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The endocannabinoidome (eCBome) is the expanded endocannabinoid system

(ECS) and studies show that there is a link between this systemandhow itmodulates

alcohol induced neuroinflammation. Using conditional knockout (cKO) mice with

selective deletion of cannabinoid type 2 receptors (CB2Rs) in dopamine neurons

(DAT-Cnr2) and in microglia (Cx3Cr1-Cnr2), we investigated how CB2Rs modulate

behavioral and neuroinflammation induced by alcohol. Behavioral tests including

locomotor and wheel running activity, rotarod performance test, and alcohol

preference tests were used to evaluate behavioral changes induced by alcohol.

Using ELISA assay, we investigated the level of pro-inflammatory cytokines, tumor

necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1α (IL-1α), and interleukin-

1β (IL-1β) in the hippocampus of mice. The findings demonstrated that locomotor

activity, wheel running, and rotarod performance activities were significantly

affected by cell-type specific deletion of CB2Rs in dopamine neurons and

microglia. The non-selective CB2R agonist, WIN 55,212-2, reduced alcohol

preference in the wild type and cell-type specific CB2R cKO mice. In addition,

the result showed that cell-type specificdeletionofCB2Rsper se and administration

of alcohol to CB2R cKO mice increased the expression of proinflammatory

cytokines in the hippocampus. These findings suggest the involvement of CB2Rs

in modulating behavioral and immune alterations induced by alcohol.
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Introduction

The characterization of additional lipid mediators, enzymes and receptors, has led to

the discovery of an expanded endocannabinoid system (ECS) called the

endocannabinoidome (eCBome) [1]. The ECS is composed of two canonical

cannabinoid receptors (CBRs); cannabinoid type 1 receptors (CB1Rs) and
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cannabinoid type 2 receptors (CB2Rs), endocannabinoids (eCBs)

and enzymes responsible for the synthesis and degradation of

eCBs [2, 3]. While cannabinoids represent a group of substances

that share the common property of binding with cannabinoid

receptors (CBRs), only two substances, arachidonoyl

ethanolamide (anandamide) and 2-arachidonoyl glycerol, are

considered primary eCBs [4–6]. CB1Rs, which are expressed

in the hippocampus, neocortex, cerebellum, and basal ganglia

nuclei, are the most abundant GPCRs in the brain [3]. CB2Rs are

found in abundance in the periphery and predominantly in

organs with immune function [7–9]. Contrary to the previous

notion that CB2Rs were absent in brain [9–11], a growing body of

evidence now demonstrates CB2R expression in microglia, and

neurons in the hippocampus, striatum and brain stem [12, 13].

There has been continuous debate and controversy about the

expression of functional neuronal CB2Rs, however, following our

discovery of the presence and functional expression of CB2Rs in

brain [14–17], other studies have overwhelming confirmed that

functional CB2Rs are present in neurons and are regulated by

drugs of abuse [18–21].

Chronic alcohol consumption, through abnormal brain

circuits, can cause neuronal damage, behavioral alterations,

and neuroinflammation that are characterized by an enhanced

release of pro-inflammatory cytokines called cytokine storm

[22–24]. Recent preclinical reports suggest that enhanced

innate immune system signaling increases consumption of

alcohol [25]. Studies also indicated that CB2R activation has

been shown to inhibit neuroinflammation, attenuate neuronal

tissue damage, and drive neurogenesis [26, 27]. We

hypothesized that CB2Rs can play a role in preventing

alcohol induced behavioral and neuroimmune changes in

mice. We addressed this question by investigating the roles

of dopamine neuron and microglia CB2Rs using DAT-Cnr2,

Cx3cr1-Cnr2 cKO, and wild type (WT) control mice in

modulating behavioral and neuroimmune alterations

induced by the effects of alcohol.

Materials and methods

Animals

In this study, we employed DAT-Cnr2 and Cx3Cr1-Cnr2

cKO mice which are created in our lab [28]. The mice were

generated through a breeding approach involving Cnr2-

floxed mice and DAT-Cre and Cx3-Cre mice. We

confirmed the specific deletion of CB2Rs in dopamine cells

and microglia in homozygous cKO mice through genotyping

and RNAscope in situ hybridization, while no deletion

occurred in the WT mice. The experiments were

conducted on adult male mice weighing between 20 g and

30 g, all bred in the mouse laboratory at William Paterson

University of New Jersey. These mice were kept under

controlled conditions, including room temperature (25°C ±

2°C), a 12:12 h light-dark cycle, and ad libitum access to food

and water. Our study adhered to the guidelines in the Guide

for the Care and Use of Laboratory Animals and received

approval from the William Paterson University Animal Care

and Use Committee (IACUC).

Drugs and administration

Absolute ethanol was purchased from Pharmaco-AAper in

Bristol, PA. 8% of the absolute alcohol was mixed with distilled

water and administered as 0.8 g/kg dose into the peritoneum

(i.p.) at a volume of 10 mL/kg body weight. The non-selective

cannabinoid receptor agonist, WIN55,212-2 (WIN), was

purchased from Cayman Chemical Co. located in Ann Arbor,

MI. After dissolving WIN in a mixture of DMSO, tween 80, and

saline in a ratio of 1:2:7, a dosage of 3 mg/kg was administered.

The doses of alcohol and WIN were determined based on

previous research [21, 28–30]. Both alcohol and WIN were

injected i.p. in a volume of 10 mL/kg body weight.

Locomotor activity test

To evaluate total distance travelled in the activity box, the

locomotor activity monitoring apparatus (ENV-510: Med

Associates Inc., St. Albans, VT, USA) was utilized. Thirty

minutes after acute alcohol injection, the animals were placed

gently into separate test boxes (measuring 43.2 × 43.2 ×

30.5 cm) that were connected to a computer. Total

distance traveled by mice was recorded and analyzed over

a 10-min period [21]. Prior to the test, the mice were given

three consecutive days to freely explore the open field

chambers for 10 min each day in order to acclimate to the

environment.

Wheel running activity test

The wheel running activity of the mice was observed using a

spontaneous wheel-running monitor (Wahmann, Geo. H.,

Manufacturing Company, Baltimore, MD, USA) after 40 min

of acute alcohol administration. Each mouse was placed in the

monitor, and their wheel running behavior was tracked using

auto-counters, which recorded the total number of revolutions

made by each animal during the 10-min testing session [21].

Rota rod performance test

Mice were placed on a stationary rota rod (AccuRotor

Rotarod, AccuScan Instruments Inc.) by gently gripping their
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tails, positioning them away from the direction of rotation. To

maintain balance, the mice had to walk forward on the rod.

The rota rod was set at a height of 30 cm above the ground and

featured a rotating rod with a 3 cm diameter. The duration

each mouse managed to stay on the rod for 180 s was recorded,

excluding falls occurring within the initial 5 s due to

improper placement by the experimenter [21]. A soft

padded surface was positioned at the base of the apparatus

to cushion any falls.

Alcohol preference test

For preference testing, individually housed mice (N =

10 mice per group) were used. Throughout a 24 h period, the

mice had access to two conical tubes with a drinking spout

attached filled with water. In order to institute a baseline, both

tubes were initially filled with 40 mL of water and placed above

the cages for three consecutive days. During the preference

measurement phase, one of the tubes was replaced with a

solution containing 8% alcohol. The amount of alcohol

consumed by each animal was recorded over five consecutive

days between 10 and 11 AM. To ensure unbiased positioning, the

placement of the tubes within the various cages was randomized

with regard to the side of the cages they were placed on. In all

experiments, the ratio of alcohol to water consumed, and the total

fluid consumption, were calculated to obtain a preference ratio.

Additionally, half of the animals in each group (N = 5) were

injected with WIN daily for five consecutive days. The alcohol

preference ratio was determined by dividing the amount of

alcohol consumed by the total fluid (alcohol + water)

consumption [21].

Cytokine assay

Mice involved in the acute behavioral experiments were

continuously administered either the vehicle or alcohol for

seven consecutive days. On the eighth day, the mice were

decapitated, and their brains were removed from the skull. To

aid dissection, the brains were promptly frozen in liquid

nitrogen. Specific brain regions containing the hippocampus

were dissected and placed in cell lysis buffer. Using an

ultrasonic homogenizer, the tissue was homogenized. The

resulting homogenates were then centrifuged at 10,000 RPM

for 5 min to separate the tissue debris. Samples of the resulting

supernatants were collected and, after determining the protein

concentration, frozen and stored at −80°C until needed for

cytokine analysis. To profile the expression of IL-1α
(interleukin-1α), IL-1β (interleukin-1β), IL-6 (interleukin-6),

and TNF-α (tumor necrosis factor-α), a Mouse Inflammation

ELISA Strip kit (Signosis, Sunnyvale CA, USA) was employed. In

brief, 100 μL of the diluted cell lysate sample was added to wells

coated with a specific primary antibody against each cytokine.

After incubation for 1 h at room temperature, the wells were

aspirated and washed three times with 200 μL of assay wash

buffer. Subsequently, 100 μL of a biotin-labeled antibody mixture

was added to each well and incubated for 1 h at room

temperature. The wells were again aspirated and washed three

times with 200 μL of assay wash buffer. Then, 100 μL of

streptavidin-HRP conjugate was added to each well and

incubated for 45 min at room temperature. Following

aspiration and another round of washes, 100 μL of substrate

was added and incubated for 10 min, followed by the addition

of 50 μL of stop solution to each well. The optical density

of each well was measured using a microplate reader at

450 nm [21].

Statistical analysis

Data are presented as mean ± SEM. Sigma Plot 12.0 statistical

program was used. Prior to performing the tests, we conducted a

normality test (Shapiro-Wilk) to verify the distribution of the data.

The statistical analysis was performed by the two-way analysis of

variance (ANOVA). Post hoc comparisons of means were carried

out with Tukey’s test for multiple comparisons when appropriate.

We used two-way ANOVA for the analysis of behavioral and

cytokine assay data. Data from the alcohol preference study were

analyzed by using repeated measures two-way ANOVA. The

confidence limit of p < 0.05 was considered statistically

significant. One of the factors of the ANOVA was the genotype

(DAT-Cnr2, Cx3Cr1-Cnr2 or WT mice) and the other factor was

treatment groups (vehicle or alcohol).

Results

Brain CB2Rs modifies locomotor activity
induced by alcohol

We evaluated acute motor activity in C57, DAT-Cnr2, and

Cx3Cr1-Cnr2mice following the administration of 8% alcohol using

an activity monitor apparatus. The results showed significant main

effects for both treatment and genotype (F1, 30 = 70.30, p < 0.001 and

F2, 30 = 81.53, p < 0.001, respectively), as well as a significant

interaction between treatment and genotype (F2, 30 = 16.22, p <
0.001). Post-hoc analysis using Tukey’s test for multiple

comparisons revealed that alcohol administration significantly

increased the total distance traveled in the activity box compared

to the control group treated with vehicle. Interestingly, the results

also indicated that specific deletion of CB2R in dopamine neurons

(DAT-Cnr2 cKO) enhanced alcohol-induced locomotor activity,

with a statistically significant (p < 0.01) increase in the total

distance traveled compared to WT mice. In contrast, the cell-

type specific deletion of CB2R in microglia (Cx3Cr1-Cnr2
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cKO) reduced alcohol-induced locomotor activity, showing a

statistically significant (p < 0.05) decrease in the total distance

traveled compared to WT mice (Figure 1A).

Dopamine andmicroglia specific deletions
of CB2Rs enhance alcohol inducedwheel-
running activity

In this study, we investigated acute wheel running behavior

in C57, DAT-Cnr2, and Cx3Cr1-Cnr2 mice following the

administration of 8% alcohol using a mechanical wheel

running apparatus. The number of revolutions exhibited a

significant association with the treatment groups (F1, 30 =

112.2, p < 0.001) and genotype (F2, 30 = 56.12, p < 0.001).

Post-hoc analysis using Tukey’s test revealed that both the

vehicle and alcohol treatment of DAT-Cnr2 mice resulted in a

significant (p < 0.01) increase in the absolute number of

FIGURE 1
Acute effect of alcohol (0.8 g/kg) on distance travelled
(centimeters) in the activity monitor apparatus (A), on the absolute
number of revolutions in the wheel-running test (B) and on fall
latency (seconds) in the rotarod test (C) in WT, DAT-Cnr2,
Cx3Cr1-Cnr2 mice. Values are mean ± SEM (n = 6 in each group).
Statistical analysis was done using Two-way ANOVA test. **p <
0.01, *p < 0.05 compared to C57-WT group. FIGURE 2

Role of WIN in alcohol preference. WIN significantly reduced
alcohol preference in C57 wild type (A), DAT-Cnr2 (B) and Cx3Cr1-
Cnr2 (C) mice compared to vehicle treated controls. Values are
mean ± SEM (n = 6 in each group). Statistical analysis was
done using Repeated Measures Two-way ANOVA test. ***p <
0.001, **p < 0.01, *p < 0.05.
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revolutions compared to the control group of WT mice

(Figure 1B).

Deletion of CB2R in dopamine neurons
enhances alcohol induced reduction in fall
latency

We examined the ability of mice to maintain their position

on a rotating cylinder following the administration of 8% alcohol.

We employed a constant speed rotarod apparatus for this

assessment in C57, DAT-Cnr2, and Cx3Cr1-Cnr2 mice. The

results showed that cell type specific deletion of CB2R in

dopamine neurons enhanced alcohol induced reduction in fall

latency in the rotarod test of DAT-Cnr2mice, whereas this effect

was not observed in the deletion of CB2R inmicroglia of Cx3Cr1-

Cnr2mice. There was a significant main effect for both treatment

and genotype (F1, 30 = 28.43, p < 0.001 and F1, 30 = 62.52, p <
0.001, respectively). Post-hoc analysis using Tukey’s test

indicated a statistically significant (p < 0.05) increase in fall

latency in DAT-Cnr2 mice compared to the WT controls.

However, the cell-type specific deletion of CB2R in microglia

did not affect the alcohol-induced changes in fall latency when

compared to the WT controls (Figure 1C).

WIN 55,212-2 reduces alcohol preference
in the wild type and cell-type specific
CB2R cKO mice

We further investigated the potential association between

subacute treatment with WIN and alcohol preference. In WT

mice, the results demonstrated a significant effect of both

treatment and time on the alcohol preference ratio (F1, 20 =

79.229, p < 0.001 and F4, 20 = 3.172, p < 0.05, respectively), as

well as a significant interaction between treatment and time (F4, 20 =

6.421, p < 0.05). Post hoc analysis revealed a significant (p < 0.01)

reduction in alcohol preference in mice treated withWIN compared

to the vehicle-treated controls (Figure 2A). Similarly, in DAT-Cnr2

mice, there was a significant effect of both treatment and time on the

alcohol preference ratio (F1, 20 = 233.855, p< 0.001 and F4, 20 = 4.956,

p < 0.05, respectively), along with a significant interaction between

treatment and time (F4, 20 = 9.042, p < 0.001). Post hoc analysis

indicated a significant (p < 0.01) reduction in alcohol preference in

mice treated with WIN compared to the vehicle-treated controls

(Figure 2B). In Cx3Cr1-Cnr2mice, statistical analysis also revealed a

significant effect of both treatment and time on the alcohol

preference ratio (F1, 20 = 68.225, p < 0.001 and F4, 20 = 5.716,

p < 0.05, respectively), as well as a significant interaction between

treatment and time (F4, 20 = 2.812, p < 0.05). Post hoc analysis

demonstrated a significant (p< 0.05) reduction in alcohol preference

in mice treated with WIN compared to the vehicle-treated controls

(Figure 2C).

CB2Rs reduce alcohol induced increase in
pro-inflammatory cytokines in mice
hippocampus

The result form the cytokine study showed both treatment and

genotype significantly affected the expression of TNF-α [treatment

effect: F1, 30 = 29.33, p < 0.001; genotype effect: F2, 30 = 20.51, p <
0.001; treatment X genotype interaction: F2, 30 = 5.43, p < 0.05] and

IL-1β [treatment effect: F1, 30 = 12.27, p < 0.001; genotype effect: F2,

30 = 16.43, p < 0.001; treatment X genotype interaction: F2, 30 = 9.62,

p < 0.01]. Compared to the WT controls, Tukey’s test revealed that

there was statistically significant increase in the levels of TNF-α and
IL-β, as evidenced by enhanced absorbance values, in DAT-Cnr2

and Cx3Cr1-Cnr2 mice treated with alcohol (Figures 3A–D).

Discussion

Due to the neuro-immune functioning associated with the

reward pathway, recently, there is an increasing interest and

attention on CB2Rs as a target for the treatment of drug addiction

[31–34]. The aim of this study was to examine the effect of

genetic and pharmacological modulation, using the non-selective

CBR agonist WIN 55, 212-2, of CB2Rs on behavior and neuro-

immune changes induced by alcohol. The results demonstrate

that cell-type specific deletion of CB2Rs in dopamine neurons

and microglia significantly altered locomotor activity, and wheel

running activity, and on the rota rod performance test. The

results also revealed that cell-type specific deletion of CB2Rs

enhanced alcohol-induced inflammation. In addition,

pharmacologic activation of CB2Rs using WIN 55, 212-

2 reduced alcohol preference.

The results of the current study support our earlier finding

that CB2Rs acts as a “brake” on dopamine neurons’ ability to

activate the locomotor system and that its deletion in DAT-Cnr2

cKO mice improves psychomotor behavior [21, 28, 35]. The

observation that deletion of CB2Rs in DA neurons resulted in

enhanced spontaneous motor activity reinforces the notion that

CB2R mediates inhibition of spontaneous movement via

modulation of the dopamine system, probably through

reduction of neuronal firing frequency [36]. However, in

contrast to the DAT-Cnr2 mice, Cx3Cr1-Cnr2 mice showed a

reduction in locomotor activity compared to the wild type

controls. In vitro and in vivo studies demonstrated that

activation of CB2R decreases inflammation and protect

neurons from degeneration [26, 27]. In this study, the

hypolocomotion observed in the Cx3Cr1-Cnr2 mice might be

due to lack of the neuroprotective effects of CB2Rs from

neurodegeneration.

Alcohol dose, route of administration, and mouse strain all

have an impact on how alcohol affects locomotor activity in mice.

In this work, we discovered that locomotor activity was increased

in both the wild-type and genetically modified mice after sub-
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acute i.p. administration of 8% alcohol. Previous research have

shown that alcohol enhances locomotor activity and locomotor

sensitization [37–42], which is consistent with the findings of the

present investigation.

Our investigation into the subacute effects of the WIN

compound on alcohol preference revealed that it greatly

decreased alcohol intake in DAT-Cnr2 and Cx3Cr1-Cnr2 cKO

mice, providing one piece of support for the idea that CB2Rs are

involved in the behavioral effects of alcohol. In our previous study

we showed that the DAT-Cnr2 cKO mice consumed less alcohol

than wild type mice with and without the stress, suggesting that the

deletion of CB2Rs in DA neurons contributed to the reduction in

alcohol consumption and preference [28]. Studies showed

contradicting result on the effect of CB2Rs on ethanol intake.

Some reported that a naturally available full-agonist of CB2Rs,

beta-caryophyllene (BCP) lowered ethanol intake in the two

bottle paradigm in mutant Cnr2−/− mice [20, 43] whereas, others

reported that sub-chronic injection of JWH015 enhanced alcohol

intake in mice [44, 45]. The variation in response might be due to

different factors such as concentration and route of administration

of ethanol, duration of exposure, strain of animal and the animal

model used in the experiment. However, accumulating data support

a role of CB2Rs in modulating the addictive effects of alcohol

indicating that CB2Rs might be targeted in the treatment of

behavioral impairment induced by alcohol consumption.

Alcohol causes organ damage that affects the liver, cardiovascular

system, and brain. This organ damage is characterized by

inflammation and altered innate immune responses [46–48].

Chronic alcohol consumption results in neuroinflammation [49]

and neurodegeneration in humans as well as animal models, as

evidenced by increased expression of MCP-1, TNF-α, IL-1β and

caspase-3 in the brain [48, 50, 51]. The hippocampus has been

repeatedly affected by the neuroimmune dysregulations induced by

alcohol [52]. Here we report that cell-type specific deletion of CB2Rs

per se and administration of alcohol to CB2R cKOmice increased the

expression of proinflammatory cytokines TNF-α, IL-6, IL-1α and IL-
1β in the hippocampus of mice, which is an evidence for the

neuroprotective role of CB2Rs. The use of CB2R ligands in the

FIGURE 3
Measures of the levels of proinflammatory cytokines TNF-α (A), IL-6 (B), IL-1α (C) and IL-1β (D) in the hippocampus of mice (WT, DAT-Cnr2,
Cx3Cr1-Cnr2) after seven consecutive days of sub-acute treatment with vehicle or alcohol (0.8 g/kg). Statistical analysis was done using Two-way
ANOVA followed by Tukey’s multiple comparisons test. Values are mean ± SEM (n = 4 in each group). **p < 0.01, *p < 0.05. AU – absorbance unit.
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neuroprotective and anti-inflammatory activity linked to

neuropsychiatric and neurodegenerative disorders is based on the

fact that CB2Rs expression is increased during injury and

inflammation, with their upregulation during CNS disorders

providing a basis and focus of attention [33, 53]. Studies showed

that the activation of CB2R is related to decreases in pro-

inflammatory cytokines (TNF-α, interferon gamma (IFN-ɣ), IL-1,

IL-2, IL-6 or IL-12) [21, 54–56]. The outcome of our current

investigation points to a critical role for CB2Rs and

neuroinflammatory processes in alcohol-related neurobiological

and behavioral changes. However, it should be noted that

complete loss of the anti-inflammatory CX3CR1 receptor in

homozygous mice is a potential confounder since this receptor is

important for sustaining normal microglia function and lack of

CX3CR1 reportedly results neurotoxic microglia phenotype. To

prevent alcohol-induced neuroinflammation and related brain

dysfunctions, pharmacological regulation of CB2Rs may be a

focus. In summary, cell-type specific deletion of CB2Rs enhances

psychomotor activity and increases the level of proinflammatory

cytokines in the hippocampus. In addition, pharmacologic

modification of CB2Rs using the WIN 55,212-2 compound

reduced alcohol consumption in mice compared to vehicle.

However, more studies are required to provide additional

molecular and cellular mechanisms associated with neuro-

immuno-eCB modulation of the effects of alcohol and CB2Rs in

autoimmune disorders.
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