively. These algorithms
are detailed in the following sections.

The Markov decision process can also be seen as a continuous
interaction between the agent and the environment. The agent is a
decision-maker that can sense the system state, maintain policies,
and execute actions. Everything outside of the agent is regarded as
the environment, including system state transition and action
scoring [48], as shown in Figure 3. During the interaction, the
agent dynamically adjusts the policy to learn behaviors with the
most rewards.

Value-Based Methods
The value-based methods, such as Q-learning [49], SARSA [50],
focus on the estimation of state value Vπ or state-action value Qπ

under the specified policy π, defined as:

Vπ s( ) � Eat~π ·|st( ) ∑∞
t�0

γtrt st, at( )|s0 � s⎡⎣ ⎤⎦, (4)

or

Qπ s, a( ) � Eat~π ·|st( ) ∑∞
t�0

γtrt st, at( )|s0 � s, a0 � a⎡⎣ ⎤⎦. (5)

As its name suggests, it represents the ”value” of a state or
state-action, which is mathematically the expected value of the
discounted sum of rewards with initial state s or initial state-
action s − a for a given policy π. The state value Vπ(st) depends on
the state st and assumes that the policy π is followed starting from
this state. And the state-action value Qπ(s, a) has specified
additional action at, and the future selection of actions is
under policy π.

According to the Markov property of the decision-making
process, the Bellman equation, a set of linear equations, is
proposed to describe the relationship among values of all states:

Vπ s( ) � Ea~π ·|s( ),s′~p ·|s,a( ) r s, a( ) + γVπ s′( )[ ]. (6)
where p represents the system dynamic. The values of states rely
on the values of some other states or themselves, which is related
to an important concept called bootstrapping.

Since state values can be used to evaluate policies, they can also
define optimal policies. If V(π1) > V(π2), π1 is said better than π2.
Furthermore, if a policy is better than all the other possible
policies in all states, then this policy is optimal. Optimality for
state value function is governed by the Bellman optimality
equation (BOE)

V* s( ) � max
π

Ea~π,s′~p ·|s,a( ) r s, a( ) + γV* s′( )[ ]. (7)

It is a nonlinear equation with a nice contraction property, and
the contraction mapping theorem is applied to prove its
convergence. The solution to the BOE always exists as the
unique optimal state value, which is the greatest state value
that can be achieved by any initial policy [47].

Similarly, the Bellman equation and Bellman optimality
equation have expressions in terms of state-action values as

FIGURE 3 | The Markov decision process of reinforcement learning.
According to the reward, the agent learns to evaluate the value of each action
and gain an optimal policy that maximizes the expected return.
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Qπ s, a( ) � Es′~p ·|s,a( ),a′~π ·|s′( ) r s, a( ) + γQπ s′, a′( )[ ], (8)
and

Q* s, a( ) � Es′~p ·|s,a( ),a′~π ·|s′( ) r s, a( ) +max
π

γQ* s′, a′( )[ ]. (9)

In practice, the state-action value plays a more direct role than
the state value when attempting to find optimal policies. The
Bellman optimality equation is a particular form of the Bellman
equation. The corresponding state value is the optimal state value,
and the related implicit optimal policy can be drawn from the
greatest values. For example, the optimal policy π* is calculated by
using an optimization procedure over the value function:

π* � argmax
π

Qa~π* s, a( ) (10)

Policy-Based Methods
The value-based methods use value functions and no explicit
functions for the policy. And the policy-based methods, such as
REINFORCE [51], and SRV [52], do not utilize any form of a
stored value function but work with a parameterized family of
policies and optimize the objective function J directly over the
parameter space. Assuming that the policy is represented by a
parameterized function denoted as π(a|s, θ), which is
differentiable concerning parameter vector θ, the gradient of
the objective function J is described as

∇θJ � zJ

zπθ

zπθ

zθ
. (11)

The objective function has different metrics leading to
different optimal policies. There are many metrics candidates
in the policy-based methods, such as average state value, average
one-step reward. If the matric is the expected cumulative reward
(6), it can apply gradient descent algorithm on policy parameter θ
to gradually improve the performance of the policy πθ, and the
gradient is calculated as

∇θJ πθ( ) � Eτ~πθ ∑∞
t�0

∇θ logπθ at|st( )( )Qπθ st, at( )⎡⎣ ⎤⎦. (12)

Though in this form, the state-action value Q is called, which
can be approximated by Monte Carlo estimation Qπθ(st′, at′) �∑∞

t′�tγt′−tr(st′, at′) in REINFORCE algorithm. Based on the
gradient, the parameter θ is then adjusted in the direction of
this gradient:

θt+1 � θt + αt∇Jt. (13)
where α is the optimization rate. Every update on parameter θ
seeks for an increasement on the objective function
J(πθt+1)≥ J(πθt). The main advantage of policy-based methods
is their strong convergence property, which is naturally inherited
from gradient descent methods. Convergence is obtained if the
estimated gradients are unbiased and the learning rates αk
satisfy [47]

∑∞
t�0

αk � ∞, ∑∞
t�0

αk
2 <∞ . (14)

Different from the value-based methods, the policy πθ is
explicit, and actions are directly sampled from the optimal
parameterized policy:

a* ~ π ·|s, θ*( ) (15)

Actor-Critic Methods
Value-based methods rely exclusively on value function
approximation and have a low variance in the estimates of
expected returns. However, when nonlinear function
approximators represent value functions, the approximation
bias would lead to non-convergence during numerical
iterations [53, 54]. The purpose of replay buffer and target
value network techniques in Deep Q-learning Network [26,
55] algorithm ameliorate the above situation well, which
achieves significant progress in Atari games. Besides, value-
based methods must resort to an optimization procedure in
every state encountered to find the action leading to an
optimal value, which can be computationally expensive for
continuous state and action spaces.

Policy-based methods work with a parameterized family of
policies and optimize the objective function directly over the
parameter space of the policy. One of this type’s advantages is
handling continuous state and action spaces with higher
efficiency in terms of storage and policy searching [56].
However, a possible drawback is that the gradient estimation
may have a significant variance due to the randomness of reward
over time [56, 57]. Furthermore, as the policy changes, a new
gradient is estimated independently of past estimates. Hence,
there is no ”learning” in accumulating and consolidating older
information.

Actor-critic methods aim at combining the value-based and
policy-based methods [46, 58]. A parameterized function is
proposed based on the value-based methods to learn state
value V or state-action value Q as a critic. And the policy is
not inferred from the value function. It uses a parameterized
function as actor πθ, which has good convergence properties in
contrast with value-based methods and brings the advantage of
computing continuous actions without the need for optimization
procedures on a value function. At the same time, the critic
supplies the actor with low-variance value knowledge V̂

πθ
ϕ or Q̂

πθ
ϕ

and reduces the oscillation in the learning process.
Figure 4 shows the schematic structure of actor-critic

methods. The agent consists of the critic and actor parts,
which interact with the environment as presented in Section
Markov Decision Process. During the collection of rewards, the
critic is responsible for estimating value functions with
parameterized function approximators like deep neural
networks. The actor-critic methods often follow the idea of the
bootstrap method to evaluate value function, whose objective
function on state-action value is
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J ϕ( ) � Eτ~πθ

1
2

∑∞
t�0

r st, at( ) + γV̂
πθ st+1; ϕ( ) − V̂

πθ st; ϕ( )⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,
(16)

or on state value

J ϕ( ) � Eτ~πθ

1
2

∑∞
t�0

r st, at( ) + γQ̂
πθ

st+1, at+1; ϕ( ) − Q̂
πθ

st, at; ϕ( )⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.
(17)

benefited from the bootstrap method, the estimation of value
function V̂

πθ
ϕ or Q̂

πθ
ϕ is low-variance, which is a good choice for the

gradient of actor’s objective function

∇θJ πθ( ) � Eτ~πθ ∑∞
t�0

∇θ logπθ at|st( )( )Q̂πθ
st, at( )⎡⎣ ⎤⎦. (18)

It is worth noting that the value-based or policy-based
methods are core reinforcement learning algorithms and have
played a vital role. Many techniques, like delay policy updates
[59], replay buffer [26], and target value network [55], is proposed
to improve the efficiency of the algorithm. The actor-critic
methods are the improvement of the policy-based methods in
reducing the sample variance or the expansion of the value-based
method in the continuous state-action space problem. Compared
to value-based or policy-based methods, the actor-critic method
shows many friendly properties, a popular template for
researchers developing more advanced algorithms.

Advanced Deep Reinforcement Learning
Algorithms
With the deepening of research, many advanced deep
reinforcement learning algorithms on the actor-critic
framework have been proposed, such as PPO [44], SAC [45],
TD3 [59], DDPG [60] and so on. This section presents Proximal
Policy Optimization (PPO) algorithm and Soft Actor-Critic
(SAC) algorithm. Considering the length of the article, a brief
introduction is given. For more details and principles, interested
readers are suggested to refer to the original papers [44, 45].

Proximal Policy Optimization (PPO)
Proximal policy optimization (PPO) is a robust on-policy policy
gradient method for reinforcement learning proposed by OpenAI
[44]. Standard policy gradient methods perform one gradient
update per data sampling. Still, PPO utilizes a novel objective
function that enables multiple epochs of minibatch updates by
importance sampling trick, which improves sample efficiency.

Typical trust-region methods constrain policy updates to a
trust region, ensuring that the entire policy update process is
monotonous. PPO suggests using a KL penalty instead of a
constraint to solve the unconstrained optimization problem.
The algorithm is based on an actor-critic framework, and its
actor objective is modified as

Jθ
k

PPO πθ( ) � ∑
st ,at

pθ at|st( )
pθk at|st( )A

θk st, at( ) − βKL θ, θk( ) (19)

where k is reuse times on single batch of data; Aθ(st, at) = Qθ(st,
at) − Vθ(st, at) is the advantage function to reduce variance; β is
the penalty factor of KL divergence.

PPO algorithm has the stability and reliability of trust-region
methods [61]. But it is much simpler to implement, requiring
only a few lines of code change to a vanilla policy gradient (VPG)
implementation [47], which is applicable in general settings and
has better overall performance.

Soft Actor-Critic (SAC)
Soft Actor-critic is an off-policy actor-critic deep RL algorithm
based on the maximum entropy reinforcement learning
framework [45]. In this framework, the actor aims to
maximize the standard ultimate reward while also maximizing
entropy. Maximum entropy reinforcement learning alters the RL
objective [62], though the original aim can be recovered using a
temperature parameter. More importantly, the maximum
entropy formulation substantially improves exploration and
robustness: maximum entropy policies are robust in the face
of model and estimation errors, and they enhance exploration by
acquiring diverse behaviors [45].

The maximum entropy objective (see, e.g., (Ziebart, 2010)
generalizes the standard objective by augmenting it with an

FIGURE 4 | The actor-critic methods framework.
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entropy term, such that the optimal policy additionally aims to
maximize its entropy at each visited state:

JSAC πθ( ) � ∑T−1
t�0

E st,at( )~ρπ rt st, at( ) + αH π ·|st( )( )( ) (20)

where α is the temperature parameter determining the relative
importance of the entropy term against the reward. H is the
entropy of policy π.

In Ref. [45], it empirically showed that it matched or exceeded
the performance of state-of-the-art model-free deep RL methods,
including the off-policy TD3 algorithm and the on-policy PPO
algorithm without any environment-specific hyperparameter
tuning. And the real-world experiments indicated that soft
actor-critic was robust and sample efficient enough for robotic
tasks learned directly in the real world, such as locomotion and
dexterous manipulation.

APPLICATIONS OF DRL-BASED ACTIVE
FLOW CONTROL

For DRL-based active flow control, it is essential to construct a
Markov Decision Process (MDP) from the flow phenomenon.
If the state of flow and the reward of actions are well-selected,
the reinforcement learning technique can solve the
Bellman equation with high proficiency. Moreover, the
artificial neural network applied to the above deep
reinforcement learning algorithms has good approximation
ability in high-dimensional space with less complexity than
typical polynomial fitting. It has proven its advantages in many
flow applications like prediction.

In the past 6 years, we have also seen many efforts to introduce
deep reinforcement learning into the flow control field. From the
initial tabular, e.g., Q-learning, to advanced deep learning, like Soft
Actor-Critic (SAC) and Proximal Policy Optimization (PPO), DRL
algorithms are equipped more smartly, and novel control
phenomena have been explored. This section reviews recent flow
control applications based on deep reinforcement learning,
including Section Flow Stability, Section Hydrodynamic Drag,
Section Aerodynamic Performance, and Section Behavior
Patterns. For conciseness, a summary table is constructed asTable 1.

Flow Stability
Flow instability and transition to turbulence are widespread
phenomena in engineering, and the natural environment
[85–87]. The flow around a circular cylinder can be
considered a prototype of the bluff body wakes, which is
involved with various instability. In the cylinder wake, the
transition from steady to periodic flow is marked by a Hopf
bifurcation with critical Reynolds Re = 47, which is known as the
first instability [88]. Three-dimensional fluctuations for higher
Reynolds numbers further superimpose this vortex shedding. The
onset of three-dimensionality occurs at the critical Reynolds
number of Re = 175. These periodic behaviors can induce
fluctuating hydrodynamic force on the bluff body, leading to
vortex-induced vibrations, which can bring the challenge to
structural fatigue performance or provide an opportunity for
energy utilization [89, 90].

As early as 2018, Koizumi et al. [63] applied a deep
deterministic policy gradient (DDPG) algorithm to control the
Karman vortex shedding from a fixed cylinder. Compared with
conventional model-based feedback control, the result of the
DDPG also shows better control performance with reduced

TABLE 1 | Applications of DRL-based active flow control.

Category Time References Algorithm Objective

Flow stability 2018 [63] DDPG Control the Karman vortex shedding
Flow stability 2021 [37] SAC,AL Suppress the vortex-induced vibration
Flow stability 2021 [64] PPO Mitigate the hydrodynamic signature
Flow stability 2021 [65] PPO Enhance the vortex-induced vibration
Hydrodynamic Drag 2017 [66] ML Actor-Critic Build an implicit model and reduce drag
Hydrodynamic Drag 2019 [67] PPO Stabilize vortex alley and reduce drag
Hydrodynamic Drag 2021 [68] PPO Stabilization and drag reduction on DMD
Hydrodynamic Drag 2020 [69] PPO Control with small rotating cylinders
Hydrodynamic Drag 2020 [70] PPO Control over a range of Re numbers
Hydrodynamic Drag 2022 [71] PPO Control in weakly turbulent conditions
Hydrodynamic Drag 2022 [72] PPO Control the flow with Re = 1000
Hydrodynamic Drag 2020 [73] TD3 Maximize the power gain efficiency
Hydrodynamic Drag 2022 [74] single-step PPO Control the wake of a 3D bluff body
Aerodynamic Performance 2020 [75] PPO Control on NACA0012 in pulsating inflow
Aerodynamic Performance 2022 [76] PPO Control lift on distributed sensors
Aerodynamic Performance 2020 [77] DQN Control flow separation
Aerodynamic Performance 2020 [78] Ape-X DQN Control flow separation
Aerodynamic Performance 2022 [79] ApeX-DQN, ABN Supress separation and visualize data area
Behavior Patterns 2021 [80] DRQN Study the behaviors of self-propelled fish
Behavior Patterns 2021 [81] V-RACER Learn escape under energy constraints
Behavior Patterns 2022 [82] Q-learning Explore collective locomotions
Behavior Patterns 2018 [83] Q-learning Learn glider soaring
Behavior Patterns 2019 [84] RACER Identify gliding and landing strategies
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lift. Later on, for the vortex-induced vibrations, some scholars
have also tried deep reinforcement learning to eliminate them. By
constructing a spring-mounted cylinder model, Zheng et al. [37]
proposed a deep reinforcement learning active flow control
framework to suppress the vortex-induced vibration of a
cylinder immersed in uniform flow by a pair of jets placed
on the poles of the cylinder as actuators. In training, the SAC
agent is fed with a lift-oriented reward, which successfully
reduces the maximum vibration amplitude by 81%. Ren et al.
[64] further adopted windward-suction-leeward-blowing
(WSLB) actuators to control the wake of an elastically
mounted cylinder. They encoded velocity information in the
VIV wake into the reward function of reinforcement learning,
aiming at keeping pace with the stable flow. Only a 0.29%
deficit in streamwise velocity is detected, which is a 99.5%
reduction from the uncontrolled value, and the learning
process is shown in Figure 5. Unlike the previous two
cases, instead of reducing the intensity of the vortex
shedding caused by the first instability, the essence of
reinforcement learning flow control in Ren’s work is to
eliminate the vortex shedding caused by the first instability,
which is the origin of the vortex-induced vibrations.

For the energy utilization of vortex-induced vibration, Mei
et al. [65] proved that the performance of the active jet control
strategy established by DRL for enhancing VIV is outstanding
and promising. It is shown that the ANN can successfully increase
the drag by 30.78% and the magnitude of fluctuation of drag and
lift coefficient by 785.71% and 139.62%, respectively.
Furthermore, the net energy output by VIV with jet control
increased by 357.63% (case of water) compared with the
uncontrolled situation.

Hydrodynamic Drag
In terms of hydrodynamic drag, it is the primary concern for
modern hydrodynamic design. Namely, the potential benefits of

an effective closed-loop active flow control for drag are
highlighted for energy and transportation.

Like the flow stability topic, the early active flow control
applications of reinforcement learning are within the deep
neural network. Pivot and Mathelin [66] proposed a
reinforcement learning active flow control framework whose
value function and policy function are approximated with
local linear models. Taking embedding and delayed effect of
the action into consideration, the system’s state is constructed
carefully, and 17% of cylinder drag reduction is obtained by RL-
controlled self-rotating. Then the artificial neural network
technique is introduced into the field of active flow control on
reducing hydrodynamics drag, which replaces the original way by
using elaborately-designed state representation for the flow
system. Rabault [67] was the first scholar to apply an artificial
neural network trained through a deep reinforcement learning
agent to perform active flow control for cylinder drag reduction.
At Reynolds number of Re = 100, the drag can be reduced by
approximately 8% shown in Figure 6. It was seen that the
circulation area is dramatically increased, and the fluctuation
of vortex shedding is reduced. Their forward-looking work
provided a template for DRL-based active flow control in the
fluid mechanics. Qin [68] modified the reward function with
dynamic mode decomposition (DMD). With the data-driven
reward, the DRL model can learn the AFC policy through the
more global information of the field and the learning was
improved. Xu [69] used DRL to control small rotating
cylinders on the back of the controlled cylinder and achieved
drag reduction, which successfully illustrated the adaptability of
DRL to actuators in AFC problems.

To investigate the generalization performance of DRL, Tang
[70] trained a PPO agent in a learning environment supporting
four flow configurations with Reynolds numbers of 100, 200, 300,
and 400, which effectively reduced the drag for any previously
unrecognized value of the Reynolds number between 60 and 400.

FIGURE 5 | Learning process represented by the variation of objective function values against episode number. Ren and Wang adopt a group of windward-
suction-leeward-blowing (WSLB) actuators to stabilize both the wake of a fixed and flexible cylinder. Left: Learning process represented by the variation of cost function
values against episode number. The four insets show WSLB actuations generated by the DRL agent at different stages of learning. Right: Instantaneous wake patterns
and measured velocity profiles at the four selected stages [64].
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Ren [71] extended the flow condition to a weakly turbulent state
with Re = 1,000 and proved that the PPO agent can still find
effective control policies but requires much more episodes in the
learning. For larger Reynolds numbers like 2000, Varela [72] finds
significantly different forms of nature in the control strategies
from those obtained at lower Re. More importantly, the cross
applications of agents both from Re = 1000 and Re = 1000 were
conducted in a flow with Re = 2000. Two similar results with
different natures of control strategies may indicate that the
Reynolds number regime (Re = 2000) belongs to a transition
towards a nature-different flow which would only admit a high-
frequency actuation strategy to obtain drag reduction. The deep
insight is waiting for future simulations on higher Reynolds
numbers.

Later on, Fan et al. [73] demonstrated the feasibility and
effectiveness of reinforcement learning (RL) in bluff body flow
control problems in simulations and experiments by
automatically discovering active control strategies for drag
reduction in turbulent flow with two small rotating cylinders.
It is a crucial step to identify the limitations of the available
hardware when applying reinforcement learning in a real-world
experiment. After an automatic sequence of tens of towing
experiments, the RL agent is shown to discover a control
strategy comparable to the optimal policy found through
lengthy, systematically planned control experiments.
Meanwhile, the flow mechanism for the drag reduction was
also explored. Through verification by three-dimensional
simulations, as seen in Figure 7, due to the gap between the
large and small cylinders, a jet is informed within the hole,
causing the change of flow topology in the cylinder wake.
Therefore, compared to the non-rotating case, the pressure on
the rear cylinder surface recovered to a negative value with a
smaller magnitude, leading to a significant pressure drag
reduction. Moreover, with the platform of a wind tunnel,
Amico et al. [74] trained an agent capable of learning control
laws for pulsed jets to manipulate the wake of a bluff body at
Reynolds number Re = 105. It is the first application of a single-
step DRL in an experimental framework at large values of the
Reynolds number to control the wake of a three-dimensional
bluff body.

Aerodynamic Performance
To make aviation greener, many efforts have been made to
improve aircraft’s aerodynamic performance to design a more
effective, environmentally friendly air transport system [91].
Active flow control technology can potentially deliver
breakthrough improvements in the aerodynamic performance
of the aircraft, like enhanced lift; reduced drag; controlled
instability; and reduced noise or delayed transition. This
subsection will present recent studies on DRL-based active
flow control for aerodynamic performance improvement.

Several scholars have applied reinforcement algorithms to
achieve effective active flow strategies through numerical
simulations or wind tunnel experiments to enhance lift and
reduce drag. Wang [75] used the PPO algorithm on the
synthetic jet control of flows over a NACA0012 airfoil at Re =
3,000 and embedded lift information into the reward function.
The DRL agent can find a valid control policy with energy
conservation by 83% under a combination of two different
frequencies of inlet velocity. Guerra-Langan et al. [76] trained
a series of reinforcement learning (RL) agents in simulation for
lift coefficient control, then validated them in wind tunnel
experiments. Specifically, an ANN aerodynamic coefficients
estimator is trained to estimate lift and drag coefficients using
pressure and strain sensor readings together with pitch rate.
Results demonstrated that hybrid RL agents that use both
distributed sensing data and conventional sensors performed
best across the different tests.

To suppress or delay flow separation [92], Shimomura and
Sekimoto [77] proposed a practical DRL-based flow separation
control framework and investigated the plasma control
effectiveness on a NACA0015 airfoil in a low-speed wind
tunnel at a Reynolds number of 63000. As seen in Figure 8,
based on deep Q-network(DQN), the closed-loop control keeps
the flow attached and preserves it for a longer time by periodically
switching the actuator on and off. With distributed executors and
priority experience playback, they proved that the Ape-X DQN
algorithm is more stable during training than the DQN algorithm
in such plasma control problem [78]. Moreover, Takada et al. [79]
investigated the performance of plasma control on the
NACA0012 airfoil in compressible fluid numerical simulation,

FIGURE 6 | Comparison of representative snapshots of the velocity magnitude in the case without actuation (A) and with active flow control (B). The lower panel
corresponds to the established pseudo-periodic modified regime, attained after the initial transient control [67].
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FIGURE 7 | Visualization of the vortical flow at three different stages of training. (A) Before training (both small cylinders are held still). (B) After 100 episodes (both
small cylinders rotate at a medium speed). (C) After 500 episodes (both small cylinders rotate at about the maximum speed). (A–C, Top) Local pressure coefficient on the
cylinder surface as a function of angle (θ), with the front stagnation point as zero degrees. The coefficient is shown by the red lines, with black dashed lines representing
the reference coefficient of a single cylinder. (A–C, Middle Left) the z component of vorticity averaged spanwise and in time with the green/red area indicating the
magnitude of negative/positive pressure on the main cylinder. (A–C, Middle Right) Velocity field near the small upper cylinder. (A–C, Bottom) Three-dimensional vortices.
Note that to plot B, we restart the simulation from the flow snapshot saved at episode 100, keep the control cylinders rotating at the same speeds as those of episode
100, and continue to simulate over two vortex-shedding periods; similar procedures are performed to obtain C [73].

FIGURE 8 | An effective DRL-based flow separation control framework [77].
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which obtained the qualitative characteristics of the control
policy [77].

Behavior Patterns
Nature’s creatures are the best teachers for researchers to discover
the rule of behavior patterns, like gliders from birds that soar with
thermal winds [93] or plant seeds that spread by gliding [94]. It is
usually challenging to identify the internal mechanism of this
adaptive pattern and generate corresponding behavior flow
control strategies in another complex condition. Deep
reinforcement learning has provided a new aspect to approach
the goal.

In the identification and reproduction of fish adaption behaviors
in complex environments, Zhu et al. [80] utilized deep recurrent
Q-network (DRQN) algorithm with immersed boundary–lattice
Boltzmann method to train the fish model and adapt its motion to
optimally achieve a specific task, such as prey capture, rheotaxis and
Kármán gaiting. Compared to existing learning models for fish, this
work incorporated the fish position, velocity, and acceleration into
the state space in the DRQN; it considered the amplitude and
frequency action spaces and the historical effects. On the other
hand, Mandralis et al. [81] deployed reinforcement learning to
discover swimmer escape patterns constrained by the energy and
prescribed functional form of the body motion, which can be
transferred to the control of aquatic robotic devices operating
under energy constraints. In addition, Yu et al. [82] numerically
studied the collective locomotions of multiple undulatory self-
propelled foils swimming by Q-learning algorithm. Especially
swimming efficiency is the reward function, and visual
information is included. It is found that the DRL algorithm can
effectively discover various collective patterns with different

characteristics, i.e., the staggered-following, tandem-following
phalanx, and compact modes under two DRL strategies. The
strategies are as follows: one is that only the following fish gets
hydrodynamic advantages, and the other is that all group members
take advantage of the interaction.

As for the gliding, there is also some work related to
reinforcement learning, aiming at performing minimal
mechanical work to control attitude. Reddy et al. [83] used Q
learning to train a glider in the field to navigate atmospheric
thermals autonomously, equipped with a flight controller that
precisely controlled the bank angle and pitch, modulating these at
intervals to gain as much lift as possible. The learned flight policy
was validated through field experiments, numerical simulations,
and estimates of the noise in measurements caused by
atmospheric turbulence. Different from improving lift, Novati
et al. [84] combined a two-dimensional model of a controlled
elliptical body with DRL to achieve gliding with either minimum
energy expenditure, or the fastest time of arrival, at a
predetermined location. As seen in Figure 9, the model-free
reinforcement learning led to more robust gliding than model-
based optimal control policies with a modest additional
computational cost. This study also demonstrated that the
gliders with DRL can generalize their strategies to reach the
objective location from previously unseen starting positions.

CHALLENGES ON DRL-BASED ACTIVE
FLOW CONTROL

Modern control theory provides an essential basis for developing
flow control methods from open-loop control to closed-loop

FIGURE 9 | Visualization of the two prevailing locomotion patterns adopted by RL agents for the active gliding model. Trajectories on the x-y plane for (A) bounding
and (C) tumbling flight. The glider’s snapshots are colored to signal the value of the control torque, and the dashed black lines track the ellipse’s vertices. The grayed-out
trajectories illustrate the glider’s passive descent when abruptly switching off active control. (B, D) Corresponding trajectories on the u-v plane. The trajectories are
colored based on the control torque, and a triangle and circle mark their beginning and end, respectively [84].
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control. However, there may be better uses of time and resources
than the detailed identification of a high-dimensional nonlinear
fluid dynamical system for control. Alternatively, reinforcement
learning with deep learning enables automatic feature
engineering and end-to-end learning through gradient descent,
so reliance on the flowmechanism is significantly reduced, shown
in Section Applications of DRL-based Active Flow Control.

Though highlighted as a novel and promising direction,
there are still some obstacles in the initial stage of DRL-based
flow control. Some of these obstacles originate from the
demand for practical reinforcement learning algorithms
since direct numerical simulation, or experimental data are
expensive to obtain in flow control problems. And others
might be constrained by the flow control system’s
characteristics, such as control delay, sensor configuration,
partial observation, etc. These obstacles have come to light
during the application, and researchers have specified
corresponding solutions with the knowledge of the physical
system. More importantly, they have revealed potential
problems and provided valuable references for similar issues,
which are summarized in Table 2. The following section will focus
on four aspects of challenges in using DRL-based active flow
control: Section Training Acceleration, Section Control Delays,
Sensor Configuration, Section Partial Observables, and Section
Action Dimensionality.

Training Acceleration
Essentially, deep reinforcement learning is an optimization
process based on parameterized policy (usually called “agent”)
through trial and error, which involves many interactions
between the agent and the emulator. Therefore, compared to
supervised/unsupervised learning, deep reinforcement learning is
more time-consuming. Especially for the active flow control
problem, the expensive data acquisition cost is required either
in numerical simulation or wind tunnel experiment to represent
the high dimensional flow state. On the other hand, the weakly-
inductive-bias characteristic of reinforcement learning brings
more possibilities and time consumption. To handle these
issues, some works have been carried out on accelerating
simulations or extracting prior knowledge from expert

information for reinforcement learning, such as expert
demonstrations, behavior cloning, or transfer learning.

From the perspective of accelerating simulation, Rabault et al.
[95] demonstrated a perfect speedup by adapting the PPO
algorithm for parallelization, which used several independent
simulations running in parallel to collect experiences faster. As
for extracting prior knowledge from expert information for
reinforcement learning, Xie [96] firstly derived a simplified
parametric control policy informed from direct DRL in
sloshing suppression and then accelerated the DRL algorithm
with a behavior cloning such simplified policy. Wang [98]
transferred the DRL neural network trained with Re = 100,
200, 300 to the flow control tasks with Re = 200, 300, 1,000.
As shown in Figure 10, it is due to the strong correlation between
policy and the flow patterns under different conditions. Therefore
a dramatic enhancement of learning efficiency can be achieved.

Furthermore, Konishi [97] introduced a physically reasonable
transfer learning method for the trained mixer under different
Péclet numbers. The balance transferability and fast learning on
the Péclet number of the source domain were discussed. By filling
the experience buffer with expert demonstrations, Zheng [99]
proposed a novel off-policy reinforcement learning framework
with a surrogate model optimizationmethod, which enables data-
efficient learning of active flow control strategies.

Control Delays
As the Reynolds number increases, temporal drag fluctuations
under the DRL-controlled cylinder case tend to become
increasingly more random and severe. Due to the appearance
of turbulence in the state space, insufficient regression of the
ANN with the time series during the decision process may result
in deteriorating control robustness and temporal coherence. Due
to the time elapse between actuation and response of flow, Mao
[100] introduced the Markov decision process (MDP) with time
delays to quantify the action delays in the DRL process by using a
first-order autoregressive policy (ARP). This hybrid DRL method
yielded a stable and coherent control, which resulted in a steadier
and more elongated vortex formation zone behind the two-
dimensional circular cylinder, hence, a much weaker vortex-
shedding process and less fluctuating lift and drag forces. This

TABLE 2 | Challenges on DRL-based active flow control.

Category Time References Algorithm Key Words

Training Acceleration 2019 [95] PPO Parallelization of data collection
Training Acceleration 2021 [96] PPO, TD3 Expert demonstrations, behavior cloning
Training Acceleration 2022 [97] DQN Transfer learning, Pe numbers
Training Acceleration 2022 [98] PPO Transfer learning, Re numbers
Training Acceleration 2022 [99] SAC Expert demonstrations, off-policy buffer
Control Delays 2022 [100] ARP–DMDP–PPO MDP, physics-informed delay, regressive
Sensor Configuration 2021 [71] PPO Sensitivity analysis
Sensor Configuration 2022 [101] PPO, DPG Global linear stability, sensitivity analyses
Sensor Configuration 2021 [102] S-PPO-CMA Sparse training, stochastic gate model
Sensor Configuration 2022 [38] PPO Linear genetic programming control
Sensor Configuration 2022 [79] ApeX-DQN Attention Branch Network
Partial Observables 2022 [103] AC Dissipative system, low-dimensional nature
Action Dimensionality 2019 [104] PPO Locality and invariance, densify reward
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method utilized the historical samples without additional training
sampling than the standard DRL method. It can reduce drag and
lift fluctuations by approximately 90% while achieving a similar
level of drag reduction in the deterministic control at the same
actuation frequency.

Sensor Configuration
In the closed-loop control framework, such as deep
reinforcement learning, the sensor must be able to measure
and provide a correct representation of the state of the flow

system. The choice of the sensors, such as the type, number, and
location, has a decisive effect on the maximum performance of
the control policy. Extravagant sensor configuration is a huge and
unnecessary burden in practical applications. The sensors
measuring velocity, pressure, skin friction, and temperature in
various resolutions, are mostly configured based on engineering
experience. There is much room for improvement in adaptive
algorithms, such as performing stability analysis or adopting
novel optimization methods to obtain optimal and sensitive
sensor locations.

FIGURE 10 | Summary of the generalization reinforcement learning test. The black line and the mean line in boxes indicate the averaged drag coefficient in the flow
without and with control, respectively, and the gray shaded area and box bodies show the range of oscillation of the drag coefficient at each corresponding Reynolds
number [98].

FIGURE 11 | RL control of the confined cylinder wake using ten probes. Different distributions of probes lead to a significant divergence in the control performance
[101]. Panel (A) shows the five types of probe distribution, and panel (B) is the corresponding control performance, including the jet flow rate and the shedding energy.
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In terms of stability analysis, Ren et al. [71] performed a
sensitivity analysis on the learned control policies to explore the
layout of the sensor network by using the Python library SALib. It
is concluded that the control had different sensitivity to
locations and velocity components. Li et al. [101] conducted
global linear stability and sensitivity analyses based on the adjoint
method. It is found that the control is most efficient when the
probes are placed in the most sensitive region, and it can be
successful even when a few probes are properly placed in this
manner. This work is a successful example of using and
embedding physical flow information in the RL-based control.
The Comparison between different probe distributions is shown
in Figure 11.

As for the optimization methods, Paris et al. [102] introduced
a novel algorithm (S-PPO-CMA) to optimize the sensor layout,
focusing on the efficiency and robustness of the identified control
policy. Along with a systematic study on sensor number and
location, the proposed sparsity-seeking algorithm achieved a
successful optimization with a reduced five-sensor layout while
keeping state-of-the-art performance. Castellanos et al. [38]
optimized the control policy by combining deep reinforcement
learning and linear genetic programming control (LGPC)
algorithm, which showed the capability of LGPC in identifying
a subset of probes as the most relevant locations. In addition,
Takada et al. [79] have adopted a new network structure named
Attention Branch Network to visualize the activation area of the

FIGURE 12 | Illustration of the 3 different methods for control of a system with translational invariance and locality. From top to bottom: M1, M2, and M3. M1 is the
naive implementation of the DRL framework. M2 takes advantage of translation invariance of the system to reuse the network coefficients for the control of an arbitrary
number of jets. M3 exploits both the translation invariance and the locality of the system by using a dense reward signal [104].
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DRL network, which provided references for sensor
distribution. Especially, Attention Branch Network (ABN)
[105] is a method to clarify the basis of the decision of
neural networks, which enables the generation of an
attention map to visualize the areas the neural network
focuses on. It is clarified that the leading-edge pressure
sensor is more important for determining the control
action, and the trained neural network focused on the time
variation of the pressure coefficient measured at the
leading edge.

Partial Observables
Most current DRL algorithms assume that the environment
evolves as a Markov decision process (MDP), and a learning
agent can observe the environment state fully. However, in the
real world, there are many cases where only partial observation
of the state is possible. That is why existing reinforcement
learning (RL) algorithms for fluid control may be inefficient
under a small number of observables, even if the flow is
laminar. By incorporating the dissipative system’s low-
dimensional space [106] of the learning algorithm, Kubo
[103] resolved this problem and presented a framework for
RL that can stably optimize the policy with a partially
observable condition. In the practical application of a
learning process in a fluid system like a learning agent
without any information about flow state except rigid-body
motion, the algorithm in this study can efficiently find the
optimum control method.

Action Dimensionality
Sometimes it is difficult to handle high action space
dimensionality on complex tasks. Applying reinforcement
learning to those tasks requires tackling the combinatorial
increase of the number of possible elements with the number
of space dimensions. For example, for an environment with an
N-dimensional action space and n discrete sub-actions for
each dimension d, using the existing discrete-action
algorithms, a total of ∏N

d�1nd possible actions need to be
considered. The number of actions that need to be explicitly
represented grows exponentially with increasing action
dimensionality [107].

Belus et al. [104] proposed a DRL framework to handle an
arbitrary number of control actions (jets). This method relies
on satisfactorily exploiting invariance and locality properties
of the 1D falling liquid film system, which can be extended to
other physics systems with similar properties. Inspired by the
Convolutional Neural Networks (CNNs), three different
methods for the DRL agent are designed as shown in
Figure 12. This work set small regions in the neighborhood
of each jet, where states and rewards were obtained. Methods 3
(”M3”) took into account this locality and extract N reward
signals (the number of jets) to evaluate local behaviors with
less dimension. Results showed both a good learning
acceleration and easy control on an arbitrarily large number
of jets and overcomed the curse of dimensionality on the
control output size that would take place using a naive
approach.

CONCLUSIONS

Exploring flow mechanisms and controlling flow has always been
one of the most important and fruitful topics for researchers. The
fluid system’s high dimensionality, nonlinearity, and stochasticity
limit the flow control policy exploration. It has yet to be widely
applied in aviation or the marine industry. As a critical branch of
artificial intelligence, reinforcement learning with deep learning
enables automatic feature engineering and end-to-end learning
through gradient descent so that reliance on domain knowledge is
significantly reduced or even removed. Moreover, the deep and
distributed representations in deep understanding can exploit the
hierarchical composition of factors in data to combat the
exponential challenges of the curse of dimensionality [108],
which is a severe issue for the complex flow system.

Considerable research reviewed in Sections Applications of
DRL-based Active Flow Control and Challenges on DRL-Based
Active Flow Control has proved that deep reinforcement learning
can achieve state-of-art performance in active flow control.
Besides, there are other important topics which are not
presented in the current review, such as optimization design
[109–112], model discovery [113, 114], equation solving [115],
microbiota behavior [116–119], plasmas magnetic control [120],
convective heat exchange [121], chaotic system [122].While there
are some obstacles inevitably, like the demand to accelerate the
training process (Section Training Acceleration) or the
constraints related to the control system’s characteristics, such
as Section Control Delays, Section Sensor Configuration, partial
observation (Section Partial Observables), Section Action
Dimensionality, etc. This review has introduced five topics
with their solutions, and more challenges are invisible below
sea level, just like icebergs. We advocate that the physical
information of the flow should be embedded into the DRL-
based active flow control framework. More advanced data-
driven methods should be fully utilized to discover the
inherent association under big data. Efficient frameworks
embedded with physical knowledge under practical
background can promote the wide industrial application of
intelligent, active flow control technology to the greatest
extent. Based on the above research and our experience, it is
inferred that the study of active flow control based on deep
reinforcement learning in the future can be focused on the
following five aspects:

(1) Accelerate training speed and improve sample efficiency.
Compared with Atari, Go, and other traditional research
fields of intensive learning, the cost of data acquisition is
usually higher compared to numerical simulation or wind
tunnel tests. Moreover, the high-dimensional feature
extraction and random system characteristics are
significant challenges to the convergence of these
algorithms. It is of great significance to make more
rational use of data, including offline paradigm [123],
model building [124], data augmentation [125], etc.

(2) Embed physical information into the reinforcement learning
framework. The pure AI algorithm neglects the dynamics and
believes in the data-driven concept, which is also doomed to
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be inefficient. It is brighter to combine the physical
information into the DRL framework and develop artificial
intelligence technology based on the full use of classical fluid
mechanics research methods.

(3) Attain interpretability from artificial intelligence decision.
Learning to control agents from high-dimensional inputs
relies upon engineering problem-specific state
representations, reducing the agent’s flexibility. Embedding
feature extraction in deep neural networks exposes
deficiencies such as a lack of explanation, limiting the
application of intelligent methods. Explainable AI methods
[126] are advocated to improve the interpretability of
intelligent control. With the help of such practices, further
exploration of more fundamental physical connotations and
scientific cognition of fluid mechanics is expected.

(4) Transfer to the real world and eliminate the sim2real gap. In
practical applications like aircraft flight, it is unsafe to train
agents directly by trial and error. However, the reality gap
between the simulation and the physical world often leads to
failure, which is triggered by an inconsistency between
physical parameters (i.e., Reynolds number) and, more
fatally, incorrect physical modeling (i.e., observation noise,
action delay). Reducing or even eliminating the sim2real gap
[127] is a crucial step in applying reinforcement learning to
industrial applications.

(5) Build up an open-source DRL-AFC community. The rapid
development of deep reinforcement learning in the field of
active flow control owes to the fact that many predecessors
published the code while publishing articles. At present, we
can find the work of Rabault [67, 95], Jichao Li [101], Qiulei
Wang [128] and others on the Github, including containers
for full reproducibility. Such sharing and openness can not
only let fluid mechanics researchers understand the latest
release and update of DRL tools, but also let machine learning
researchers understand the development direction of
algorithms applied to complex physical systems. This

review calls on researchers to further share code and open
source benchmarks, build a multidisciplinary open source
community, further strengthen cooperation, and promote
the application of reinforcement learning in the field of fluid
mechanics.

To summarize, deep reinforcement learning has established
the beacon for active flow control, and its talent potential in
complex flow system remain to be explored. Especially in the
aviation industry, it is expected that this control mode can reach
unprecedented heights and realize the impossible missions in
many science fiction films, for example, rudderless aircraft
controlled by jets, long-endurance vehicles with weak or even
no drag, etc. It is no doubt there is still a long way before DRL-
based flow control realizes real-world application, but it has
promised us a bright future.
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