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Alcohol misuse has deleterious effects on personal health, family, societal units, and global
economies. Moreover, alcohol misuse usually leads to several diseases and conditions,
including alcoholism, which is a chronic condition and a form of addiction. Alcohol misuse,
whether as acute intoxication or alcoholism, adversely affects skeletal, cardiac and/or
smooth muscle contraction. Ethanol (ethyl alcohol) is the main effector of alcohol-induced
dysregulation of muscle contractility, regardless of alcoholic beverage type or the ethanol
metabolite (with acetaldehyde being a notable exception). Ethanol, however, is a simple
and “promiscuous” ligand that affects many targets to mediate a single biological effect. In
this review, we firstly summarize the processes of excitation-contraction coupling and
calcium homeostasis which are critical for the regulation of contractility in all muscle types.
Secondly, we present the effects of acute and chronic alcohol exposure on the contractility
of skeletal, cardiac, and vascular/ nonvascular smooth muscles. Distinctions are made
between in vivo and in vitro experiments, intoxicating vs. sub-intoxicating ethanol levels,
and human subjects vs. animal models. The differential effects of alcohol on biological
sexes are also examined. Lastly, we show that alcohol-mediated disruption of muscle
contractility, involves a wide variety of molecular players, including contractile proteins,
their regulatory factors, membrane ion channels and pumps, and several signaling
molecules. Clear identification of these molecular players constitutes a first step for a
rationale design of pharmacotherapeutics to prevent, ameliorate and/or reverse the
negative effects of alcohol on muscle contractility.

Keywords: alcohol, alcoholism, ethanol, muscle contractility, myopathy, negative inotropism, vasoconstriction,
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INTRODUCTION

Alcohol (ethyl alcohol; ethanol) has been part of the human diet for approximately 9,000 years and
remains one of the most consumed beverages globally (1, 2). While there is still some controversy on
the beneficial effects of moderate alcohol consumption, it is established that alcohol misuse has
deleterious effects on personal health, family and societal units, and global economies. In 2016 alone,
2.8 million deaths were attributed to alcohol use disorders (AUD) (3). Additionally, the levels of
alcohol intake during moderate to heavy drinking (e.g., during binge drinking–see below-), were
almost double that of levels considered legal intoxication in most societies (3). A survey from 2019
revealed that 25.8% of Americans over the age of 18 admitted to participating in binge drinking
within the previous month (4, 5). Importantly, there are different ranges for drinking levels between
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men and women, with “a drink” consisting of 14 g of pure alcohol
(6). For biological men, moderate drinking is defined as two
drinks per day while fifteen or more per week constitutes heavy
drinking. For biological women, however, one drink per day
defines moderate drinking while eight or more per week reflect
heavy drinking (7). Thus, binge drinking reflects 5 drinks for men
or 4 drinks for women over a 2 h period, which corresponds to a
blood alcohol concentration of 0.08% (8).

Most studies on the negative effects of alcohol abuse on the
body involve biological males. However, there is compelling
evidence that some of the adverse effects and deleterious
consequences of alcohol abuse (e.g., development of cirrhosis
and hepatitis at an earlier age, aberrant anabolic signaling
pathways and decreased protein synthesis), are more severe in
biological females (9–11). These differences are largely a
consequence of sex differences in the bioavailability of ethanol,
which is determined by absorption, distribution, metabolism and
elimination (ADME) processes. Indeed, it has been documented
that all ADME processes contribute to determine the increased
susceptibility of women to alcohol-induced myopathies and
diseases (9, 12, 13). Before ethanol enters the bloodstream, it
is firstly metabolized in the gastrointestinal system by gastric
alcohol dehydrogenase (ADH). Despite exhibiting higher liver
oxidation and overall elimination of ethanol when compared to
men (9), women exhibit lower gastric ADH activity. Overall, the
extent of alcohol first-pass metabolism is greater in men than in
women what results in higher blood alcohol levels of ethanol for a
protracted length of time in females (12, 14).

In both sexes however, alcohol abuse (i.e., increased alcohol
intake as result of higher frequency of drinking and/or
increased amount of alcohol per session) usually leads to
many diseases, including establishment of the chronic
condition of alcoholism, alcoholic liver disease, oral cavity
and esophageal cancers (15–18). In particular, alcohol abuse,
whether acute or chronic, adversely affects skeletal, cardiac
and/or smooth muscle contraction and eventually leads to
various myopathies (15, 18–20). In skeletal muscle, acute
alcohol intoxication causes symptoms such as muscle
weakness and swelling while chronic abuse causes
intensifying muscle pain, chronic inflammation and loss of
muscle mass which, at the skeletal fiber level, have been
related to micronutrient deficiency and mitochondrial
dysfunction (18). In the cardiovascular system, moderate to
heavy alcohol consumption can lead to hypertension,
arrhythmias, stroke and even heart failure, with
dysfunction of the contractile machinery contributing to
these outcomes (7, 15–18). Likewise, the contractile
function of both vascular and non-vascular smooth muscle
is disrupted by alcohol abuse (21–28). With some notable
exceptions to be discussed under subheadings below, it is
reasonable to advance that alcohol actions on the contractility
of all muscle types (skeletal, cardiac and smooth muscle) are
primarily carried out by ethanol itself, irrespective of alcoholic
beverage type and ethanol metabolites (15,16). Being that
ethanol is a very simple molecule, it is considered a
“promiscuous ligand”, i.e., able to interact with multiple
molecular targets and simultaneously interfere with varied

cell signaling mechanisms to evoke a define cellular effect
(29). Ethanol-myocyte interactions are not exception.

Under the next subheading, we introduce the reader to a brief
overview of skeletal, cardiac and smooth (vascular and
nonvascular) muscle contraction, with a focus on participating
molecules and mechanisms at the myocyte level. Then, we
describe the effects of alcohol on these elements which in turn
impact muscle contraction, and the eventual development of
alcoholic myopathy in the different types of muscular tissue.

MUSCLE TYPES AND THEIRMECHANISMS
FOR CONTRACTION

In developed mammals there are three major types of muscle:
skeletal, cardiac and smooth muscles. Succinctly, skeletal muscles
move body parts (mainly bones to which they are attached via
tendons) resulting in motion. The cardiac muscle or myocardium
pumps blood through and from the heart to the periphery, and
smooth muscles constrict or relax to keep a necessary state of
partial muscle contraction (myogenic tone) for proper organ
function, e.g., for proper flow of blood from vessels to organs. All
three types of muscle, however, contain contractile proteins such
as actin, myosin, troponin and tropomyosin which generate
physical force, resulting in muscle contraction (30–33).
Skeletal and cardiac muscles are called striated muscles
because actin and myosin are arranged in complex arrays
called sarcomeres. In contrast, the actin and myosin in smooth
muscle are not arranged in sarcomeres, and the total amount of
contractile protein is 25% less than what is found in striated
muscles (31, 32). With respect to size, striated muscle myocytes
are much larger in size than their vascular smooth muscles
counterparts. In general, smooth muscle cells retain some
proliferative capability unlike striated muscles which are
essentially post-mitotic (32).

In all muscle cell types, the second messenger Ca2+ is involved
in many essential processes such as gene regulation, apoptosis,
autophagy and cell survival (34, 35). In particular, the increased
availability of Ca2+ into the cytosol, from extracellular Ca2+ influx
and/or Ca2+ release from intracellular stores, is essential to
generate contraction in both striated and smooth muscles.
Therefore, cytosolic Ca2+ levels are tightly buffered, which
largely results from this ion being sequestered in intracellular
organelles that include the endo/sarcoplasmic reticulum (ER/SR),
mitochondria and lysosomes (34–40).

Inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine
receptors (RyR) are the main intracellular Ca2+ release channels
embedded in the ER/SER membranes (34, 36–38). Both receptor
families evolved from a common ancestor and share ∼40%
homology (34, 35). Moreover, both receptor types form large
homo-tetrameric complexes when inserted into membranes.
However, their functions and downstream consequences are
highly specialized and distinct even within a given cell type.
Both IP3Rs and RyRs have three isoforms; RyR1, RyR2 and RyR3
are the skeletal-, cardiac- and brain-“specific” isoforms of RyR (it
should be noted, however, that RyR3 have a more widespread
expression, including vascular smooth muscle; see below). Their
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corresponding IP3R1, IP3R2 and IP3R3 isoforms however, are
expressed inmany different tissues; IP3R1 is themost abundant in
most cell types while IP3R2 is most highly expressed in cardiac
tissue (34, 35).

RyR-mediated Ca2+ release from SR stores is the central
mechanism that leads to contraction of striated fibers while
IP3Rs play a more substantial role in the contraction of
smooth muscle (36, 38–40). The mechanisms involved in
RyR1 and RyR2 function/regulation in skeletal, cardiac and
smooth muscle have been widely studied; however, less is
known about RyR3 (41–43). In turn, the main targets of
IP3R-mediated Ca2+ release are the mitochondria, which in
turn regulates cell metabolism, lysosome activity and
autophagy. IP3R is modulated by a canonical IP3R signaling
pathway along with other regulatory proteins (34–37).

E-C Coupling in Striated Muscle and
Smooth Muscle Cells
Excitation-contraction (E-C) coupling describes the events
starting from the generation of an action potential (AP) to
muscle contraction, and is a mechanism utilized by all three
muscle types. In striated muscles (skeletal and cardiac),
depolarization via AP reaches the so-called t-tubules

(i.e., transverse tubules), which are specialized regions of the
sarcolemma that protrude deep into the cell. Herein, the
depolarizing wave activates L-type voltage-gated (Cav1.1/
Cav1.2) Ca2+ channels (also known as dihydropyridine
receptors: DHPR), which are abundant in the t-tubules (44,
45). However, E-C coupling in heart and skeletal muscle is not
identical. In skeletal myocytes, depolarization-activated DHPR
mechanically engage with sarcoplasmic RyR1 through protein-
protein interactions, leading to RyR1 activation and eventual
release of sarcoplasmic Ca2+ into the cytoplasm and therefore
skeletal fiber contraction (Figure 1). In addition, the
mitochondria are packed tightly around the contractile
proteins and are also connected to the SR membrane. These
interactions are critical for E-C coupling and Ca2+ homeostasis
to occur because mitochondria supply the critical energy
mediator ATP and also collect some of the Ca2+ released by
RyR1 (46, 47). In cardiac fibers, there is no evidence of direct
physical coupling between DHPR and RyR. The depolarization-
dependent activation of DHPR, however, leads to Ca2+ influx,
with this Ca2+ thus being bound by sarcoplasmic RyR2, which
then releases Ca2+ from the SR (Figure 2). This process has been
termed Ca2+-induced Ca2+ release (CICR). While E-C coupling
is different in cardiac and skeletal myocytes, RyR activation in
both striated muscles results in the release of Ca2+ from SR

FIGURE 1 | Alcohol actions on skeletal muscle myocyte contractility. In skeletal muscle myocytes, E-C coupling is mediated by the physical interaction between
DHPRs on the t-tubules and RyR1 on the SRmembrane; membrane depolarization activates DHPRs leading to their mechanical coupling with and eventual activation of
RyR1, which in turn releases Ca2+ from SR stores. The resulting influx of Ca2+ into the cytoplasm causes the activation of troponin C, which activates tropomyosin leading
to a change in its conformation and allowing myosin and actin to associate resulting in muscle contraction by way of a “power stroke”. Here and in all other figures,
the main actions of acute and chronic ethanol consumption are shown with black numbers on white background and with yellow numbers on gray background,
respectively. Acute ethanol consumption/administration causes decreasedmicronutrient absorption and protein synthesis while increasing RyR1-mediated Ca2+ release
and the production of ROS. Chronic ethanol consumption/administration exacerbates the aforementioned effects and leads to increased SERCA re-uptake of Ca2+ into
the SR, disruption of mitochondrial architecture and the predisposition to and development of skeletal muscle atrophy, which is thought to involve ethanol-induced
upregulation of the proto-oncogene c-Myc. Abbreviations: DHPRs, dihydropyridine receptors; NCX, Na+/Ca2+-exchanger; ROS, reactive oxygen species; RyR,
ryanodine receptors; SERCA, SR Ca2+ transport ATP-ase; SR, sarcoplasmic reticulum; t-tubules, transverse tubules.
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stores and an ∼10x increase in the cytoplasmic concentration of
Ca2+ (34, 45).

In smooth muscle, both IP3Rs and RyRs participate in
Ca2+-release and muscle contraction, via mechanisms
comparable to the CICR utilized by cardiomyocytes
(Figure 3) (34–40, 48–50). In vascular smooth muscle,
however, the close vicinity between sarcoplasmic RyR2
(and likely RyR3 as well) and Ca2+/voltage-gated K+

channels of big conductance (BK channels) located in the
sarcolemma leads to BK channel-mediated Spontaneous
Transient Outward Currents (STOCs), which oppose
depolarization, blunt Ca2+-influx and thus, oppose smooth
muscle contraction while enabling myocyte relaxation and
vasodilation. A RyR-generated, local Ca2+ transient that
activates a STOC is termed a “Ca2+ spark” (51–54). In
addition to the IP3R- and RyR-mediated Ca2+ release
mechanisms, all muscle types undergo a so-called “Ca2+

leak” from ER/SR Ca2+ stores, which is a process critical to
prevent Ca2+ overload in the ER/SR (55–57).

In short, the release of Ca2+ into the cytoplasm of skeletal,
cardiac and smooth muscle myocytes by RyRs and IP3Rs, is

coupled to the activation of contractile proteins and muscle
contraction as outlined below (30, 32, 33).

Contractile Proteins and Generation of the
“Power Stroke”
The increased Ca2+ availability resulting from mechanisms
succinctly described in the previous section leads to binding of
these ions by contractile proteins present in all muscle types. In
striated muscle, actin, myosin, troponin and tropomyosin are the
main effectors of muscle contraction (30, 32, 33). During the
resting (relaxed) state, tropomyosin physically blocks any
interaction between actin and myosin. The influx of Ca2+ into
the cytoplasm activates troponin by inducing a conformational
change in its structure (30, 32, 33). This change in troponin leads
to its interaction with tropomyosin, which ultimately removes the
latter from actin filaments. Actin then attaches to myosin leading
to the creation of cross bridges, which are the point at which actin
begins to slide across the myosin filaments in an ATP-dependent
manner. This motion, called a “power stroke”, shortens the
muscle cell resulting in contraction (30, 32, 33).

FIGURE 2 | Alcohol action on cardiomyocyte contractility. E-C coupling in cardiomyocytes occurs via calcium-induced calcium release (CICR). DHPRs are
activated by depolarization of the cardiac myocyte membrane (sarcolemma) causing them to release a small amount of Ca2+ into the cytoplasm. This Ca2+ then activates
RyR2, leading to Ca2+ influx from SR stores and an exponential increase in the intracellular Ca2+ concentration. Ca2+ then binds and activates troponin C which activates
tropomyosin, allowing the physical interaction betweenmyosin and actin. The points of interaction between these two contractile proteins are called “cross bridges”
and allow myosin heads to slide across actin filaments, resulting in a “power stroke” and myocyte contraction. Both acute and chronic alcohol consumption lead to
negative inotropic effects (diminished contractility). The effects of acute ethanol consumption/administration include: decreased proteostasis (decreased protein
synthesis and altered function etc.), increased ROS production and oxidative stress, decreased Ca2+ handling (see main text), increased SERCA activity and increased
NO

•
production. NOX2 signaling and CAMKII activity were shown to be involved in ethanol-induced increase in ROS production. Chronic ethanol consumption/

administration exacerbates these effects. In addition, other effects are observed such as increased autophagy and significantly decreased protein levels of SERCA, NCX,
CYP-2E1, iNOS and PLB. The significant increase in ROS production and oxidative stress was shown to be linked to the ethanol-mediated upregulation of JNK2 and
ASK-1 signaling pathways. These alcohol-induced negative inotropic events serve to reduce cardiac contractility and increase susceptibility to the development of
various cardiomyopathies such as AF. Abbreviations: ASK-1, Apoptosis signal-regulating kinase 1; CAMKII, Ca2+ calmodulin-dependent protein kinase II; DHPRs,
dihydropyridine receptors; JNK2, c-Jun NH (2)-terminal kinase; NCX, Na+/Ca2+-exchanger; PKA, protein kinase A; PLB, phospholamban; PP1, protein phosphatase 1;
ROS, reactive oxygen species; RyR, ryanodine receptors; SERCA, SR Ca2+ transport ATP-ase; SR, sarcoplasmic reticulum; t-tubules, transverse tubules.
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Unlike striated muscles, smooth muscle cells do not contain
troponin. Instead, phosphorylation of myosin regulatory light
chains (RLC) governs smooth muscle contraction (30, 33, 58).
Ca2+ activates calmodulin (CaM), which in turn phosphorylates
myosin light-chain kinase (MLCK). MLCK then phosphorylates
myosin RLC leading to the formation of cross bridges with actin,
thus resulting inmuscle contraction.While not predominant, this
mechanism also operates in cardiac myocytes (30, 58).

To prevent a permanent state of muscle contraction, the
intracellular Ca2+ concentration is diminished immediately after
cell contraction (59–61). This results in the reversion of troponin to
its original conformation, thereby allowing tropomyosin to bind
actin and prevent its association with myosin, with the myocyte
returning to its resting state. Thus, Ca2+ removal from the myocyte
is tightly regulated and involves diverse ion channels and pumps
(30, 59–61). The most critical element in replenishing ER/SR stores
with Ca2+ is the activity of the SR Ca2+ transport ATP-ase (SERCA);
which actively pumpsCa2+ from the cytoplasm into the intracellular
SR stores. Ca2+ uptake by SERCA is tightly regulated by
phospholamban (PLB) in the heart and smooth muscle (59–62).
PLB interacts with SERCA to decrease Ca2+ uptake, however this is

reversed upon PKA-mediated phosphorylation of PLB, and the
resumption of SERCA-mediated Ca2+ uptake (59–61). Apart from
SERCA, cytoplasmic Ca2+ is also transported to the extracellular
space by the sarcolemma Ca2+-ATPase pump and the Na+-Ca2+-
exchanger (NCX) pump (57).

Collectively, the summary above highlights the wide variety of
molecular entities involved in muscle contraction (ion channels,
ionic pumps, contractile proteins and/or their regulatory proteins).
Therefore, they are all putative molecular targets of ethanol which
mediate, or at least contribute to, alcohol-induced disruption of
muscle contraction in the three different muscle types. Indeed,
many ion channels have been identified as potential molecular
targets of ethanol, in particular those contributing to intracellular
Ca2+ homeostasis (23, 42, 63–65). The ffects of ethanol on the
mechanisms directly involved in E-C coupling, intracellular Ca2+

homeostasis and regulation of contractile proteins in muscle cells
are the main foci of the following subsections.

Alcohol and Skeletal Muscle
The physical signs of alcohol abuse include impaired motion,
skeletal muscle atrophy (loss of skeletal muscle mass) and muscle

FIGURE 3 | Alcohol action on smooth muscle myocyte contractility. E-C coupling in smooth muscle myocytes occurs via calcium-induced calcium release (CICR)
mechanisms as seen in cardiomyocytes. However, Ca2+-release leading to contraction occurs signficantly via IP3Rs. DHPRs are activated by depolarization of the smooth
muscle myocyte membrane causing RyR2 and IP3Rs to release a small amount of Ca2+ into the cytoplasm. Unlike striated myocytes, troponin and tropomyosin are not
involved in the coupling of myosin and actin; instead, Ca2+ ions bind to CAM which phosphorylates MLCK leading to its association with actin, resulting in a “power
stroke”. In vascular smooth muscle, RyR2 (and possibly RyR3 as well)-induced release of Ca2+ generates the so-called “sparks” which activate BK channels, leading to
membrane repolarization and vasodilation. In smoothmuscle myocytes, alcohol has been reported to cause both contraction and relaxation according to the type of muscle
(vascular/ non-vascular), concentration of alcohol used and other conditions. The effects of acute ethanol consumption/administration include: increased ROS and NO

•

production (aorta, coronary, cerebral and mesenteric arteries), decreased BK channel activity (aorta, cerebral arteries), increased Kv channel activity (coronary arteries),
decreased RyR activity (cerebral arteries), increased EDGF activity (mesenteric arteries) and increased PLA2 activity (bladder). Many of these events are exacerbated after
chronic ethanol consumption/administration which additionally causes increased uterine artery diameter, decreased ROCK pathway activity (lungs), increased ET-1 levels
(carotid arteries, vas deferens) and dysregulation of nutrient andwater absorption in the gut. Abbreviations: BK channels, big K+ channels; CSA, cross sectional area; DHPRs,
dihydropyridine receptors; EDGF, endothelium-dependent hyperpolarizing factor; ET-1, endothelin 1; IP3R, inositol trisphosphate receptor; NCX, Na+- Ca2+-exchanger;
PLA2, phospholipase A2; PLB, phospholamban; ROS, reactive oxygen species; ROCK, Rho-associated protein kinase; RyR, ryanodine receptors; SERCA, SR Ca2+

transport ATP-ase; SR, sarcoplasmic reticulum; STOCs, Spontaneous Transient Outward Currents; t-tubules, transverse tubules.
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weakness (66). Remarkably, alcohol-induced skeletal myopathies
significantly outnumber inherited myopathies (18,66,67). The
pathological consequences of acute alcohol abuse include
muscle tissue breakdown with the release of muscle content
into the blood and elevated levels of creatinine kinase and
myoglobin, decreased micronutrient absorption and reduced
protein synthesis (18, 66–68). These abnormalities are also
observed after chronic alcohol abuse, which additionally
evokes further muscle dysfunction, impaired muscle
regeneration, increased risk for muscle injuries, muscle
weakness, pain, and localized atrophy (11, 18, 66–68).

Despite this plethora of signs and symptoms, the most common
effect of alcohol-related skeletal myopathies is skeletal muscle
atrophy, which is present in over 50% of chronic alcohol users
(69). The main driver of alcohol-induced skeletal muscle atrophy is
thought to be the decline in protein synthesis, though the exact
mechanisms of these ethanol actions in skeletal muscle are unknown
(66–69). In particular, the levels of proteins that participate inmuscle
contraction and elasticity, such as nebulin, titin and myosin heavy
chain protein, have been shown to be significantly decreased (11, 68).
Moreover, ethanol-mediated upregulation of reactive oxygen species
(ROS) has also been identified as a major player in the damage of
proteins, inhibition of protein synthesis and upregulation of
proteolysis in skeletal muscle (66, 70, 71). Crowell et al. (2019)
(68) compared the effect of chronic and acute alcohol consumption
on murine skeletal muscle mass and function. In this experimental
model, acute alcohol administration (a single dose) did not impair
skeletal muscle function, in contrast to what has been seen in
humans (72). In turn, chronic ethanol administration to mice
significantly decreased muscle contractility and shortened the
time taken for muscles to become fatigued (68). In humans,
alcohol-induced atrophy, though reversible upon abstinence, can
become permanent without the cessation of drinking (18, 66, 68).

In contrast to the wealth of knowledge about the different
subcellular mechanisms by which alcohol affects cardiac and
smooth muscles, such information is scarce for skeletal
muscle. Regardless of the molecular underpinnings, it is
established that ethanol affects not only skeletal myofibrillar
function but also their structural organization (47, 66, 69).
Collectively, gene expression of growth and fibrotic factors is
decreased, autophagy and ubiquitin-proteasome pathways are
dysregulated, inflammation and oxidative stress are induced, and
mitochondrial function is perturbed (66, 69). Indeed,
mitochondria have been particularly identified as targets for
ethanol actions in the muscle (47). In C. elegans, which has
muscle structures comparable to mammalian striated muscles
(69), ethanol exposure disturbed mitochondrial architecture,
upregulated stress response genes and induced oxidative and
ER stress. Upregulation of the mitochondrial unfolded protein
response system (UPRmt), however, alleviated these deleterious
alcohol-induced effects, thereby improving mitochondrial
function and skeletal muscle contractility (69).

Alcohol and E-C Coupling in Skeletal Muscle
Regarding the different mechanisms that control Ca2+

homeostasis in skeletal fibers, Ohlendieck et al., (2003) (73),
revealed that chronic alcohol administration increased

SERCA1 and Ca2+-ATPase protein levels. In turn, Cofan et al.
(1995) (74) showed a depletion of intracellular Ca2+ when muscle
was exposed to ethanol (20–200 mM). Studies on RyR1
modulation by ethanol, however, are scarce. More importantly,
the available studies differ in methodology, experimental
conditions and results, making it difficult to reach a definitive
conclusion on ethanol-mediated regulation of RyR1 function. For
example, acute administration of ethanol (2–20 mM), increased
Ca2+release from heavy SR fractions isolated from rabbit skeletal
muscle (41). Moreover, preliminary data from our laboratory
showed that ethanol (50–100 mM) was able to increase the
steady-state activity of recombinant RyR1 reconstituted into
artificial phospholipid bilayers (75). These data indicate that
RyR1 is a pharmacological target of ethanol at concentrations
reached in blood during alcohol intoxication. The contribution of
this alcohol action to skeletal fiber contractility, however, remains
to be determined. In contrast to the activatory effects of alcohol
on RyR1 considered above, pre-treatment of bullfrog SR vesicles
with 2.2–217 mM ethanol had no effect by itself, yet Ca2+ release
increased significantly in the presence of both 2.2 mM ethanol
and caffeine. Moreover, Cofan et al. (1995) (74) showed that acute
exposure to ethanol (20–200 mM) depleted the intracellular Ca2+

concentration of resting cultured rat myocytes while chronic
exposure failed to do so, indicative of “ethanol tolerance.”

Influence of Sex on Alcohol-Induced Skeletal
Myopathies
Studies on the alcohol-related skeletal muscle atrophy are
predominantly focused on males. However, the deleterious
outcomes of ethanol consumption on skeletal muscle function
in women are more severe, despite ingesting lower concentrations
of ethanol (7, 9–11, 68). It was shown that women at early stages
of chronic alcohol abuse possessed decreased levels of titin and
nebulin proteins and displayed diminished cross-sectional area of
muscle fibers when compared to their male counterparts (11).
This sex-sensitive mechanism of skeletal muscle atrophy has been
investigated further; there is some evidence of a connection
between the proto-oncogene cMyc and skeletal muscle atrophy
(76). Indeed, chronic ethanol administration resulted in the
upregulation of c-myc expression. This was proposed to be a
downstream effect of ethanol-induced corticosteroid expression,
which impairs catabolism in skeletal muscle (76). However
further investigation needs to be done to confirm these
findings and to establish the subcellular mechanisms by which
ethanol disrupts skeletal muscle contraction.

Alcohol and Cardiac Muscle
There is much debate among researchers about the role of alcohol
on the cardiovascular system. However, the general consensus is
that both chronic and acute consumption of large concentrations
of alcohol have deleterious effects on cardiac function,
contractility in particular, and increase the risk for developing
cardiac conditions such as atrial fibrillation (AF), myocardial
infarction, and chronic heart failure (7, 15, 19, 57, 77–79). In
contrast, the consumption of low quantities of alcohol is generally
believed to offer some protection against cardiovascular disease
(78). These viewpoints are discussed below.
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Acute vs Chronic Alcohol Consumption
Episodic consumption of large quantities of alcohol such as
during “binge-drinking” can cause the onset of cardiac
arrhythmias, the most common of which is atrial fibrillation
(AF) (20, 57, 78, 79). In fact, it has been widely observed that
otherwise healthy individuals often developed AF or other
arrhythmias after indulging in binge drinking during
vacations, holidays or weekends. This observation led to the
coinage of the terms “Holiday Heart Syndrome” (HHS) or
“Party Heart Syndrome” (20, 78, 79). HHS symptoms include
chest pain, fainting and shortness of breath, though some affected
individuals may be asymptomatic (78).

The overarching hypothesis that chronic consumption of low
to moderate levels of alcohol may play a cardioprotective role,
however, has been often termed the “French Paradox” (7, 15, 78,
80–84). This term was derived from the observation that,
compared to their counterparts in other developed societies,
equivalent French populations presented lower mortality rates,
despite the presence of risk factors for developing cardiovascular
disease (elevated cholesterol, diabetes, hypertension, etc.,). The
French, however, are known for regular (daily) consumption of
low amounts of ethanol, usually in the form of red wine (rather
than episodic drinking of beer) (7, 78, 83). While the relationship
between alcohol intake and risk of cardiovascular events does
follow a “J” shape, suggesting cardiovascular protection at low
ethanol concentrations (7), a major contention is centered around
the exact components of alcohol involved in its cardioprotective
effects. Some studies have indicated that ethanol itself is the
critical component in providing cardioprotection (80, 84) while
others point to the importance of anti-oxidant compounds, more
abundant in red wines, such as resveratrol and polyphenols (81,
82). However, the methodology used in collecting these
epidemiological data, such as insufficient randomization of the
studies, has been criticized (85). Furthermore, recent studies have
shown that even low doses of alcohol can increase the risk for
developing AF (86).

Molecular Mechanisms Behind Alcohol-Induced
Cardiac Dysfunction
Several changes at cellular and subcellular levels occur in response
to acute and chronic alcohol consumption. At the cellular level,
alcohol-induced cardiac dysfunction presents as impaired
proteostasis (i.e., altered protein homeostasis), diminished
intracellular Ca2+ handling and signaling, increased oxidative
stress and increased apoptosis, all of which contributing to
reduced cardiac contractility (87–89). However, the overall
impairment of cardiac function, usually referred to as alcohol-
induced cardiomyopathy, involves not only cardiac muscle
components but also endothelial, neural and circulating factors
(15, 16, 77).

Nevertheless, alcohol is indeed able to exert negative
inotropism on cardiac muscle, independently of endothelial,
neural, metabolic or circulating factors (16, 56, 87, 89, 90).
Some of the biochemical players involved in mediating
ethanol-induced negative ionotropic events in cardiac muscle
include ROS (H2O2, O2

−), reactive nitrogen species (nitric oxide:
NO•), ion channels and associated proteins, such as SERCA,

RyR2 and phospholamban (PLB), and acetaldehyde itself (88,
91–96). These molecular players all serve to disrupt Ca2+

signaling, which in turn disrupts E-C coupling and thus leads
to reduced cardiac contractility (10, 56, 57). The molecular
mechanisms used by these entities to mediate ethanol-induced
disruption of E-C coupling are described below.

ROS, Reactive Nitrogen Species, Ion Channels and the
Perturbation of E-C Coupling in the Myocardium
The oxidation of ethanol is carried out by three main enzymes:
alcohol dehydrogenase, catalase, and CYP-2E1 (91–95). Alcohol
dehydrogenase (ADH) and aldehyde dehydrogenase 2 family
member (ALDH2) both oxidize alcohols to aldehydes and
ketones (91, 95), catalase breaks down H2O2 to water and
oxygen (96) and CYP-2E1 converts ethanol to acetaldehyde
(93,95). These enzymes have been linked to the negative
inotropic effects of ethanol via the production of ROS, which
are critical biochemical players in the disruption of skeletal (13,
18, 66, 70, 71), cardiac (56, 88, 94, 96) and smooth muscle
function (24, 97, 98).

Mitochondria play an important role in Ca2+ sequestration
and EC-coupling and are the main source of ROS production
(99). Ethanol has been shown to target the mitochondria, where it
disturbs the structure and function of the mitochondrial
membrane and its overall function as an organelle. One of the
critical mitochondrial enzymes involved in ethanol metabolism is
ALDH2, which is highly expressed in cardiac myocytes and serves
to metabolize acetaldehyde (99, 100). The downstream
consequences of ethanol-induced mitochondrial dysfunction
are increased apoptosis and necrosis (99) thus leading to a
decrease in the contractile tissue mass.

The acute exposure of ALDH2-knockout mice to ethanol led to
significantly increased acetaldehyde production, impaired
mitochondrial function, and decreased myocyte contractility
when compared to wild type mice (101). In the case of
chronic ethanol administration, ALDH2 transgenic mice
exhibited improved Ca2+ handling and homeostasis, increased
cell shortening, and decreased apoptosis, with apoptosis signal-
regulating kinase 1 (ASK-1) and CREB activity also being
implicated in this phenotype (102). Likewise, Brandt et al.
(2016) (103) showed that acetaldehyde upregulated NADPH
oxidase-2 (NOX2), which has been linked to the onset of
heart failure via augmentation of ROS production. However,
in stark contrast to the preceding findings, low levels of
acetaldehyde were found to play a cardioprotective function
via a mechanism involving ALDH2 (100).

Catalase is expressed in the myocardium, albeit in lower
quantities in comparison to other organs. Still, it serves to
metabolize the harmful and unstable H2O2 (96). Using
ventricular myocytes from transgenic mice, Zhang et al.,
(2003) (96) showed that catalase overexpression diminished
the negative inotropic events induced by acute ethanol
administration. Moreover, RyR expression was upregulated
and myocardial E-C coupling was improved owing to
enhanced Ca2+ handling. These authors also found that
protein expression of the Na+/Ca2+ exchanger (NCX) which
removes intracellular Ca2+, was upregulated. There was no
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change however, in SERCA, PLB or DHPR expression/activity.
Furthermore, AKT signaling was also increased, revealing a
possible cardioprotective role of this pathway (104).

Following acute ethanol exposure, transgenic mice expressing
the ADH gene, experienced enhanced inotropic events, such as
aberrant Ca2+ handling and decreased cell shortening, as
compared to wt FVB mice (91, 105). These results indicated
the involvement of increased acetaldehyde levels in the onset of
negative inotropic events and the dysregulation of cardiac
contractility. Additionally, it was shown that simultaneous
inhibition of catalase and ADH ablated the negative inotropic
effects induced by acute ethanol consumption in female rats,
further underscoring the involvement and importance of these
enzymes to the deleterious effects of ethanol and acetaldehyde on
cardiac muscle (95).

NO• is a gaseous signaling molecule produced endogenously
from the breakdown of L-arginine by NO• synthetases (NOS).
There are three NOS isoforms: endothelial (eNOS), neuronal
(nNOS) and inducible (iNOS), which regulate the activity of
many proteins involved in cardiac Ca2+ homeostasis and E-C
coupling, such as L-type Ca2+ channels (DHPR), PLB,
phosphodiesterase and RyRs. Therefore, NOS and NO• are
important regulators of cardiac contractility (106). Deng and
Dietrich (2007) (97) showed the effect of NO• production by
iNOS on cardiac contractility. Ethanol was shown to bind and
inhibit iNOS activity which then augmented cardiac contractility.
iNOS also plays an important role in age-related ethanol-induced
cardiac dysregulation (106). Acute ethanol administration
induced negative inotropic effects in young mouse hearts but
positive inotropic effects in the hearts of senescent mice.
Senescent mice exhibited increased iNOS activity, hence
ethanol -mediated inhibition of iNOS activity is more
pronounced in old mice and may offer a cardioprotective
effect (106).

Another pathway involved in acute consumption of heavy to
moderate concentrations of alcohol is the c-Jun NH (2)-terminal
kinase (JNK2) signaling pathway, which is normally activated in
response to cellular stress (107). High concentrations of ethanol
were shown to increase susceptibility to AF. Ethanol-induced
upregulation of JNK2 activity in human and rabbit hearts resulted
in amplified phosphorylation of CaMKII. Under physiological
conditions, activated CaMKII phosphorylates PLB, causing its
dissociation from SERCA, thereby facilitating Ca2+-leak from the
SR (62). Upregulation of CaMKII activity, therefore, increases
SERCA-mediated Ca2+-leak, ultimately leading to abnormal Ca2+

waves and disruption of E-C coupling (107). Moreover, CYP-2E1
inhibition also revealed the involvement of the JNK and ASK-1
pathways as mediators of the negative inotropic events induced
by chronic alcohol administration to mice (88).

The Effect of Ethanol Consumption on Ion Channels
and Eventual Ca2+ Handling
Direct exposure of human atrial muscle strips and mouse
ventricular myocytes to ethanol, whether acute or chronic,
resulted in the development of the typical hallmarks of
negative inotropy, such as perturbed Ca2+ homeostasis (56, 87,
90, 107). Human atrial cardiomyocytes acutely exposed to 1–6%

ethanol displayed severe Ca2+ leak from SR stores, decreased
amplitudes of Ca2+-transients, decreased myofilament Ca2+-
sensitivity, and increased NCX activity and SERCA-mediated
Ca2+ reuptake into the SR. Altogether, these changes led to
aberrant E-C coupling and negative inotropism by alcohol
(56). In addition, the PI3K/Akt pathway was shown to exert
some influence over the oxidative stress induced by acute alcohol
consumption (108). It was also postulated that ethanol disturbed
intracellular Ca2+ homeostasis by favoring RyR2-mediated Ca2+-
leak, thus reducing the amount of Ca2+ to be released from the SR
upon stimulation (56). Additionally, the NOX2 pathway and
CAMKII activity were shown to be involved in the ethanol-
induced upregulation of ROS production in the heart (56, 103,
109, 110). Previous findings from our lab indicated that RyR2 had
an ethanol-sensing region and thus intoxicating concentrations of
ethanol (18–100 mM) inhibited RyR2 activity (65). The
contribution of this ethanol action to alcohol-induced
depression of cardiac contractility, however, remains to be
determined.

Lastly, it is important to underscore that the morphological
and contractile effects of acute ethanol administration on human-
induced pluripotent stem cell-derived cardiomyocytes (Hi-PSC-
CMs) mimicked many of the effects seem in animal models (111).

Depressed cardiac contractility is also observed after chronic
ethanol consumption (87, 88, 93, 104, 112). In FVB mice for
example, chronic administration of 4% alcohol caused the classic
hallmarks of negative inotropism. However, SERCA levels were
decreased (104), in contrast to the upregulated SERCA activity
observed after acute ethanol administration (56). Moreover, the
protein levels of CYP-2E1, iNOS and PLB increased while NCX
levels were downregulated (88). However, these changes in
protein levels, along with the aberrant Ca2+-handling were
significantly ablated in FVB mice expressing an IGF-1
transgene (104). Furthermore, CYP-2E1 and the JNK2 and
ASK-1 signaling pathways were implicated in the ethanol-
induced upregulation of ROS production after chronic ethanol
exposure (88).

The data discussed so far clearly underscores the negative
effects of acute and chronic alcohol consumption on cardiac
muscle contraction. However, there seems to be a transition
period between these two stages of AUD when considering
cardiac muscle function (113). Using rat ventricular myocytes,
the cardiac effects of ethanol exposure were monitored for
different intervals (acute exposure � 10–20 min vs. chronic
exposure � 1 and 3 months). Results revealed that the
negative inotropic effects of chronic ethanol exposure were
biphasic between 1- and 3-months. Both acute and chronic
alcohol, however, caused the development of events in
ventricular myocytes leading to negative inotropy,
i.e., decrease in Ca2+ transient amplitude, Ca2+ rate of rise
and decay of Ca2+transients. However, at the 1-month
timepoint, indicators of positive inotropy such as increased
cell shortening and the augmentation of Ca2+ amplitude were
observed. In turn, authors concluded that ethanol-mediated
decrease in SR load was the main determinant of the
sustained negative inotropy in response to chronic alcohol
consumption (113).
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Acetaldehyde and Cardiac Dysfunction
Acetaldehyde is the first product of ethanol metabolism (10, 87,
94). Like ethanol, acetaldehyde impairs E-C coupling in cardiac
muscle via two main mechanisms. Firstly, acetaldehyde binds
proteins to form “protein adducts” which are unstable, non-
functional and immunogenic, and are therefore degraded via the
ubiquitin proteasome pathway or autophagy (10, 87, 94). It has
been noted that persons suffering from cardiac disorders produce
antibodies against these acetaldehyde-associated protein adducts,
as well as functional proteins (10, 87, 94). Secondly, acetaldehyde
is known to induce negative inotropic events in the heart and is
considered to be more potent than ethanol itself, owing to its
enhanced bioreactivity with other compounds (91, 100–103).
Increased acetaldehyde production disrupts the delicate
balance between oxidants and antioxidants. For example,
acetaldehyde can be further metabolized to form ROS through
the activity of superoxide dismutase, aldehyde oxidase or
xanthine oxidase to produce the highly unstable O2

− (99).
Like ethanol, acetaldehyde also attenuates cardiac contractility

(7, 87). For example, O2
− reacts with NO• to form the highly

reactive ROS peroxynitrite which has been shown to damage
contractile proteins and many enzymes critical to mitochondrial
function (94, 97). Various animal studies have shown that the
overexpression and knockdown of ALDH2 served to attenuate
and augment the effects of both acetaldehyde and O2

−

respectively. Acetaldehyde also modulates PLB protein levels
(93) and intracellular Ca2+ handling (16,87,101).

Influence of Sex on Alcohol-Induced Cardiac
Myopathy
Men and women exhibit differences in both ethanol metabolism
and the pathogenesis of cardiac myopathies (10, 11, 114).
Compared to men, women are more vulnerable to the toxic
effects of ethanol abuse (10, 11). Subsequent to acute exposure,
Duan et al., (2003) (10) observed that female mice were more
sensitive to acetaldehyde-induced hypo-contractility than males.
This increased sensitivity is believed to be closely related to
estrogen (10, 115). Though there is limited data on the cross
reactivity of estrogen and acetaldehyde-induced cardiac activity,
estrogen is known to modulate the metabolism of acetaldehyde
and increases the production of NO•. Cardiac function is
heavily modulated by NO• and the release of this ROS
augments both ethanol and acetaldehyde-induced cardiac
hypercontractility (10).

In the epithelial cells of vascular muscle, estrogen increases
NO• production which then augments ethanol-induced effects,
therefore this may be the case for cardiac muscle. Females may
produce more NO•, and may therefore be more prone than males
to the deleterious effects of alcohol consumption. These
conclusions indicate that both ethanol and its metabolite
acetaldehyde attenuate cardiac contractility and these effects
can be more potent in women than men (114).

There are many diverse pathways and components involved in
the development of cardiomyopathies as a result of ethanol
consumption. While the exact mechanisms involved are still
unknown, there are many intriguing lines of research that can
be explored.

Alcohol and Vascular Smooth Muscle
While popular knowledge identifies alcohol as a vasodilator,
detailed examination of the scientific literature and data from
our laboratory challenge this proposition. Indeed, alcohol has
been reported to evoke both smooth muscle (SM) relaxation/
vasodilation and SM contraction/vasoconstriction depending
upon species, vessel type and whether vessels under
examination were intact or endothelium-denuded.
Additionally, the responses of vessels to alcohol can be
attributed to ethanol itself and its vasoactive metabolites, such
as acetaldehyde. Indeed, the role of acetaldehyde as a peripheral
vasodilator (i.e., skin vessels) and thus mediator of the so-called
“alcohol flush” or “oriental flush” in individuals who carry the
ALDH2*2 allele, is well established (116–118). Moreover, dilation
of arteries by toxicologically relevant concentrations of ethanol
has been reported in several vessels, including rat spleen (119)
and ewe uterine arteries (120), fetal baboon middle cerebral
arteries (MCA) (121), and rat portal veins (122).

In turn, the evidence that toxicologically relevant levels of
alcohol induce SM contraction and thus vasoconstriction is
overwhelming. In vitro findings have demonstrated that
alcohol constricts rat cerebral arteries (21, 23, 123, 124),
mouse MCA (123–125), rat intracerebral arterioles (126), aorta
(127) and coronary arteries (21), dog (128) and pig coronary
arteries (129) and human umbilical artery (21). Likewise,
abundant in vivo data have documented the ability of
toxicologically relevant alcohol concentrations to evoke
vasoconstriction across different vessel types and species.
These include: rat (27, 98), sheep (130) and human cerebral
arteries (128), rat skin arteries (119) and human placental
vessels (131).

In contrast to the current state of affairs of the literature
dealing with skeletal and cardiac muscles, to our knowledge there
is no data from studies testing for any possible sex-induced
difference in alcohol-induced modulation of SM contractility.

Aorta and Coronary Arteries
In the aorta, as in several other vessels (see above), ethanol has
been reported to evoke SM contraction and relaxation and thus,
vasoconstriction and vasodilation respectively, depending upon
species and experimental conditions. Rat aorta strips are
constricted by ethanol through a PKC- and calmodulin-
dependent mechanism (127). Likewise, acute ethanol
administration (1–800 mM) leads to contraction of aortic SM
cells, in this case via production and release of ROS (O2

− and
H2O2) from the vessel walls. ROS release in turn, increased the
intracellular Ca2+concentration via a mechanism that is
independent of endothelium and involves the cyclooxygenase
(COX) pathway (98).

However, the presence of the endothelium cannot solely
explain the differential effects of ethanol on aortic diameter
and SM tone. For example, in rat aortic rings pre-contracted
with either KCl or phenylephrine, Ru et al., (2008) (132) showed
that acute administration of 0.1–7% ethanol evoked dilation in
both intact and endothelium-denuded thoracic aorta rings; with
this effect being more potent in the latter (132). These authors
also reported that 2-APB and dantrolene (inhibitors of IP3R and
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RyR respectively), both caused a significant decrease in ethanol-
induced aortic dilation, underscoring a possible link between the
release of Ca2+ from SR stores and ethanol-induced SM relaxation
in the aorta. In contrast, Tirapelli et. al. (2006) (133), showed that
phenylephrine-induced contraction was augmented in rat aortic
rings isolated after chronic administration of 20% (v/v) ethanol.
In turn, ethanol levels reflective of mild drinking (2–25 mM) were
shown to evoke dilation of both intact and denuded rat aortic
rings. This alcohol effect was mediated by ROS-dependent
activation of NO• as a consequence of eNOS upregulation by
ethanol (24). This study also showed that rat aortic SM cells
(VSMCs) could themselves produce NO•, which in turn caused
vasodilation via the cGMP pathway. Furthermore, catalase (a
H2O2 scavenger), Tiron (an O2

− scavenger), and L-NAME (a
nonselective NOS inhibitor) attenuated this ethanol-induced
aortic relaxation (24). Likewise, withdrawal from chronic
ethanol exposure depressed the contractility of endothelium-
denuded aortic rings from rats (134). This reduction in SM
tone was independent of O2

− and H2O2 signaling, yet it was
suggested that the COX-2 pathway could be involved, in a
mechanism that was not endothelium-dependent (24).

It is possible to advance that the signaling molecules that
participate in ethanol-induced dilation of the aorta, may act upon
ion channels which regulate VSMC membrane excitability and
thus SM tone. Some voltage-dependent K+ channels and ATP-
sensitive K+ channels are indeed involved in ethanol-induced
aortic dilation (54, 135). Regarding SM BK channels, critical
determinants of vascular myogenic tone and diameter (54), acute
exposure to ethanol (10–100 mM) of native (136) or recombinant
bslo1 isoform (137) channels from bovine aortic SM
reconstituted into planar lipid bilayers led to a powerful
decrease in channel activity, an ethanol action that would lead
to increased SM tone and aortic constriction. However, the
contribution of ethanol inhibition of BK channel activity to
aortic SM tone and diameter is yet to be determined.

With regards to coronary arteries, KV channels have been
demonstrated to regulate arterial tone and their activity is
modulated by the MAPK signaling pathway (27, 135). Ethanol
has been shown to upregulate MAPK activity and decrease KV

channel currents, leading to vasoconstriction (27). In addition,
inhibition of the MAPK pathway ameliorated ethanol-induced
vasoconstriction, thereby positioning the MAPK signaling
pathway as a possible therapeutic target in AUD (27).

Mesenteric Arteries
Both ethanol and acetaldehyde have been shown to evoke dilation
of intact superior mesenteric arteries (SMA) (28,134,138).
Acetaldehyde-mediated vasodilation, however, was more
potent than that of ethanol (28). A central role for the
endothelium in ethanol-induced dilation of mesenteric arteries
is underscored by data from Yuui et al. (2019) (138) who showed
that chronic administration of moderate levels of ethanol to
rats enhanced the activity of an endothelium-dependent
hyperpolarizing factor (EDHF) pathway, thereby promoting
vascular relaxation. In addition, Jin et al. (2019) (28) showed
that ethanol dilation of intact SMA may be mediated through the
activity of NO• and guanylyl cyclase, the latter being a main target

of EDHF. However, relaxation of SMA in response to ethanol was
also evoked in de-endothelialized vessels (129, 132).

In contrast to the findings described in the previous paragraph,
pre-treatment of intact mesenteric resistance arteries from mice
with either ethanol or acetaldehyde leads to increased efficacy of
the vasopressor phenylephrine (i.e., favoring mesenteric artery
constriction) (139). The molecular mechanisms underlying this
ethanol action remain to be established.

Carotid Arteries
Chronic ethanol consumption has been shown to impair carotid
artery relaxation via upregulation of the potent vasoconstrictor
endothelin-1 (ET-1) (133). Of note, ET-1 is involved in pro-
inflammatory and mitogenic processes, and its dysregulation has
been implicated in several disorders of the cardiovascular system
(140, 141). The study by Tirapelli et al. (2006) (133) showed that
chronic administration of 20% (v/v) ethanol led to enhanced ET-
1 production in endothelium-intact rat carotid rings, which in
turn increased carotid artery constriction. Additionally,
phenylephrine-induced contraction was not enhanced further
in the presence of ethanol. The exact mechanism by which
ethanol influences ET-1 activity is unknown. However, while
neither the pre- nor post-transcription production of ET-1 was
unchanged, the protein levels of the ETB receptor which regulates
dilation in carotid arteries was significantly decreased (133).

Cerebral Arteries
As described and referenced in the beginning of this section,
constriction of cerebral arteries in response to acute exposure to
toxicologically relevant concentrations of ethanol (10–100 mM)
is widespread, and is observed across different species and vessel
types (e.g., cortical vessels, parenchymal arterioles, etc.). This
drug action is largely mediated by ethanol itself rather than its
vasoactive metabolites. It is important to underscore that heavy
alcohol consumption has been linked to the induction of brain
hypoperfusion in humans (142), systemic arterial hypertension
(the main risk factor for stroke), and cerebral events including
cerebral infarction and/or hemorrhage (23).

As outlined previously, Ca2+ plays a critical role in the
regulation of smooth muscle contraction and vascular tone,
including that of cerebral arteries (25, 123, 125, 143). Thus, it is
not surprising that most studies pursuing a mechanism(s) to
explain alcohol-induced cerebrovascular constriction have
focused on ion channels and signaling molecules that control
Ca2+ homeostasis in these vessels. For example, Yang et al.
(2001) (143) observed that ethanol-induced constriction of
canine basilar arteries was modulated by both SR Ca2+-
release (via InsP3 or RyR) and extracellular Ca2+ influx via
voltage-gated Ca2+-channels. Ca2+ release from SR stores was
transient while extracellular Ca2+ influx into the cytoplasm was
prolonged, with both events mediating basilar artery
constriction. While activation of voltage-gated Ca2+-channels
would lead to cerebral artery constriction, there is no such
evidence from available literature. In fact, our laboratory
demonstrated that ethanol at concentrations that constricted
MCA (50 mM) failed to modify voltage-gated Ca2+-channel
activity in MCA SM (23).
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In cerebral artery SM, however, Ca2+/voltage-gated K+ of big
conductance (BK) channels play a key role in controlling Ca2+

homeostasis, myogenic tone and cerebral artery response to
vasomodulators (23, 52, 54, 61). BK channels are activated by
membrane depolarization and/or local vasodilatory Ca2+ signals
(termed “sparks”) that are released from activated SR RyR
channels. Eventually, activated BK channels generate
spontaneous transient outward currents (STOCS) which lead
to repolarization of the membrane, inactivation of VDCCs and
inhibition of external Ca2+ influx. The cumulative results of these
events are the blunting of SM contraction while relaxation and
vasodilation are favored (52, 54, 144).

Using freshly isolated myocytes from rat MCA and isolated
vessel segments, our laboratory demonstrated that inhibition of
MCA STOCS and eventual MCA constriction by intoxicating
levels of ethanol (50 mM) did not involve alcohol metabolites
and was independent of the endothelium. Rather, this effect was
due to ethanol-induced inhibition of both RyR-generated
sparks (23, 65) and β1 subunit (encoded by KCNMB1)-
containing BK channels (23, 125). Indeed, KCNMB1-/- mice
exhibited a significant reduction in ethanol-induced inhibition
of BK-induced STOCs and its resulting vasoconstriction (125).
These results identified the BK β1 subunit as a possible
therapeutic target to counteract alcohol-induced inhibition
of SM BK channels and its associated cerebrovascular
constriction, a proof-of-principle being obtained both
in vitro and in vivo data with celastrol, a neuroprotective
agent (145).

Remarkably, IP3-mediated Ca2+ waves were not affected by
toxicologically relevant levels of ethanol (23), therefore
underscoring the selectivity of alcohol actions towards SR RyR
and BK channels. In follow-up studies (65), we also documented
that toxicologically relevant ethanol concentrations reduced the
steady-state activity of recombinant RyR2 (the isotype that
prevails in MCA SM (146). Equivalently, this effect was also
shown using an RyR2 truncation mutant consisting only of the
channel functional core and its activation domain (75). These
results suggest that RyR2s present a delimited region that senses
the presence of ethanol.

Alcohol, however, interacts with many endogenous
compounds to exert its effects on cerebral arteries. Thus, some
endogenous molecules may actually protect against the ethanol-
induced increase in SM contraction and its associated cerebral
artery constriction. Cholesterol (CLR), for example, alleviated
ethanol-mediated contraction of myocytes isolated from MCA
and eventual vessel constriction in mice through a mechanism
that was not dependent on BK β1 subunits (25). This CLR-
mediated protection was further confirmed using mice that
were maintained on a high fat diet; when both statins and
50 mM ethanol were co-administered, CLR levels were
pointedly decreased in excised MCAs. This CLR-mediated
vascular effect was accompanied by significantly increased
arterial constriction (123, 147), and shown to be associated
with PKC signaling pathway(s).

However, the enhancement of SM tone and cerebrovascular
constriction by alcohol, is not limited to RyR, BK channels and
their interconnecting signaling. The transient receptor potential

cation channel subfamily V member 1 (TRPV1) is widely
expressed in arterial blood vessels and is another ion channel
that modulates ethanol-induced cerebrovascular activity (124).
Ethanol and the stimulant caffeine are usually consumed together
and it has been demonstrated that TRPV1 participates in the
actions of both caffeine and ethanol in MCA. Their co-
administration revealed the protective effect of caffeine against
ethanol-induced MCA constriction, which was suggested to
occur via a mechanism involving NO•-mediated activation of
TRPV1 (124, 148). Taken together, our findings underscore the
central role of TRPV1 in the vasoactive properties of two of the
most widely consumed recreational drugs in the world: caffeine
and alcohol.

Uterine Arteries
Pre-and peri-natal alcohol consumption increases the risk of
impaired fetal cognitive functions and the development of Fetal
alcohol syndrome (FAS) (149). However, a critical part of
pregnancy is the remodeling of the uterine SM arteries,
which facilitate the delivery of nutrients and gases to the
developing fetus. In a healthy mother, this remodeling is
characterized by the enlargement of the CSA of uterine
arteries and a decrease in the media:lumen ratio (26, 150,
151). Chronic ethanol consumption restricts this uterine
remodeling and increases myogenic constriction via
unknown mechanisms. These developments are indicative of
artery remodeling (26, 150, 151) and increase the risk of fetal
undernutrition, miscarriage, low birth weight and the
development of FAS (26). Furthermore, impaired ROS
signaling is a mediator of ethanol-induced dysregulation of
muscle contractility, and increased iNOS and NO•

production have been implicated in the development of
FAS (97).

Alcohol and Non-Vascular Smooth Muscle
The effects of alcohol on non-vascular smooth muscle are diverse
and differ among tissue types or even within the same tissue.
These differences are primarily observed according to the
duration of ethanol exposure (acute or chronic) and the
concentration of ethanol used. Below, we outline the
prevailing wisdom on the ethanol-induced effects on non-
vascular smooth muscle contractility, and the known
mechanisms by which this is facilitated.

Gastrointestinal Tract
Alcohol abuse has many deleterious effects on the entire
gastrointestinal tract. Some of these outcomes include;
duodenal hemorrhage, and damage to the mucosal lining thus
causing impaired gut permeability and increased endotoxin levels
(152). In turn, these processes upregulate inflammatory
mediators such as macrophages, resulting in a pro-
inflammatory milieu. Acute alcohol consumption is associated
with improper absorption of glucose, amino acids, deficiencies in
vitamins such as B12, B6, vitamins C, A, D, E and K, and an
overload of intracellular iron stores. In addition to these effects,
chronic alcohol consumption causes malabsorption of
macronutrients (carbohydrates, proteins and lipids), as well as
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increased absorption of H2O and Na+ in the small intestine
resulting in diarrhea.

The interplay between ethanol and different reactive nitrogen
intermediates has been of particular interest to researchers (153,
154). The vast majority (∼95%) of the ethanol that reaches the
liver is oxidized, thereby allowing its elimination form the body
(9, 12, 13, 153). Ethanol metabolism also occurs in the stomach,
where O2

− and NO• interact to produce the potent oxidizing
agent peroxynitrite. The nitrosation of ethanol by peroxynitrite,
produces the potent vasodilator ethyl nitrite (153, 154). Using
gastric fundus strips, Gago et al., (2008) (154) showed that
administration of nitrite (NO2

−), the precursor of NO•, caused
minor vasodilation. In contrast, acute ethanol exposure resulted
in minor vasoconstriction. However, co-administration of the
two compounds resulted in a significant increase in vasodilation
owing to the formation of ethyl nitrite. The authors therefore,
concluded that their findings demonstrated the protective effect
of wines and brandy in the gut, when consumed in moderation
(154). For further discussion of the vascular effects of ethanol on
the GI or other body systems, please see the section on vascular
smooth muscle.

It has also been demonstrated that ethanol causes both
relaxation and constriction in a dose-dependent manner
(155–157). Low concentrations of ethanol (25–100 mM)
decreased smooth muscle contractility in both human, cat and
canine esophageal muscle (155). This hypo-contractility was
believed to be caused by the inhibition of Ca2+ influxes.

Conversely, data obtained in guinea pigs, showed that a higher
ethanol concentration (342mM) caused gastric smooth muscle
constriction (156). The high ethanol concentration was reflective
of the levels found in the gut due to the direct diffusion of ethanol
across the mucosal surface, as compared to the lower ethanol levels
found in blood. The authors advanced that this ethanol-induced
constriction occurred through a phospholipase A2 (PLA2)-
mediated mechanism, since PLA2 inhibitors decreased this effect.
However, the specifics of this mechanism are still unknown.
Likewise, 20–500mM ethanol caused constriction of both
longitudinal and circular smooth muscles of guinea pigs (156).
This action was shown to be dependent on extracellular Ca2+

and believed to be mediated via a tyrosine kinase signaling pathway.

Bladder
There is limited information about the mechanism(s) by which
alcohol dysregulates smooth muscle contractility in the bladder
since the relationship between alcohol and bladder cancer is the
primary focus of research (158). Impaired detrusor contractility
(IDC) is a condition which manifests as intermittent voiding
(emptying of the bladder), increased bladder capacity, decreased
volumes of released urine and increased residual volume (22,
159). Acute administration of ethanol to male rats caused
impaired detrusor contractility and mimicked many of the
effects observed in IDC (22). Likewise, alcohol has also been
shown to decrease detrusor muscle contractility in response to
different ligands (22, 160). However, chronic ethanol exposure of
detrusor muscle strips from rat bladder caused muscle
constriction, which was facilitated by the flux of Ca2+ from
both intracellular stores and extracellular medium (160). These

studies point to dysregulation of E-C coupling, resulting in
impaired smooth muscle contractility, but the particular
mechanisms involved remain unknown.

Lung
Chronic alcohol consumption increases the risk of developing
pneumonia, lung infections and injury. In animal studies, chronic
exposure to ethanol via inhalation caused cellular dysfunction
and oxidative stress (161). Additionally, the phagocytic activity of
alveolar macrophages was severely impaired leading to increased
susceptibility and intensity of pneumonia. In addition, ethanol
was also found to promote apoptosis in the epithelial cells of
parenchymal tissue (161).

Regarding contractile events, ethanol has been shown to induce
dilation within lung smoothmuscle (162, 163). In lung parenchymal
smooth muscle, chronic alcohol administration (via inhalation), was
reported to decrease contractile force (163). The Rho-associated
protein kinase (ROCK) pathway mediates “Ca2+ sensitization”,
which is the increase in contractile force by signaling pathways
that are independent of supplementary increases in intracellular
Ca2+ (164). Ethanol attenuated this ROCK-mediated Ca2+

sensitization mechanism, which led to reduced contraction in
lung parenchymal smooth muscle. Finally, in cultured rat airway
smooth muscle cells, acute exposure of 100 mM ethanol caused
relaxation via a cGMP/PKG mechanism (162).

Vas Deferens
The link between alcohol consumption and erectile dysfunction
(ED) has been studied for years (165–170). The corpus cavernosum
(CC) of the vas deferens are cavernous spaces which fill with blood
to facilitate tumescence. In addition to the constriction of penile
arteries, this increase in intracorporeal pressure is also dependent
on the relaxation of non-vascular smooth muscle cells (169, 170).
The chronic exposure of rats to ethanol (5–20% in diet) caused
morphological changes in the smooth muscle myocytes, such as a
decreased number of elastic fibers and collagen type 4 (170), and
decreased smooth muscle area along with increased expression of
Caspase 3 therefore increased apoptosis (169). As a result, these
factors affected CC smooth muscle contractility and have been
implicated in alcohol-induced ED.

Another protein which modulates the contraction of CC
trabecular smooth muscle cells is endothelin1 (ET-1) along with
other members of the endothelin pathway. ET-1 binds to ETA and
ETB receptors which regulate contraction and relaxation
respectively. Increased levels of these pathway constituents is
associated with the development of ED. ET-1 causes
vasoconstriction by binding to ETA which activates NAD(P)H,
resulting in the production O2

− which promotes vasoconstriction.
O2

− is very unstable so is quickly converted by superoxide dismutase
(SOD) and catalase to H2O2 which has vasodilation properties (171).

Chronic ethanol consumption has been shown to increase ET-
1 expression and upregulate ETA activity while also decreasing
SOD activity and increases CAT activity (166, 168, 171). The
cumulative result of this ethanol-induced effect is increased O2

−

production, which promotes vasoconstriction and decreased
production of the vasodilatory H2O2. leading to increased CC
contraction (166). Cyclooxygenase (COX) pathway mediators
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such as prostanoids also play a pivotal role in mediating dilation
in trabecular smooth muscle cells and promote vasodilation
through the endothelin pathway. Chronic ethanol consumption
impairs COX pathway activity resulting in decreased prostanoid
production which alleviates the vasodilatory influence on the
endothelin pathway leading to CC contraction. There is also
some evidence that ET-1 -mediated vasoconstriction may
involve the ROCK pathway (168).

With respect to ethanol-induced modulation of E-C
coupling, it was shown that acute and heavy alcohol
consumption in peri-adolescent male Wistar rats caused
decreased Ca2+ signaling in the vas deferens (172). A
similar ethanol-induced impairment of E-C coupling was
reported for the prostate and epididymis (167, 172). This
impaired ethanol-induced Ca2+ influx was found to be
mediated primarily by DHPR with little involvement of
IP3R- and RyR-controlled SR Ca2+ stores (167).

SUMMARY AND DISCUSSION

In this review, we aimed to present the most recent and widely
understood viewpoints on the mechanisms involved in
alcohol-induced disturbance of skeletal, cardiac and smooth
muscle contractility. The consumption of alcohol is both
enjoyed and abused globally, yet both acute and chronic
consumption of moderate-large quantities of alcohol are
solidly proven to have deleterious effects on the
contractility of all three muscle types. A common feature of
contractile dysfunction among all muscle types is the
disruption of Ca2+ homeostasis and EC-coupling. In
contrast, there still seems to be disparate opinions on the
beneficial effects that low quantities of alcohol drinking might
exert on heart contractility and their underlying mechanisms.

In striated muscle, the general consensus is that ethanol
and/or acetaldehyde attenuate myocyte contractility, leading
to muscle weakness and, in the long term, muscular atrophy. In
smooth muscle however, the narrative is much more complex:
in vascular smooth muscle cells, ethanol generally exerts both
vasodilatory (uterine, mesenteric, etc.) and vasoconstrictive
(coronary, cerebral, carotid, and uterine arteries) effects.
However, in nonvascular smooth muscle, ethanol-mediated
vasodilation is observed in the gut and lung while
vasoconstriction is seen in the vas deferens. To further
complicate matters, ethanol-induced SM contraction and
vasoconstriction vs. SM relaxation and vasodilation involve
many of the same biochemical signaling molecules, such as
ROS, production of nitrogenous compounds (NO•,
peroxynitrite, ethylnitrite), ethanol detoxification enzymes
(CYP-2E1, ADH, ALDH2, catalase), and changes in the
activity of ion channels (RyRs, DHPRs, SERCA, PLB, NCX
etc), proteostasis, mitochondrial function and increased
autophagy. Additionally, among the many studies presented,
the different methodologies used, the time course of ethanol
administration (acute vs. chronic) and other experimental
variables, makes it problematic to compare, analyze and
therefore reach conclusive viewpoints.

Another concept that is common among researchers, is
that the harmful effects of acute ethanol consumption are
reversible while chronic consumption leads to permanent
damage. There are of course caveats to these rules as
revealed in the cases of HHS and the French paradox.
Moreover, the difference in alcohol metabolism between
men and women, predisposes the latter to more severe
manifestations of ethanol-induced myopathies and is a
recognized phenomenon. However, these observed
differences may be a direct result of ethanol’s association
with different downstream mediators/ pathways. For
example, in striated and smooth muscle, both ethanol and
acetaldehyde exert control over the activities of various
signaling pathways, resulting in the modification of muscle
contractility. These include the endothelin, JNK2, NOX2,
iNOS, EDGF, RhoA/Rho-kinase, PLA2, estrogen and c-Myc
pathways among others.

From the various studies conducted, some trends are
apparent: the RhoA/Rho-kinase pathway has been
implicated in ethanol-induced effects in smooth muscle
myocytes in the lung, carotid artery and vas deferens,
leading to SM contraction. Likewise, in striated muscle, the
influence of ethanol and acetaldehyde on increased ROS and
NO• production, seems to be a common factor that then causes
aberrant Ca2+ homoeostasis, EC-coupling and proteostasis,
resulting in attenuated myocyte contractility and loss of
muscle mass.

In conclusion, alcohol exerts potent and complex effects on
skeletal, cardiac and smooth muscle myocyte contractility, which
are facilitated by a myriad of biological players and downstream
signaling pathways. A lot of research lies ahead in order to suggest
a rationale for therapeutic interventions to counteract muscle
contractility impairment in AUD.
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