
Noncoding RNA therapeutics for
substance use disorder

Seyed Afshin Seyednejad1,2 and Gregory C. Sartor1,2*
1Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States,
2Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States

Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive

neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics

for substance use disorder (SUD) have yet to be clinically tested. Recent advances

in RNA-based drugs have improved many therapeutic issues related to immune

response, specificity, and delivery, leading to multiple successful clinical trials for

other diseases. As the need for safe and effective treatments for SUD continues to

grow, novel nucleic acid-based therapeutics represent an appealing approach to

target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated

in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight

potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
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Introduction

Substance use disorder (SUD) continues to be a worldwide public health crisis (1).

Although many of the underlying mechanisms that drive compulsive drug use have been

elucidated, the number of pharmacological agents that are approved to treat SUD remains

stagnant (2). Current pharmacotherapies for SUD largely consist of small molecule

modulation of neurotransmitter receptor activity (2). While these treatments have shown

some clinical success, many promising therapeutic opportunities will likely be missed if

this narrow focus continues. Thus, to move the field forward and to improve patient

outcomes, novel pharmacological interventions for SUD are greatly needed.

As only 1%–2% of the human genome encodes for protein (3, 4) and many proteins

lack druggable sites for small molecules (5), researchers are turning to nucleic acid-based

treatments to target previously undruggable mechanisms. The recent progress in nucleic

acid chemistry, bioinformatic approaches, and delivery systems has dramatically

improved several issues associated with stability, specificity, and tolerability of RNA-

targeting drugs (6). These advancements have resulted in successful clinical trials and

recent approvals of nucleic acid-based therapeutics by the Food and Drug Administration

(FDA) and the European Medicines Agency (EMA) for various disorders (7, 8).

Additional factors contributing to the rising interest and growth in nucleic acid-based

therapeutics include rationale design, rapid optimization and adaptability to evolving

targets, high selectivity, and potentially longer half-life leading to infrequent

administration (7, 8). While many of these initial therapies aimed to modulate

protein-coding transcripts, more recently, there has been a rising interest in
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developing nucleic acid-based drugs that target noncoding RNAs

(ncRNAs), given their significant roles in cell type-specific

biological processes in both health and disease (9).

In animal models of SUD, several ncRNAs have been shown to

play functional roles in drug-seeking behaviors (10), and in humans,

many genetic variants linked to SUD are located within noncoding

regions of the genome (11). Thus, as the number of putative ncRNA

targets in SUD continues to grow, nucleic acid-based therapeutics will

likely be required tomodulate these novelmechanisms. In this review,

we describe different ncRNA classes involved in SUD, provide an

overview of the modalities used to manipulate ncRNAs, and highlight

ncRNA-based treatment strategies for SUD. We also discuss the

ongoing challenges of ncRNA targeting and provide future

perspectives for ncRNA-based therapeutics in SUD.

Noncoding RNAs in SUD

In humans and other primates, ncRNA expansion has fostered

the intricate regulatory network required for brain evolution and

cognitive advancement (12). ncRNAs are abundantly expressed in

the central nervous system (CNS) where many are transcribed in a

cell type-specific manner (13). In neuropsychiatric disorders,

including SUD, changes in brain ncRNA expression have been

associated with disease pathophysiology (13, 14), and several

ncRNAs have been functionally examined in CNS disease

models (15–17). In SUD, most of the research has focused on 3

classes of ncRNAs: microRNAs (miRs), long noncoding RNAs

(lncRNAs), andmore recently circular RNAs (circRNAs) (Table 1).

In this section, we briefly review the mechanistic roles of miRs,

TABLE 1 Examples of ncRNA modulation in animal models of SUD.

ncRNA Drug Model Region Modality Change Reference

Let-7d Alcohol TBC NAc LV-let7d ↓ Intake (18)

miR-30a-5p Alcohol TBC mPFC AdVs miR-30a-5p ↑ Intake (19)

LNA antimiR-30a-5p ↓ Intake

miR-124a Alcohol TBC and CPP DLS LV-si124a ↓ Intake and CPP (20)

LV-miR124a ↑ Intake and CPP

miR-137 Alcohol EPM AMG LNA-antimiR-137 ↓ Anxiety and consumption behaviors (21)

miR-382 Alcohol TBC NAc AdV-miR-382 ↓ Intake (22)

Let-7d Cocaine CPP NAc LV-silet7d ↑ CPP (23)

LV-miR-let7d ↓ CPP

miR-124a Cocaine CPP NAc LV-si124 ↑ CPP (23)

LV-miR-124 ↓ CPP

miR-181a Cocaine CPP NAc LV-si181a ↓ CPP (23)

LV-miR-181a ↑ CPP

miR-206 Cocaine CPP NAc AntagomiR-206 ↑ CPP (24)

miR-212 Cocaine SA DS LV-miR212 ↓ Intake (25)

LNA-antimiR-212 ↑ Intake

miR-495 Cocaine SA NAc LV-miR495 ↓ Seeking behavior (26)

Gas5 lncRNA Cocaine CPP NAc AAV-Gas5 or HSV-Gas5 ↓ Intake and CPP (27)

circTmeff-1 Cocaine CPP NAc core AAV-siR-circTmeff-1 ↓ CPP (24)

miR-29c METH OFT NAc AAV-miR-29c ↑ Locomotor activity (28)

AAV-antimiR-29c ↓ Locomotor activity

miR-31-3p METH CPP dHIP AAV-miR-31-3p ↑ CPP (29)

AAV-antimiR-31-3p ↓ CPP

miR-128 METH OFT NAc AAV-miR128 ↑Locomotor activity (30)

AAV-antimiR128 ↓Locomotor activity

miR-9 Oxycodone SA NAc AAV-miR-9 ↑ Intake (31)

miR-132 Morphine SA DG LV-miR-132 ↑ Seeking behavior (32)

circTmeff-1 Morphine CPP NAc core and shell AAV-siR-circTmeff-1 ↓ CPP (33)

AAV- circTmeff-1 No effect on CPP

miR-221 Nicotine EEM mPFC LV-miR-221 ↑ Locomotor activity (34)

BDNF-AS Nicotine SA ILC Anti BDNF-IV-AS ASO ↓ Drug-induced Reinstatement (35)

AdV, adenoviral; AMG, amygdala; DG, dentate gyrus; DS, dorsal striatum; DLS, dorsolateral striatum; dHIP, dorsal hippocampus; EEM, enriched environment model; EPM, elevated plus

maze; HSV, herpes simplex virus; ILC, infralimbic cortex; LV, Lentiviral; LNA, locked nucleic acid; METH, methamphetamine; mPFC, medial prefrontal cortex; OFT, open field test; SA,

self-administering; siR, silencer; TBC, two-bottle choice.
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lncRNAs, and circRNAs, and highlight potential therapeutic

ncRNA targets in SUD.

MicroRNAs

MicroRNAs are a class of small noncoding RNAs with a

highly conserved single-stranded sequence of approximately

22 nucleotides (36). Initially, miRs are transcribed into longer

primary transcripts, called pri-miRs. The pri-miR is then

cleaved by Drosha in the nucleus to produce the precursor

miR (pre-miR) before being processed by Dicer in the cytosol

to yield the mature miR. The mature miR is then loaded into

the RNA-induced silencing complex (RISC) where it

hybridizes to the three prime untranslated region (3′-UTR)

of target mRNAs to mediate translational inhibition, cleavage,

or degradation (36). With the ability to modulate 20%–50% of

protein-coding genes, miRs are considered master regulators

of many cellular activities (37–39). Notably, miRs play

essential roles in brain development and neuroplasticity,

and their dysregulation has been linked to the

pathophysiology of most neuropsychiatric disorders (40–42).

In preclinical and clinical SUD studies, many miRs are

dysregulated in reward-related brain regions following cocaine

(25, 26, 43–48), amphetamine (49–51), methamphetamine

(28–30, 52–57), nicotine (34, 58–63), opioid (31, 32, 64–71),

and alcohol use (19, 20, 22, 72–83). SUD-associated miRs and

their underlying mechanisms have been thoroughly reviewed

elsewhere (14, 84). Of the miRs correlated with drug use, several

have been shown to regulate the expression of known SUD

targets that play important roles in maladaptive

neuroplasticity and drug-seeking behaviors (e.g., BDNF, CREB,

MeCP2, CaMKIIa) (14). In particular, miR-212, miR-132, miR-

181, miR-9, and let-7 may be of interest for clinical targeting as

altered expression of these miRs has been observed across

multiple drugs of abuse in human and animal samples (14).

In addition to miR activity in the brain, miR levels in SUD patient

blood samples have been correlated with drug history and relapse

(23, 85–94). Thus, circulating miRs may be a useful auxiliary

measurement for diagnosis and treatment.

While there have been no clinical trials using miR-

targeting therapeutics in SUD patients, several miRs have

been explored functionally in preclinical SUD models

(Table 1). For example, viral-mediated overexpression of

miR-124a in the dorsolateral striatum enhanced alcohol-

induced conditioned place preference (CPP) and increased

alcohol intake, while silencing its expression attenuated CPP

and alcohol consumption (20). In cocaine CPP experiments,

overexpression of miR-124 and let-7d in the nucleus

accumbens (NAc) attenuated cocaine CPP, whereas miR-

181a overexpression enhanced CPP (95). The opposite

effect on cocaine CPP was observed following knockdown

of miR-124, let-7d, and miR-181a in the NAc. In self-

administration studies, overexpression of miR-212 in the

dorsal striatum attenuated compulsive cocaine intake in

the extended-access self-administration procedure (25).

Consistent with these observations, reduced levels of miR-

212 in the striatum were associated with cocaine intake in

addiction-prone but not addiction-resistant rats (96). In

opioid self-administration experiments, overexpression of

miR-132 in dentate gyrus increased morphine-seeking

behaviors (32), while in a different study, overexpression

of miR-9 in the NAc increased oxycodone intake and

reduced inter-infusion interval (31). Overall, these results

indicate that miRs are important therapeutic targets in SUD.

Long noncoding RNAs

Long noncoding RNAs (lncRNAs) are a diverse class of RNA

molecules that are greater than 200 nucleotides in length and are

generally classified based on their genomic location or function

(e.g., intronic, intergenic, antisense, and enhancer) (97). Many

lncRNAs are expressed in a cell-type and tissue-specific manner

and play important regulatory roles in cells by acting as decoy,

guide, scaffold, and/or signaling molecules (97, 98). For example,

lncRNAs have been shown to mediate gene-specific epigenetic

modifications by recruiting chromatin-modifying complexes to

their targets (99, 100). At the post-transcriptional level, lncRNAs

also fine-tune mRNA splicing, stability, and translation (97). In

the mammalian nervous systems, many lncRNAs are highly

enriched within the brain and play essential roles in the

complex spatio-temporal gene expression mechanisms during

brain development and neuroplasticity (98). Consequently,

altered lncRNA expression is inherent to several brain

diseases, including SUD (10).

One of the first attempts to examine a role for lncRNAs in

SUD was made by analyzing lncRNA expression in the NAc of

post-mortem heroin- and cocaine-using subjects (101). Relative

to drug-free controls, an upregulation of MIAT, NEAT1,

MALAT1, and MEG3 lncRNAs was observed in the NAc of

heroin-using subjects, and MIAT, MALAT1, MEG3, and

EMX2OS upregulation was observed in the NAc of cocaine-

using subjects. These well-studied lncRNAs contribute to various

cellular processes, including GABA neuron neurogenesis,

synapse formation, and cAMP signaling (102–104). In rodent

studies, transcriptional profiling of lncRNAs in the NAc of

methamphetamine-treated mice revealed thousands of

lncRNAs that were altered, mostly downregulated by

methamphetamine (105). Further bioinformatic analysis

revealed that several of these lncRNAs act as potential cis- or

trans-regulators of protein-coding genes involved in reward and
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addiction pathways. In other experiments, lncRNAs, including

H19, Mirg, BC1, Lrap, and Gas5 have also been linked to SUDs

(27, 106–110). Although most SUD-related lncRNA experiments

have been limited to correlational data, Xu et al. recently revealed

a functional role for the lncRNA Gas5 in SUD models (111). In

these studies, cocaine exposure (intraperitoneal injections and

self-administration) reduced Gas5 expression in the NAc, and in

behavioral experiments, viral-mediated overexpression of Gas5

in the NAc attenuated cocaine CPP and self-administration. At

the transcriptomic level,Gas5-regulated gene expression patterns

overlapped significantly with genes altered by cocaine exposure,

an indication thatGas5 regulates cocaine-induced transcriptional

responses.

Natural antisense transcripts (NATs) are a class of lncRNAs

that have also been implicated in SUD (112). NATs are

transcribed from the opposite (antisense) strand of a coding

gene and partially or completely overlap with the body,

promoter, or enhancer region of the coding gene. Many genes

involved in drug-induced neuroplasticity contain NATs (113),

and the expression of multiple NATs such as Bdnf-AS, Homer1-

AS, Traf3ip2-AS1, and Prkcq-AS1 is altered by drugs of abuse (35,

113, 114). Therefore, NAT inhibition could be a particularly

useful approach to increase the expression of SUD-related

protein-coding genes. As a proof of concept, researchers have

found that knockdown of Bdnf-AS in the infralimbic cortex via

antisense oligonucleotides attenuated nicotine self-

administration (115), and in other experiments, siRNA-

mediated silencing of Bdnf-AS attenuated ketamine-induced

neurotoxicity (116). Thus, with their high target specificity

and their emerging roles in drug-seeking behaviors, lncRNAs

are promising therapeutic targets for SUD.

Circular RNAs

Circular RNAs (circRNAs) are single-stranded noncoding

RNA molecules produced from pre-mRNAs by a non-canonical

splicing process called back-splicing, resulting in covalently

closed RNA loops. Approximately 20% of mammalian genes

express circRNAs, and while these ncRNAs are present in various

organs, their enriched expression in the brain makes them an

appealing target for the treatment of neuropsychiatric disorders

(117, 118). circRNAs play important roles as transcriptional,

post-transcriptional, and/or translational regulators through

various mechanisms, most notably as a sponge for miRs

(119). Compared to linear RNAs, circRNAs are highly stable

(120), and thus may also mediate long-term effects in several

disease states.

In several recent papers, a role for circRNAs in SUD has been

explored. For example, RNA-sequencing analysis of post-

mortem human NAc samples identified several circRNA–miR

interactions that were associated with alcohol dependence (121),

and in rodent studies, prenatal alcohol exposure was shown to

alter the expression of brain circRNAs in a sex-specific manner

(122). circRNAs are also dysregulated by opioids (24, 33, 123). In

particular, CircTmeff-1, a sponge of miR-541-5p and miR-6934-

3p, was observed to be functionally important for morphine CPP

(24) and more recently for the reconsolidation of cocaine CPP

(124). In other psychostimulant studies, 90 mouse striatal

circRNAs were differentially expressed following cocaine self-

administration (125), and 41 differentially expressed circRNAs

were discovered in the dorsolateral prefrontal cortex of post-

mortem human subjects with cocaine use disorder (126). Finally,

in methamphetamine-induced neurotoxicity models, numerous

circRNAs were significantly altered following methamphetamine

treatment (127), and knockdown of circHomer1 alleviated

methamphetamine-induced toxicity (128). Together, these

initial experiments indicate an important and emerging role

for circRNAs in drug-induced neuroadaptations.

Categories of ncRNA-targeting drugs

Due to significant improvements in safety, selectivity and

delivery, RNA-based pharmaceuticals have received considerable

attention and 14 RNA-based drugs have received FDA or EMA

approval since 2015. See reference (129) for a comprehensive

review of current FDA-approved RNA therapeutics. In addition

to using nucleic acids to target RNAs, researchers have also

developed small molecules that target RNA transcripts, termed

small molecules interacting with RNA (SMIRNAs) (130). While

the initial strategies to target RNAs focused on coding genes,

many preclinical and clinical studies are now using similar

approaches to target ncRNAs (Figure 1). In this section, we

will briefly review the major categories of ncRNA-targeting drugs

and highlight potential therapeutic opportunities for each

platform in the context of SUD.

Antisense oligonucleotides

Antisense oligonucleotides (ASOs) are small, synthetic

single-stranded nucleic acid molecules that hybridize with the

target RNA to alter splicing or translation via steric block or RNA

degradation (7). The smaller size and stringent binding specificity

give ASOs a therapeutic advantage in CNS-related diseases

compared to other nucleic acid drugs (Table 2). Indeed,

several ASOs that are in clinical trials are being used to treat

CNS-related diseases (131). Also, unlike siRNAs, ASOs are able

to increase target protein expression by promoting alternative

splicing, a strategy that is used clinically for Duchenne muscular

dystrophy and spinal muscular atrophy (132).

Unmodified or naked ASOs display significant

immunogenicity, low stability, and are rapidly cleared from

circulation (133). Thus, chemical modifications are necessary

to improve pharmacokinetics and pharmacodynamics of ASO
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FIGURE 1
Schematic overview of RNA-targeting therapeutics and strategies to improve CNS delivery. Top: Multiple approaches exist for targeting
ncRNAs. For miR replacement, miR mimics are used to imitate endogenous miRs activity, whereas antimiRs, miR masks and sponges inhibit
endogenous miR activity. lncRNAs can be targeted with ASOs and siRNAs, leading to their degradation and silencing. SMIRNAs are small molecules
that directly bind to ncRNAs or interfere with ncRNA-protein interactions. Bottom: Nanoparticles, viral vectors, chemical modifications, and/or
bioconjugations can facilitate stability, cellular uptake, and brain delivery of the ncRNA therapeutics. Novel delivery routes, such as intranasal and
intrathecal administration, may also promote CNS delivery and limit systemic toxicities. Some drug-like SMIRNAs are able to cross the blood-brain
barrier without a delivery system via passive diffusion. Figure created using BioRender.

TABLE 2 Characteristics of RNA-targeting drugs for CNS indications.

Characteristics ASOs siRNAs SMIRNAs

Target Nucleic acid Nucleic acid Nucleic acid or protein

Effect on ncRNA Increase/decrease activity Decrease activity Increase/decrease activity

Duration of effect Days to weeks Days to weeks Hours

Specificity and Strength Specific and potent Specific and potent Specificity and potency vary

Lead optimization Rapid Rapid Slow

Drug-likeness Chemical modifications needed Chemical modifications and/or delivery systems needed Drug-like

Route of Administration Usually intrathecal Usually intrathecal Usually oral

Manufacturing cost High cost but lower than siRNAs High cost Lower cost
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pharmaceuticals (for a comprehensive review see (134)).

Common ASO modifications include substitution of a

phosphorothioate (PS) backbone and sugar moiety

modifications at 2′ position (e.g., 2′-O-methyl, locked nucleic

acid, LNA) (134). Though each type of chemically modified

ASOs has advantages and disadvantages, in general, these

modifications increase safety, stability, and affinity while

reducing the need for delivery systems. However, because

most ASOs and other nucleic acids are unable to cross the

blood-brain barrier, intrathecal or intranasal administration is

typically required to target the CNS (135). Currently, there is at

least one ncRNA-targeting ASO undergoing clinical testing for

Angelman syndrome (NCT05127226) after successful in vitro

and in vivo investigations (136). A few SUD-associated lncRNAs

(e.g., MALAT1, MIAT, and BDNF-AS) have been successfully

targeted using ASOs in other preclinical disease models

(137–141), but additional work is needed to determine if these

or other ncRNA-targeting ASO formulations are effective in SUD

models.

siRNAs

SiRNAs are short double-stranded RNAs that attach to RISC,

unfold, and form Watson-Crick base pairing with the target

RNA, leading to argonaute-induced degradation of the transcript

(129). Like ASOs, chemical modifications to siRNAs have

improved their safety and efficacy (142–144) and currently

5 siRNA-based drugs have received FDA or EMA approval

(Patisiran, Givosiran, Lumasiran, Inclisiran, Vutrisiran).

However, in contrast to some ASOs, siRNA platforms depend

on the intracellular machinery for their effects, which may

restrict the type and number of chemical modifications to the

siRNA. Also, in some instances, siRNAs are not as effective at

targeting nuclear RNAs compared to ASOs (145), and because of

their larger size and negative charge, unmodified siRNAs require

the use of a delivery agent to enter the cell (Table 2). To combat

some of these limitations, researchers have developed siRNA

prodrugs (siRibonucleic neutrals, siRNNs) that disguise the

siRNAs’ negative charge by replacing phosphodiesters with

charge-neutral phosphotriesters (146). These siRNA prodrugs

are able to cross the lipid bilayer, and once in the cell, the

phosphotriester group is cleaved off by thioesterases, allowing for

the knockdown to occur.

While most FDA-approved siRNA drugs target the liver,

there has been a growing interest in using novel siRNA

formulations to treat CNS-related disorders. For example,

Regeneron Pharmaceuticals and Alnylam Pharmaceuticals

recently announced a billion-dollar collaboration to develop

siRNA-based drugs for CNS indications (147). Further

supporting the usefulness of siRNA-based drugs for CNS uses,

recent preclinical experiments identified novel, chemically

modified siRNAs that exhibited safe, potent, and long-lasting

gene silencing in the brain of rodents and nonhuman primates

following intrathecal administration (148). Using systemic or

direct brain injections, siRNA-targeting of ncRNAs has been

achieved in animal models of SUD (124, 149, 150), Parkinson’s

disease (151, 152), Alzheimer’s disease (153–155), epilepsy (156,

157) and stroke (158, 159). Thus, with recent FDA approvals,

multiple ongoing, late-stage clinical tests, and promising

preclinical data, siRNA-based therapeutics appear to have a

promising future, but more testing of siRNA formulations for

CNS indications is needed.

miR replacement/suppression

MiR targeting has been achieved using RNA interference

approaches. For example, miR mimics are modified double-

stranded RNA molecules that imitate endogenous miR activity

and bind to the 3′UTR region of the target mRNAs (37). This

approach leads to a downregulation of the target mRNAs via

translational inhibition. On the other hand, antimiRs, miR

sponges, and miR masking techniques are used to reduce miR

activity. Structurally similar to ASOs, miR inhibitors or antimiRs

prevent an endogenous miRs interaction with its target genes.

These single-stranded molecules are usually modified using

locked nucleic acid, peptide nucleic acids, or cholesterol

(i.e., antagomiR) to improve stability, cellular uptake, and in

vivo delivery (134, 160). To inhibit a family of miRs, miR

sponges, synthetic transcripts that contain various

complementary sequences that recognize the seed sequences

of multiple miRs, have also been employed in preclinical

studies (161–163). Finally, in a technique called miR masking,

ASOs bind to 3′UTR sites on a specific mRNA and prevent its

interaction with a complementary miR (21) (Figure 1).

In preclinical studies, researchers have demonstrated the

effectiveness of antimiRs in animal models of alcohol (19,

164–166), cocaine (25, 124), and opioid (167) use disorders

via intrathecal or direct brain injections. In other disease

models, SUD-relevant miRs (miR-34, miR-145, miR-212) have

been targeted with miR mimics (168–170). Although miR-based

therapeutics have yet to be tested clinically in SUD patients,

several miR mimic and antimiR formulations are being tested in

animals or clinical trials for other diseases (171–175). To move

the field of miR-targeted SUD therapeutics forward, researchers

are encouraged to identify miRs that drive relapse and craving

(rather than acquisition of drug-seeking behaviors) and test

clinically relevant miR-targeted formulations in sophisticated

SUD models.

Small molecules interacting with RNAs

Emerging research indicates that the three-dimensional

structure of RNA, which creates well-defined recognition sites
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and motifs, can be selectively targeted with small molecules

(176). Other than directly binding to specific RNAs (including

ncRNAs), SMIRNAs are also able to indirectly affect the RNA

functions by interfering with RNA biogenesis or RNA-protein

interactions (177–179) (Figure 1). Unlike nucleic acid-based

treatments, many SMIRNAs have low molecular weights

(usually <1 KDa) and may be administered orally (180),

important factors for translational applications (Table 2).

However, the likelihood of discovering a small molecule with

favorable drug-like characteristics depends on the selected RNA

target (181). In other words, the RNA must contain a unique

recognition site with considerable structural complexity,

differentiating it from other RNAs to avoid non-specific

binding and side effects. Also, the abundance of the RNA may

influence the efficacy of SMIRNAs (182), a potential issue when

targeting very low expressing lncRNAs.

Despite the aforementioned challenges, several SMIRNAs

have been identified and validated in preclinical studies

(183–189), and in 2020 Risdiplam (an orally available, non-

antibiotic SMIRNA) received FDA approval for the treatment

of spinal muscular atrophy (190). ncRNAs have also been

successfully targeted with SMIRNAs. For example, two studies

have identified SMIRNAs for MALAT1 (191, 192), a lncRNA

that is altered in the brain of heroin and cocaine users and in rats

treated with morphine (101, 193). In other studies, a first-in-

class, clinical-stage quinolone compound, ABX464, was found to

increase the expression of miR-124, a target that has been well-

studied in SUD models (194). This molecule has passed phase I

dose safety trial and phase IIa clinical studies, and although

ABX464 has beenmainly studied in HIV andUlcerative Colitis, it

could also be used to upregulate miR-124 expression in the brain

to reduce drug-induced neurobehavioral adaptations (194). NP-

C86 is another SMIRNA that stabilizes the lncRNA Gas5 (195), a

lncRNA that has been associated to cocaine-seeking behaviors

(111). Finally, the let-7 family, miRs with a known link to SUD,

are suppressed by RNA-binding proteins called LIN28. Recently,

Wang et al. successfully identified six small molecule disruptors

of LIN28 and subsequently let-7 suppression (179). Together,

these studies indicate that targeting ncRNAs with SMIRNAs is a

feasible approach and may have potential utility in SUD.

Delivery systems for ncRNA
therapeutics

Despite several advances, treating CNS diseases with nucleic

acids-based platforms remains a major challenge due to the

blood-brain barrier. Comprised of tight junctions between

brain capillary endothelial cells, the blood-brain barrier

prevents large molecule therapeutics from entering the brain

parenchyma. To circumvent this issue, researchers have

developed several RNA delivery systems that are capable of

entering the brain via intravenous, intrathecal, or intranasal

routes of administration (131, 196–200). Viral vectors and

nanoparticle carrier systems are some of the most promising

strategies for delivering ncRNA therapeutics to the brain and are

discussed below.

Viral vectors

In preclinical studies, viral vectors are widely used to transfer

nucleic acids to brain cells with high efficiency (201). The most

commonly used viral vectors for delivering nucleic acids are

adenovirus, adeno-associated virus (AAV), and lentivirus vectors

(202–204). In neuroscience research, AAVs are especially

popular as different serotypes allow for transduction of

distinct brain cells (205) and projection-specific pathways

(206). Another advantage of viral vectors is the ability to

target disease-related brain cells, using cell type-specific

promoters (207, 208). However, the vast majority of SUD-

related studies that have used viral vectors to manipulate

ncRNAs have done so by direct brain injections, an approach

that may have limited clinical utility. More recently, researchers

have developed viral vectors that are capable of targeting the

brain via more feasible routes of administration. For example,

intrathecal injection of an AAV that expresses an artificial miR

resulted in robust gene silencing with no observed side effects in

nonhuman primates (209). Using the same approach, a case

study in ALS patients also generated promising results (210). In

animal models of Huntington’s disease, intravenous injection of a

novel AAV encoding an artificial miR that targets the huntingtin

(HTT) gene yielded extensive knockdown of HTT across

multiple brain regions with the highest transduction observed

in the striatum (199). Several other studies have also explored

viral-mediated CNS delivery of ncRNAs via intrathecal or

intravenous routes of administration (211–215) and multiple

clinical trials using AAVs in Parkinson’s disease, Alzheimer’s

disease, Batten disease, and Canavan disease patients have been

conducted or in progress (216). In summary, nonpathogenic viral

vectors offer a powerful option for ncRNA-targeted brain

delivery and should be further pursued in SUD patients.

Nanoparticles

Nanoparticle-mediated delivery of ncRNA therapeutics is a

promising approach for the treatment of SUD (217).

Nanoparticles have several appealing properties including,

tunable release rate, biocompatibility, limited toxicity, brain

penetrating capabilities, and adjustable surface modifications

for cell type-specific delivery (218). Many different classes of

nanocarriers have been successfully tested in CNS disease

models, including polymeric, inorganic, exosome, and lipid-

based nanoparticles (219–229), and as an indication of their

safety and efficacy across multiple disease states, several
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nanoparticle formulations have received FDA approval,

including the recent approvals of the Pfizer-BioNTech and

Moderna COVID-19 vaccines (both use lipid nanoparticles for

mRNA delivery) and the siRNA drug Patisiran (230).

Although nanoparticle-mediated brain delivery via systemic

administration remains an ongoing challenge, miR mimic and

antimiR encapsulated nanoparticles have successfully targeted

the brain in multiple CNS disease models following systemic

administration (231–233). For example, intranasal delivery of

extracellular vesicles loaded with miR-124 to cocaine-treated

mice resulted in successful brain uptake and abrogation of

inflammatory markers (234). A more recent strategy for the

delivery of nucleic acids to the brain is to add surface

modifications to the nanoparticles that facilitate transport

across the blood-brain barrier. For example, using sugar-

coated polymeric nanoparticles that bind a major glucose

transporter in the brain called GLUT-1, researchers

successfully targeted coding and noncoding transcripts in the

brain following intravenous administration (225, 235). In other

studies, exosomes with a transferrin binding ligand attached to

the surface effectively delivered antimiRs into the rat brain after

an intravenous injection. Systemic delivery of nucleic acid

payloads to the brain has also been accomplished using rabies

virus glycoprotein (RVG) exosomes and liposomes (236–238),

transferrin-targeted cyclodextrins (239), angiopep-2-targeted

lipid- and polymer-based nanoparticles (240, 241), and

calcium phosphate lipid nanoparticles (242). Thus, as the

number of nanoformulations capable of delivering nucleic

acids to the brain continues to improve, ncRNA nanocarrier

systems warrant further research in SUD models.

Ongoing challenges and outlook

The lipid bilayer is a billion-year-old barrier that prevents

large, charged molecules like RNAs from entering the cell. In

addition to this barrier, there are other formidable obstacles that

protect cells from RNAs including, RNases, the innate immune

system, and for neurons, the blood-brain barrier (243). Despite

these natural defenses, decades of basic science and clinical

research have recently led to multiple FDA-approved nucleic

acid-based therapeutics for various indications (244). However, it

is clear that we are still in the early days of ncRNA therapeutic

development, particularly for SUD, and several issues need to be

addressed to move the field forward. First, most preclinical and

all clinical experiments exploring ncRNAs in SUD are

correlational studies. Additional functional studies that target

conserved ncRNAs in sophisticated SUDmodels will be essential

to identify the ncRNA targets with the highest translational

potential. Also, as low-quality sequence data have incorrectly

annotated some ncRNAs (245, 246), SUD-associated ncRNAs

should be thoroughly characterized and validated as true

ncRNAs before being pursued therapeutically. To facilitate

therapeutic developoment, multiple bioinformatic tools have

been created to predict ncRNA targets and assist with

characterization and safety (245, 247). Second, rather than

studying the ncRNAs involved in the acquisition of drug-

seeking, researchers should focus on ncRNA mechanisms that

drive drug craving, relapse, and withdrawal, as such targets are

likely more relevant to promote abstinence and recovery in

humans. Also, as different cells and circuits may exert

contrasting effects in the context of SUD, additional cell-type

specific studies are needed to identify the most promising ncRNA

targets. Third, instead of injecting RNA-based therapeutics

directly into the brain in preclinical models, researchers are

encouraged to test clinically relevant routes of administration

for ncRNA treatments. For example, multiple studies have

demonstrated the promise of intranasal administration as a

way to bypass the blood-brain barrier (196, 197, 231,

248–253). Intrathecal injections of modified ASOs and

siRNAs and nanoparticle-containing nucleic acids have also

achieved high brain uptake in preclinical and clinical studies

(131, 200, 254) and should also be employed in SUD

experiments. Finally, using nucleic acids, nanoparticles, and/or

AAVs that contain ligands or surface modifications to promote

brain and/or cell type-specific delivery is an approach to enhance

CNS uptake and avoid potential side effects (7, 217, 247,

255–257). N-acetylgalactosamine (GalNac), a biomolecule

conjugate that promotes liver-specific uptake of RNA-targeted

therapeutics, is a prime example of how such modifications can

facilitate tissue-specific uptake. Additional research is needed to

determine whether similar opportunities exist to enhance CNS-

specific delivery.

An additional strategy to move the field forward is to

repurpose or test clinical-stage nucleic acid-based therapeutics

that may also have relevance to SUD. For example, several

companies have developed miR mimics or antimiR that target

miRs linked to SUD (28, 53, 64, 73, 74, 82, 83, 258–260). Also,

SMIRNA databases (e.g., R-BIND, infoRNA) (261, 262) could be

used to identify compounds that target SUD-relevant ncRNAs,

an appealing translational approach as small molecules typically

have a better physicochemical profile compared to nucleic acids.

These databases also consist of clinically tested small molecules,

providing drug repurposing opportunities for rapid translational

applications. Additionally, the abused substance itself may create

opportunities for nucleic acid-based treatments. For example, the

disrupted blood-brain barrier caused by chronic

methamphetamine use (263) may allow for RNA-based drug

delivery via less invasive routes of administration, a hypothesis

that merits further exploration.

Although many promising opportunities are listed above,

multiple clinical trials using RNA-based treatments have been

withdrawn due to severe side effects or limited efficacy (18, 247,

264). These failures may serve as lessons learned for future SUD

therapeutics. For instance, in preclinical studies, MRX34, a

liposome-delivered miR-34a mimic for treatment of solid
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tumors, showed favorable efficacy and safety profile (265, 266).

However, when injected systemically in humans, MRX34

induced severe immune-related side effects and death in

some patients causing the clinical trial to be terminated

(264). MRX34 was designed to target the low-pH

environment in tumors, but preclinical studies indicated

that it also accumulates in the bone marrow and other

organs, potentially impacting immune cell activity (267).

This incident highlights the need for a thorough risk

assessment of all organ systems following systemic

administration of RNA therapeutics. In another example,

oblimersen, a phosphothiorate-modified ASO targeting

BCL2 mRNA, showed promise in preclinical experiments

but lacked efficacy in multiple clinical trials (268, 269).

Further analyses revealed that several off-target effects of

oblimersen were related to the phosphothiorate

modification, as these off-target effects were not observed

with the same ASO that lacked this modification (270–272).

On a related note, the RNA payload may also alter the

efficacy of the delivery vehicle. For example, nanoparticle

tropism has been shown to change based on the type of cargo

(273). Thus, going forward, each RNA modification along

with the delivery vehicle should be carefully assessed for

efficacy and safety before moving to human subjects.

Dosing is another major issue that needs to be addressed in

ncRNA-targeting therapeutics, as many ncRNA studies have

used supraphysiological concentrations that may lead to

unpredictable side effects (247, 274). For example, high doses

of miR mimics can cause off-target effects by saturating RISC,

potentially blocking the activity of unrelated miRs and triggering

a cascade of side effects. As a prerequisite for clinical studies,

future experiments should establish dose-dependent on- and off-

target effects of the ncRNA therapeutic in both control and

pathological conditions. To address dose-dependent toxicities,

metronomic ncRNA therapy is an approach used in cancer in

which frequent low doses of the ncRNA therapy are administered

(usually in combination with conventional treatments) to avoid

excessive toxicity or immunogenicity (275). Similar strategies

could also be investigated for efficacy and safety in SUD studies.

Finally, the exorbitant price of RNA-based therapeutics is a

continuing issue that needs to be addressed, particularly for

SUD patients that may lack sufficient means to purchase these

costly drugs. Ongoing efforts to address these concerns will open

the door for ncRNA SUD therapeutics.
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