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Death by suicide is a global epidemic with over 800 K suicidal deaths worlwide in 2012.
Suicide is the 10th leading cause of death among Americans and more than 44 K people
died by suicide in 2019 in the United States. Patients with chronic pain, including, but not
limited to, those with substance use disorders, are particularly vulnerable. Chronic pain
patients have twice the risk of death by suicide compared to those without pain, and 50%
of chronic pain patients report that they have considered suicide at some point due to their
pain. The kappa opioid system is implicated in negative mood states including dysphoria,
depression, and anxiety, and recent evidence shows that chronic pain increases the
function of this system in limbic brain regions important for affect and motivation.
Additionally, dynorphin, the endogenous ligand that activates the kappa opioid
receptor is increased in the caudate putamen of human suicide victims. A potential
treatment for reducing suicidal ideation and suicidal attempts is buprenorphine.
Buprenorphine, a partial mu opioid agonist with kappa opioid antagonist properties,
reduced suicidal ideation in chronic pain patients with and without an opioid use disorder.
This review will highlight the clinical and preclinical evidence to support the use of
buprenorphine in mitigating pain-induced negative affective states and suicidal
thoughts, where these effects are at least partially mediated via its kappa antagonist
properties.
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INTRODUCTION

Suicide is a pressing public health issue that accounts for more than 800,000 deaths per year globally
[1]. In the United States, it is one of the 10 leading causes of death claiming more than 47,000 lives in
2019, and the second leading cause of death in people aged 10 to 34 [2]. The rates of suicide have risen
more than 30% between 1999–2019. The United States Surgeon General and Department of Health
and Human Services have recently issued a call to action to implement the National Strategy for
Suicide Prevention that includes calls for treatment access to those that need it [3]. Important, for this
review, is that chronic pain is second only to bipolar disorder as the major cause of suicide among all
medical illnesses [4, 5]. Suicide is typically preceded by suicidal ideation–persistent thoughts about
wanting to kill oneself. While suicidal ideation only rarely leads to the completion of suicide (death),
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it is an important clinical marker, and prior suicide attempt is the
single strongest risk factor for future suicidal behaviors and death
by suicide [6].

Recently, there has been a dramatic increase in the prevalence
of suicidal ideation during the COVID-19 pandemic and
subsequent mitigation activities, including social distancing
and stay-at-home orders [7, 8]. In June 2020, 10.7% of adults
reported thoughts of suicide compared to 4.3% of adults in 2018
[9]. Fortunately, suicide rates themselves have remained
unchanged or declined early in the pandemic [10]. However,
the management of patients suffering from suicidal ideation
represents a rapidly growing clinical challenge. There are
currently few pharmacological treatments available that
specifically alleviate suicidal ideation; therefore, research into
this clinical problem has the potential to save many lives.

Suicidal ideation occurs in a subset of individuals with major
depressive disorder (MDD); however, emerging evidence
suggests that suicidal ideation may also represent a distinct
behavioral disorder [11]. For example, improvements in
suicidal ideation following ketamine treatment cannot be
entirely explained by improvements in depression or anxiety
[12]. Suicidality also often presents with mental health disorders
other than depression. Substance use is a risk factor for suicide
attempts, and individuals with substance use disorders have a
10–14 times greater risk of death by suicide compared to the
general population [13–15]. Many substance overdoses may also
be unrecognized suicides [16]. Some studies have demonstrated
that anxiety disorder comorbidity with other mood disorders is a
risk factor for suicide attempts, though this finding has been
inconsistent [17]. The comorbidity of borderline personality
disorder and depression is associated with an increase in the
number and seriousness of suicide attempts [18].

Acute and chronic alcohol use also play major roles in suicidal
behavior. Approximately 26% of suicide decedents who were
tested for alcohol had intoxicating blood alcohol levels (>0.08%)
[19]. According to recent meta-analyses, which include case-
control and cohort studies, individuals with alcohol use disorder
(AUD) have three times greater odds of suicidal behavior
compared to those without the disorder [20, 21]. Furthermore,
AUD has been identified as the second most common mental
disorder among suicide decedents [22].

Finally, suicidal ideation is highly prevalent in chronic pain
patients [23–26], even when controlling for the subjective severity
of pain symptoms [27–29] and the presence of other affective
disorders [27, 30, 31]. For such patients, suicide is viewed as a
means to alleviate overwhelming and intolerable painful internal
states, and psychological and emotional pain have been
considered essential for suicidal behavior [32, 33]. A recent
metanalysis of 31 studies showed a significant link between
physical pain and suicidal thoughts and behaviors, where
physical pain was associated with lifetime death wish, current
and lifetime suicidal ideation, suicide plan, and suicide attempts,
as well as death [34]. Some of the predictors of suicidal ideation in
chronic pain patients include mental defeat [35], insomnia [36],
and pain catastrophizing [37], which are also risk factors for
opioid use disorder. Suicidal ideation in chronic pain patients is
associated with depression, anxiety and sleep disorders [38]. This

review will highlight recent data that provides justification for
further clinical trials to test the potential of buprenorphine as a
treatment for suicidal ideation, particularly in chronic pain
patients.

The Affective (Emotional) Dimension of Pain
and Suicidal Ideation
Chronic pain has both sensory and emotional/affective
components that, while distinct, share many of the same
neurobiological substrates. Chronic pain often induces a
persistent negative affective state, or “emotional pain,” likely as
a result of neuroadaptations in the brain’s reward processing
circuitry [39–41]. Chronic pain is also associated with the
development of other disorders of impaired reward processing,
including depression and substance use disorders [42]. The
prevalence of suicidal ideation among pain patients suggests
that it may be an expression of emotional pain. In fact, studies
have found emotional pain to be the psychological variable most
strongly associated with current suicidality, even more so than the
presence of depressed mood or hopelessness [18, 43, 44].

The relationship between AUD and suicidality also suggests
that suicidal ideation may be an expression of emotional pain.
That AUD is often a key risk factor for suicidal behavior is likely
due, at least in part, to alcohol-induced exacerbations in negative
emotionality and alcohol-related negative consequences,
particularly in interpersonal domains [45]. Hyper-negative
emotional states and hyperalgesia are both consequences of
repeated alcohol use [46] and may contribute to an increase in
alcohol use as a compensatory mechanism [47]. Among heavy
drinkers, the negative emotional components of pain (i.e., pain
catastrophizing) can enhance alcohol craving more than physical
pain [48].

The emotional pain caused by the disruption or loss of social
attachments also plays an important role in suicidality. In
particular, suicidal ideation shares neurobiological and
psychological features with separation distress—the innate,
emotionally painful, dysphoric response of animals and
humans to social separation or rejection [49, 50]. Converging
evidence from preclinical and clinical studies supports the link
between suicidal ideation and separation distress. Opioids reduce
separation distress behaviors in non-human mammals [51–53]
and have recently shown promise for the treatment of suicidality
[54, 55]. Suicidal acts are most common after interpersonal losses
or rejections [56], and patients with borderline personality
disorder are particularly susceptible to social rejection and
often become suicidal after interpersonal rejections [57, 58].

An Affective Neuroscience Model Linking
Pain, Suicidal Ideation, and Depression
Research in the field of affective neuroscience suggests that
separation distress represents one of the ancestral primary-
process emotional systems (referred to as PANIC/GRIEF) [49,
50, 59, 60]. Importantly, the PANIC/GRIEF system probably
evolved from general pain mechanisms [59], and studies have
found a link between separation distress and physical pain.
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Maternal separation in mouse neonates is capable of altering
nociceptive behavior in adulthood [61, 62]. In humans, early life
adversity in the form of both physical and psychological trauma
(including familial separation) is associated with an increased risk
of chronic pain in later life [63]. Studies show that parental
bonding in adolescents is significantly associated with adolescent
chronic pain and depression, where lowmaternal care contributes
to increased pain via heightened depressive symptoms [64].

The neuroanatomy of the PANIC/GRIEF system overlaps
with the brain’s system for processing physical pain [65],
suggesting that both physically painful (e.g., injury) and
emotionally painful (e.g., interpersonal rejection) stimuli may
engage this shared neurocircuitry to produce distress and
dysphoria (emotional pain), with separation distress
representing a particular subtype of emotional pain. The
PANIC/GRIEF system also represents a potential substrate
linking emotional pain/distress with suicidal ideation. The
similarities between suicidal ideation and separation distress
discussed above suggest that suicidal ideation may result from
increased activity in the brain’s PANIC/GRIEF network,
whether initiated by social loss or physical injury. Thus,
chronic pain patients may be particularly susceptible to
suicidal ideation due to persistent activation of this system by
painful sensory stimuli.

Sustained activation of the PANIC/GRIEF system can also
lead to reduced activity in the brain reward SEEKING system (the
system primarily responsible for motivation and arousal,
particularly the mesolimbic dopamine pathway), perhaps as a
means to protect against sustained emotional pain by reducing
the overall arousal of emotions [49, 50, 59, 66]. Underactivity in
the SEEKING system causes blunted reward processing, leading
to an amotivational state characterized by the diminished
experience of positive feelings (anhedonia). Thus, down-

regulation of the SEEKING system in response to sustained
emotional pain (dysphoria) may be one underlying cause of
the anhedonia and blunted affect that is characteristic of
depression.

This two-stage model then suggests that the anhedonia of
depression may reflect, in part, an emotional shutdown that
follows the behavioral agitation of separation distress or other
emotional pain, with these behavioral states correlating with
underactivity of the SEEKING network and overactivity of the
separation distress PANIC/GRIEF network, respectively. Of
course, depression is a complex disorder that likely has
multiple etiologies involving changes in many neural
substrates. However, this model suggests one possible
framework for understanding the relationship between
suicidal ideation and depression. Sustained activation of the
PANIC/GRIEF network may produce both a state of
dysphoria that leads to suicidal ideation as well as,
indirectly, a reduction in motivation (anhedonia) through
subsequent downregulation of the reward SEEKING system
(Figure 1). In this way, suicidal ideation would often be
comorbid with depression but could be the result of
dysregulation of the PANIC/GRIEF circuitry independent of
a disruption in reward processing. In support of this
hypothesis, patients with borderline personality disorder,
but not comorbid depression, typically experience brief
durations of suicidality as a result of interpersonal stresses.
In contrast, patients with comorbid borderline personality
disorder and depression display more persistent symptoms
of depression and suicidality, which also include a loss of
interest in ordinarily pleasurable activities (anhedonia) [18].

Ultimately, painful experiences (whether the emotional pain of
social rejection or the physical/sensory pain characteristic of
chronic pain conditions) likely engage shared brain systems

FIGURE 1 | An affective neuroscience model linking pain, suicidal ideation, and depression. Both physical (sensory) pain (such as injury) and emotional pain (such
as interpersonal rejection) stimuli can act on the PANIC/GRIEF (separation distress) system. An increase in activity in this system produces dysphoria (emotional distress).
Sustained activation of the PANIC/GRIEF system (dotted lines) could lead to suicidal ideation and a reduction in downstream activity of the SEEKING (motivation) system.
Reduced motivation (anhedonia) may then result in loss of interest in activities characteristic of depression. This model suggests that suicidal ideation would often
be comorbid with depression but could also occur independently of a disruption in reward processing.
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which produce negative affective states (distress/
dysphoria–implicated in suicidal ideation) and may
subsequently disrupt downstream reward processing
(anhedonia–implicated in depression), leading to a complex
relationship between pain, separation/social distress, and
motivation [65, 67, 68]. The neurocircuitry and
neurochemistry underlying each is discussed in more
detail below.

Neurocircuitry of Pain, Separation/Social
Distress, and Motivation
Acute and Chronic Pain
Pain is a multidimensional experience comprised of sensory,
cognitive, and emotional components. The sensory aspects of
pain are relayed from peripheral nociceptors, which detect
noxious sensory stimuli, along primary afferent neurons that
have central terminals in the spinal cord [69]. The second order
neurons in the spinal cord ascend to various brain structures
including the nucleus of the solitary tract, the medial brain stem
reticular formation, the caudal ventrolateral medulla, the lateral
parabrachial nucleus, the midbrain periaqueductal gray, and the

thalamus and the hypothalamus [69, 70]. The classical pathways
associated with ascending nociceptive information are the lateral
and medial spinothalamic pathways, where the lateral is
responsible for sharp, well-localized pain and the medial is for
diffuse, poorly localized persistent pain. Sensory information
such as pain intensity and location (discriminative aspects of
pain) is then relayed along the lateral spinothalamic tract to the
primary and secondary somatosensory cortices via the medial
thalamic nuclei. A descending pain modulation system
originating in the periaqueductal gray (PAG) also regulates
pain signals at the level of the spinal cord before they are
relayed to higher subcortical and cortical structures [71].

The emotional and motivational aspects of pain (e.g.,
subjective unpleasantness and salience) are carried to limbic
structures such as the amygdala, hypothalamus, striatum,
insula, and anterior cingulate cortex by the medial
spinothalamic tract [72–74] (Figure 2). A key structure for
encoding the affective component of pain is the parabrachial
complex located in the pons, receiving dense inputs form lamina I
nociceptive spinal neurons; a projection reportedly denser than
the spinothalamic pathway [75, 76]. The parabrachial complex
projects to several regions involved in pain and affect including

FIGURE 2 | Neurocircuitry and kappa opioid signaling involved in affective (emotional) pain and motivation and reward. Schematic of brain areas implicated in
affective (emotional) pain, particularly separation distress (top), and motivation and reward (bottom) in rodents. Both circuits are altered by activity at KOR (present to
varying degrees in all relevant brain regions). KOR antagonism increases distress vocalizations, inhibits mesolimbic DA release, and causes associated dysphoria and
anhedonia. anterior cingulate cortex, ACC; ventral septum, VS; dorsal preoptic area, dPOA; bed nucleus of the stria terminalis, BNST; dorsalmedial thalamus, DMT;
periaqueductal gray, PAG; nucleus accumbens, NAc; ventral tegmental area, VTA.
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the PAG, rostroventral medulla, thalamus, amygdala and zona
incerta, making it a key structure for the affective emotional
perception of pain.

The anterior cingulate has also been shown to be a critical
brain region for the modulation of the subjective affective
experience of pain [73]. Patients who have had a portion of
the anterior cingulate surgically removed report that painful
stimuli are no longer bothersome, even though they are able
to localize pain sensations [77]. These findings support the idea
that the distressing affective experience of a physically painful
stimulus can be separated from its sensory properties.

Emotional pain also activates brain regions associated with
physical pain including the PAG, insula, and anterior cingulate
[78]; similarly, physical pain also activates limbic structures
including the nucleus accumbens, ventral tegmental area
(VTA), amygdala, and habenula [79–81]. Thus, the sensory
and emotional components of pain are processed within
discreet but interacting brain structures.

While a painful event serves an adaptive function and provides
salience to a harmful stimulus that can support escape and
avoidance learning, chronic pain can become pathological
(serving no useful purpose). Although, it was recently
proposed that this type of pain perhaps serves to provide
hypervigilance [82]. Chronic pain involves neuroplasticity in
the circuitry underlying both the sensory and affective
components of pain. Patients with chronic pain suffer from
sensory disturbances including allodynia (pain caused by a
previously nonpainful stimulus) and hyperalgesia (exaggerated
pain response to a previously painful stimulus). However, the
negative affective component of chronic pain is argued to be a
greater factor in quality of life measures [40].

Separation/Social Distress
Much of the same neurocircuitry described above is also engaged
by separation distress, suggesting that the emotional pain elicited
by separation distress is a result of the activation of circuits
underlying physical pain. Specifically, the separation distress
circuitry starts in the PAG and ascends through the
dorsomedial thalamus, terminating in various basal forebrain
regions including the anterior cingulate cortex [50, 59, 65]
(Figure 2). Localized electrical stimulation of the anterior
cingulate, dorsomedial thalamus, and PAG provoke separation
cries in mammals [83, 84]. In humans, the experience of
emotional distress induced by social rejection is associated
with an increase in activity in the anterior cingulate cortex
measured by fMRI [85]. Together, these studies suggest that
psychological pain, particularly social rejection and intense
loneliness, may share some of the same neural pathways that
elaborate physical pain.

Motivation
Reward and motivation, while often considered opponent
processes to pain, are also processed within many of the same
brain structures, in particular the mesolimbic system, which
includes the VTA and nucleus accumbens (Figure 2). In
neuropathic pain animals, functional connectivity is altered
within the limbic system (including the nucleus accumbens) as

well as between the limbic and nociceptive systems (including the
thalamus, primary sensory cortices, insula, and PAG) [86]. In
human clinical pain cohorts, connectivity is altered between the
mesolimbic system and cortical structures [87–89]. Given that the
mesolimbic system is responsible for the modulation of motivated
behaviors and reinforcement learning [90, 91], altered activity in
this system likely contributes to the negative affective component
of pain. Pain can also directly impair general reward processing,
leading to an anhedonic state [42]. Dopamine is a critical
neurotransmitter within the mesolimbic system, and dopamine
signaling in the nucleus accumbens may modulate the salience of
painful experiences. While acute pain activates dopaminergic
transmission to the nucleus accumbens [81, 92], chronic pain
produces the opposite effect [93–95].

Together, the circuitry underlying pain, separation distress,
and motivation provides a neuroanatomical substrate for the
transition from physical or emotional pain to suicidality and
possibly depression. Activity in pain/nociceptive circuitry
(including the anterior cingulate, dorsomedial thalamus, and
PAG) is correlated with the distress PANIC/GRIEF system,
while activity in the mesolimbic circuit, particularly dopamine
transmission in the nucleus accumbens, is correlated with the
SEEKING system [50, 60, 66]. Sustained activity in the pain
circuitry can reduce activity in the motivational circuitry through
modulation of mesolimbic dopamine signaling, such that the
distress caused by prolonged pain (sensory or emotional) may
ultimately lead to decreased processing of rewarding stimuli.
These neural substrates are further linked through shared
activation by the opioid system, discussed in more detail below.

The Opioid System
Receptors and Endogenous Ligands
The opioid system, which modulates pain, social distress, and
reward circuitry, may be a promising target for the treatment of
behavioral disorders caused by disruptions in this circuitry,
including suicidal ideation. Opioid receptors belong to the
G-protein coupled receptor family and are divided into four
families: the mu (MOR), delta (DOR), kappa (KOR) and
nociceptin (NOR). These receptors are activated by four
classes of endogenous opioid peptides, beta-endorphin,
dynorphin, enkephalin and nociceptin. MORs have a high
affinity for beta-endorphin and enkephalins, but low affinity
for dynorphin. Conversely, dynorphin primarily acts through
the KOR. Here we focus on the role of the MOR and, particularly,
the KOR, as both have been implicated in the mediation of
suicidal ideation by opioid drugs.

Opioid receptors are distributed throughout the central and
peripheral nervous system and are present in many of the major
structures involved in the pain circuitry, including the peripheral
nociceptors, spinal cord, PAG, thalamus, anterior cingulate
cortex, and other limbic regions [96]. The MOR is widely
distributed throughout the brainstem, midbrain, and forebrain
structures, and mediates the analgesic effects of most clinically
available opioid medications, such as morphine [97]. KORs are
located throughout the neuroaxis as well, and their localization in
the spinal cord and brain stem can produce analgesia through the
direct inhibition of pain pathways [98, 99].
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While KOR and MOR expression widely overlaps throughout
the brain, their activation produces opposing effects on mood
[100]. Activation of KORs primarily produces negative emotions
and dysphoria [101, 102], including depressive-like and
psychotomimetic effects in humans [103–105] and rodents
[100, 106–109]. In contrast, activation of the MOR is
reinforcing and associated with positive hedonic experiences,
Thus, in general, KOR activity is involved in an anti-reward
system opposing rewarding MOR activity [110].

Involvement in Pain, Separation/Social
Distress, and Reward/Motivation
Opioids and their receptors can modulate both the sensory and
emotional (bothersome) components of pain. For example, when
injected into the dorsomedial thalamus (a key region for
processing both the sensory and affective components of
pain), the MOR agonist DAGO elevated rats’ sensory pain
thresholds and induced a positive affective state, while the
KOR agonist U50,488 reduced rats’ pain thresholds and
induced a negative affective state [111]. However, studies have
shown sex differences with respect to the functioning of the MOR
and KOR systems, particularly with respect to pain and addiction.
Several comprehensive reviews are available [112–114].

In addition to their role in the sensory/affective components of
pain, it is hypothesized that opioids constitute a major
neurochemical underpinning of social bonding and isolation
distress [115, 116]. For example, opioid peptides are decreased
in the midbrain of rat pups following social isolation [117], and
endogenous opioid peptides acting at MORs have been shown in
animal models to alleviate distress behaviors following social
separation [115]. The MOR agonist morphine decreases
distress vocalizations in rat pups isolated from their mother
[118, 119], while the KOR agonist U50,488 increases isolation-
induced ultrasonic vocalization [118]. Thus, it appears that
dynorphins are responsible for mediating negative affect
within the neurocircuitry underlying social distress, similar to
their role in the modulation of physical pain (Figure 2).

High expression levels of KOR have been also detected in brain
areas responsible for reward and motivation, including the VTA
and nucleus accumbens [120, 121] (Figure 2). The ability of KOR
agonists to negatively modulate mesolimbic dopamine has
significant implications for motivated behavior. Since reduced
nucleus accumbens dopamine signaling is associated with a loss
of motivation, KOR modulation of dopamine circuitry may link
the acute distress of physical or emotional pain with the
subsequent onset of negative motivational states and affect.

Studies in rat brain slices show that KOR agonists (U69,593)
are capable of suppressing mesolimbic dopamine release via
receptors expressed on dopamine neuronal terminals as well as
neuronal cell bodies [122–125], which may contribute to the
dysphoric effects of KOR activation. KOR agonists (including
U50,488, spiradoline, U69,593) also inhibit dopamine signaling
when applied directly into the nucleus accumbens of rats, as
measured by microdialysis in intact animals [126, 127] or by
superfused brain slices [128]; however, changes in dopamine
signaling in the nucleus accumbens did not correlate with

KOR agonist (U50,488) induced conditioned place aversion
(CPA) in mice [129]. Furthermore, morphine-evoked increases
in extracellular dopamine within the nucleus accumbens were
blocked by the administration of a KOR agonist (U50,488) into
this brain region in mice [130]. Finally, the expression of KOR-
mediated aversion (U69,593-induced CPA) requires the activity
of medium spiny neurons expressing dopamine receptors within
the nucleus accumbens of rats [131] and mice [132].

Activation of KORs also contributes to the dopamine
hypofunction observed in chronic pain states. Given that
hypo-dopaminergic states contribute to chronic pain [133,
134] and mood disorders comorbid with chronic pain [135],
KOR antagonism to recover dopamine may hold promise as a
novel therapeutic for treating chronic pain and associated mood
disorders. Indeed, reduced motivation for food (sucrose) reward
induced by inflammatory pain was recovered by KOR
antagonism (with norBNI) or silencing of dynorphin neurons
within the ventral striatum of rats [136]. A comprehensive review
of KOR function in chronic pain and its relationship with drug-
seeking behavior is available [137].

The role of KORs in dysfunctions of reward and motivation is
particularly well-characterized with respect to AUD. KOR-
mediated reductions in dopamine release in the nucleus
accumbens have been hypothesized to mediate negative
emotional states associated with alcohol withdrawal,
particularly pain associated with acute alcohol withdrawal
[138]. At the preclinical level, alcohol-preferring rats show
increased dynorphin mRNA expression in the central
amygdala and hypothalamus compared to non-preferring rats
after voluntary drinking [139]. The KOR antagonist norBNI also
attenuates withdrawal-related anxiety-like behaviors in alcohol-
dependent mice [140]. In addition to alleviating alcohol-induced
negative affective states, pharmacotherapies with KOR antagonist
properties, including buprenorphine, reduce binge-like alcohol
drinking [141, 142], alcohol self-administration [143, 144], and
block escalation of compulsive-like drinking after dependence
induction [145, 146] and stress exposure [147] in rodent.

The ability of opioids to modulate both sensory/affective pain
circuits as well as reward/motivation circuits suggests these
compounds have the capability to counteract multiple features
of suicidality and depression. Opioids are able to produce
dopamine-independent positive affective states through their
influence on pain and social distress circuits, including areas
such as the anterior cingulate cortex, PAG, and dorsomedial
thalamus. Opioids can also counteract negative affective states
by promoting increased motivational drive through their
downstream influence on dopaminergic reward circuits,
especially in the nucleus accumbens. Thus, since opioids can
restore deficits in both pain and reward circuits, they may be
particularly useful in treating suicidal ideation, as they would be
able to blunt suicidality whether it was caused primarily by a
disruption in dopaminergic motivational circuity or a disruption in
non-dopaminergic pain/social distress circuits. Other treatments
which primarily target reducedmotivation (anhedonia)may not be
effective in treating the subset of individuals experiencing suicidal
ideation without a concomitant reduction in motivation
(i.e., patients with or without comorbid depression).
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Buprenorphine Attenuates Suicidal Ideation
Given the above understanding of the opioid system, there has
been a renewed interest in the use of opioid analgesics,
particularly buprenorphine, for the treatment of suicidality. A
retrospective 24-months study reported buprenorphine had the
lowest incidence of suicide intent and deaths compared to other
opioid analgesics [148]. Buprenorphine has demonstrated rapid
antidepressant effects in humans [149–152], including those with
treatment-resistant depression, and has shown particular promise
in reducing suicidal ideation [153].

Buprenorphine Mechanism
Buprenorphine is an analgesic derived from oripavine that acts as
a partial MOR agonist and KOR antagonist, as well as an
antagonist at the DOR and an agonist at the NOR [154].
Buprenorphine has similar affinities for the MOR and KOR,
but a 10-fold lower affinity for the DOR [154]. For the purposes of
this review, we have largely limited our discussion to the MOR
agonist and KOR antagonist effects as these are well-
characterized, although note that some work has shown that
buprenorphine may have partial agonist activity at KORs
[155–157]. Importantly, due to its partial MOR agonist
properties, buprenorphine has a lower overdose risk compared
to full MOR agonists such as morphine [158].

Clinical Studies Demonstrating the Effects
of Buprenorphine on Behavior
The potential anti-suicidal effects of buprenorphine were first
described in a case report of a 61-year-old woman suffering
from treatment-resistant depression, chronic back pain, severe
opioid use disorder, and ongoing suicidal ideation [159]. While
treatment with buprenorphine (16mg/4 mg buprenorphine/
naloxone) was prescribed to treat the patient’s opioid use
disorder, she reported that her suicidal ideation completely
disappeared after 1 week of treatment, and suicidal ideation
remained absent up to 3 months after the initial treatment. In
another case report, a patient with cannabis-induced psychotic
disorder and opioid depressive disorder with severe suicidal
thoughts was treated successfully with a single high dose (96 mg)
of buprenorphine [160]. Another case report showed that
buprenorphine/naloxone (8 mg/2 mg) was effective in reducing
pain and suicidal ideation in a 39-year-old male with a history
of bipolar disorder, multiple suicide attempts, and polysubstance
abuse [161]. Chart reviews of suicidal adult depressed patients with
comorbid chronic pain and opioid use disorder who received off-
label buprenorphine also found some support for the anti-suicidal
properties of buprenorphine [162]. The presence of chronic pain,
depression, and substance use in these case reports and studies
suggests that buprenorphine may effectively mitigate suicidal
ideation by targeting multiple overlapping neurocircuits, which
underlie these often-comorbid disorders.

Based on these case reports and anecdotal findings, clinical trials
have begun to explore the anti-suicidal potential of buprenorphine.
A multisite randomized double-blind placebo-controlled trial of
ultra-low-dose (initial dosage, 0.1 mg once or twice daily; mean
final dosage, 0.44 mg/day) buprenorphine found that severely

suicidal patients showed a reduction in Beck Scale for Suicidal
Ideation (BSSI) scores after 2 and 4 weeks of treatment compared
to patients that received placebo [54]. Another randomized clinical
trial tested the efficacy of one of three single high doses of
buprenorphine (32, 64, 96mg) in suicidal opioid-dependent
patients [163]. The researchers found that BSSI scores were
significantly reduced in patients across all three buprenorphine
doses. While these findings suggest that buprenorphine has
particular promise as an anti-suicide treatment option, more
research is needed to determine the conditions under which
buprenorphine treatment is most effective and tolerable,
including whether low or high doses are more successful (the
wide range of effective doses in these clinical trials - from 0.44 to
96mg - is interesting and will be an important area for future
studies) and whether treatment is affected by comorbidities
including substance use disorder or chronic pain.

Other studies have examined the effects of buprenorphine in
combination with other drugs. A randomized double-blind placebo-
controlled trial in adults with treatment-resistant depression showed
that treatment with 2 mg/2 mg buprenorphine/samidorphan
significantly improved scores on multiple depression measures
compared to placebo controls [164]. Antidepressant activity was
also demonstrated in another study using a 1:1 ratio of
buprenorphine:samidorphan [165]. Samidorphan is a MOR
antagonist, thus this combined treatment leaves the KOR
antagonist activity of buprenorphine intact while blocking the
MOR agonist activity of buprenorphine. Blocking the subjective
and objective MOR effects likely mitigates the potential addictive
properties of buprenorphine in opioid-naïve individuals. While
these studies did not directly measure suicidal ideation
independent of depression, they provide important insight into
the potential mechanisms of buprenorphine’s behavioral effects. In
both cases, the effects of buprenorphine were not blocked by aMOR
antagonist, suggesting that activity at this receptor may not be
required for the anti-suicidal effects of buprenorphine.

Preclinical Studies Demonstrating the
Effects of Buprenorphine on Behavior
In addition to the clinical findings described above, pre-clinical
studies also support the potential anti-suicidal treatment effects of
buprenorphine. While no behavioral assays for suicidal ideation
exist for rodents, several behavioral assays have been validated to
screen for depressive-like behaviors, including the forced swim test
and the novelty-induced hypophagia test. The forced swim test is
considered a measurement of behavioral despair [166] and is one of
the gold-standard screens for depressive behavior as it is reliably
reversed by antidepressants [167]. The novelty-induced hypophagia
test is a conflict-based behavioral task that assesses the impact of an
environmental stressor on animals’ conditioned approach toward a
palatable food reward, with longer approach latencies indicating
greater depressive or anxious behavior [168]. Treatment with
antidepressants or benzodiazepines reduces approach latencies in
the novelty-induced hypophagia test [168–170].

In mice, administration of buprenorphine produced
significant reductions in forced swim test immobility (at doses
ranging from 0.065–2 mg/kg) and reduced approach latencies in
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the novel environment of the novelty-induced hypophagia test (at
a dose of 0.25 mg/kg) [171]. In Wistar Kyoto (WKY) rats, a strain
which has an exaggerated depressive phenotype and is resistant to
certain antidepressants, buprenorphine (2.25 mg/kg) significantly
reduced immobility in the forced swim test [172]. This effect was
specific to theWKY strain, suggesting that buprenorphine may be
more effective in individuals with certain treatment-resistant
depressions. In general, the doses which produced behavioral
effects in these preclinical studies were lower than those used in
clinical trials; however, one trial showed that an ultra-low dose of
buprenorphine (0.44 mg/day, comparable to the preclinical
doses) significantly reduced suicidal ideation [54].

The Contribution of Kappa Versus Mu
Activity in the Anti-Suicidal Effects of
Buprenorphine
A better understanding of the specific pharmacological
underpinnings of the anti-suicidal and anti-depressive effects of
buprenorphine would be valuable as it could inform the
development of even more targeted therapeutics which might
avoid side effects, including abuse potential. As discussed
previously, buprenorphine is both a partial agonist at the MOR
and an antagonist at the KOR, but which receptor type is primarily
responsible for the anti-suicidal and anti-depressive effects of the
drug is uncertain. A review of preclinical studies can help to shed
light on this question. In general, the data are conflicting, and both
MORpartial agonist and KOR antagonist activity likely play a role in
the anti-suicidal effects of buprenorphine. However, the data
supporting the importance of KOR antagonism appear slightly
more consistent (discussed in more detail below).

Studies With Buprenorphine
Studies combining buprenorphine with opioid antagonists suggest
that the MOR is not necessary for the behavioral effects of
buprenorphine. In mice, the anti-depressive effects of
buprenorphine described above (reduction in forced swim test
immobility and reduced approach latency in the novelty-induced
hypophagia test) were maintained when buprenorphine (1mg/kg)
was co-administeredwith the opioid antagonist naltrexone (1mg/kg),
suggesting that activation ofMORs is not necessary for the expression
of buprenorphine’s anti-depressive effects [173]. Co-administration of
buprenorphine (0.1mg/kg) with the MOR antagonist samidorphan
(0.3mg/kg) inWistar Kyoto rats did not alter the drug’s efficacy in the
forced swim test [174], again suggesting that activation ofMOR is not
necessary for the anti-depressive effects of buprenorphine.

The use of selective knockout mice provides evidence that the
behavioral effects of buprenorphine may be mediated by both MOR
and KOR. In mice with genetic deletion of the MOR (Oprm1−/−) or
KOR (Oprk1−/−), buprenorphine (0.25mg/kg)-induced decreases in
latency in the novelty-induced hypophagia test were blocked in
Oprm1−/− but not Oprk1−/− mice [175], suggesting that
buprenorphine’s activity at MOR, but not KOR, is required for its
anti-depressive effects. Consistent with this idea, a mouse model of the
A118G polymorphism (associated with less opioid receptor expression
and lower signaling efficiency) in the MOR gene (OPRM1) also
disrupted the effects of buprenorphine on this behavior [176]. These
data are further supported by human studies which have found that the
A118G polymorphism was associated with treatment onset suicidal
ideation [177] and more severe depression following a recent targeted
rejection major life event [178].

In contrast, knockout of the KOR in mice blocked
buprenorphine’s reduction of immobility in the forced swim

TABLE 1 | Review of evidence supporting the role of KOR in the anti-suicidal effects of buprenorphine. Letters indicate experimental model: (m), mouse; (r), rat; (h), human.

Opioid receptor
subtype

Experimental
manipulation

Behavioral effect

KOR ↑,(Up-regulated) + (pro-depressant) • U69,593 exacerbated pain-depressed ICSS (r) [106], elevated ICSS threshold (r) [108],
depressed nesting behavior (m) [191], and produced place aversion (m, r) [131, 132, 181]

•Salvinorin A increased immobility on forced swim (r) [107], elevated ICSS threshold (r) [107],
and produced psychomimetic effects (r, h) [195, 196]

• Cyclazocine produced dysphoria & psychomimetic effects (h) [197]
• U50,488 produced conditioned place aversion (CPA) (m) [109, 129] and CPA was
exacerbated in chronic pain animals (m) [182]

0 (no effect) • Nalfurafine did not alter pain-depressed ICSS (r) [180]
-(anti-depressant) • Salvinorin A reduced anhedonia caused by chronic mild stress (CMS) (r) [198]

↓,(Down-regulated) +
0 • norBNI did not alter pain-depressed ICSS (r) [106] or approach latency in the NIH test (m)

[175]
• JDTic did not alter pain-related depression of nesting behavior (m) [191]

- • norBNI reduced immobility on forced swim (m, r) [109, 171, 179, 183–187], reduced
aversive behaviors produced by inescapable footshock (m) [109], reduced expression of
learned helplessness (r) [199], prevented CPP to gabapentin in a spinal nerve ligation (SNL)
injury (r) [200], reduced social impairment produced by heroin abstinence (m) [201], and
attenuated cocaine-withdrawal induced increase in ICSS threshold (r) [186]

• JDTic reduced immobility on forced swim (r) [187], blocked depression of nesting behavior
by KOR agonist (m) [191], and reduced footshock-induced reinstatement of cocaine
seeking (r) [187]

• MCL-144B reduced immobility on forced swim (m) [188]
• KOR knockout mice had disrupted BPN-induced reduction in forced swim immobility (m)
[179] and reduced social aversion following heroin abstinence (m) [202]
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test while knockout of the MOR did not disrupt the behavioral
effects of buprenorphine (0.25–0.5 mg/kg) [179], suggesting that
buprenorphine’s activity at KOR, but not MOR, is required for its
anti-depressive effects. Together, these studies indicate that the
role of different opioid receptor types in buprenorphine’s anti-
suicidal and anti-depressive effects are likely mediated by
multiple factors including behavioral assay, genetic
background, and drug dose.

Studies With Other Drugs That Have Kappa
and Mu Activity
We can also examine the behavioral effects of other KOR and
MOR drugs to further explore the potential role of opioid
receptor subtype in the behavioral effects of buprenorphine.
Since buprenorphine is an antagonist at the KOR, if activity at
this receptor is primarily responsible for the anti-suicidal effects
of buprenorphine, we would expect manipulations that increase
activity at KOR to be pro-depressive while manipulations that
decrease activity at KOR to be anti-depressive (Table 1, dark blue
cells). Conversely, buprenorphine is a partial agonist of the MOR,
so if activity at this receptor is primarily responsible for the anti-
suicidal effects of buprenorphine, we would expect manipulations
that increase activity at MOR to be anti-depressive while
manipulations that decrease activity at MOR to be pro-
depressive (Table 2, yellow cells).

Kappa Agonists
In general, KOR agonists produce behaviors indicative of
depressed mood or dysphoria. An increase in intra-cranial
self-stimulation (ICSS) threshold is a commonly used
measure of dysphoria in rodents, and the KOR agonists

U69,593 108 and salvinorin A [107] have been shown to
increase ICSS thresholds in rats; however, another KOR
agonist nalfurafine had no effect on this behavior [180]. Note
that this effect could be due to the sedative effects of U69,593;
however, U69,593 also produced a conditioned place aversion
(CPA) in mice [132] and rats [131, 181], an effect consistent
with the induction of a negative affective state. The KOR agonist
U50,488 also induced a CPA [109], a behavior that we recently
showed was exacerbated in chronic pain animals [182]. Given
that the vast majority of preclinical studies find that KOR
agonism produces depressive-like behaviors (see Table 1),
there is strong support for the hypothesis that decreased
activity at this receptor underlies the anti-depressant and
anti-suicidal properties of buprenorphine.

Kappa Antagonists
Conversely, KOR antagonists tend to have the opposite effect,
producing antidepressant effects in multiple behavioral assays. In
particular, a number of studies indicate that KOR antagonists,
including norBNI [109, 171, 179, 183–187], JDTic [187], and
MCL-144B [188], reduce immobility on the forced swim test in
rats and mice. Numerous studies support the anti-depressive
effects of KOR anatgonists, particularly norBNI and JDTic (see
Table 1), further supporting the role of KOR antagonism in the
behavioral effects of buprenorphine.

Mu Agonists
MOR agonists have been shown to produce antidepressant-like
effects, though their efficacy depends on the particular behavioral
assay employed (see Table 2). For example, the MOR agonist
morphine produced antidepressant-like effects in the learned
helplessness model [189] and the tail suspension test [190], but

TABLE 2 | Review of evidence supporting the role of MOR in the anti-suicidal effects of buprenorphine. Letters indicate experimental model: (m), mouse; (r), rat; (h), human.

Opioid receptor
subtype

Experimental
manipulation

Behavioral
effect

MOR ↑ +
0 • Morphine did not alter behavior on forced swim (m) [171], approach latency in NIH test (m)

[175], nor the depression of nesting behavior by a KOR agonist (m) [191]
- • Morphine reduced learned helplessness (r) [189], decreased immobility on the tail

suspension test (m) [190], blocked pain-depressed ICSS (r) [106], and alleviated pain-related
depression of nesting behavior (m) [191]

• Codeine decreased immobility on tail suspension test (m) [190, 203]
• Methadone reduced learned helplessness (r) [204] and decreased immobility on tail
suspension test (m) [190]

• Tramadol reduced learned helplessness (r) [204] and decreased immobility on tail
suspension test (m) [190]

• Opiorphin reduced immobility in forced swim (m) [205]
↓ + • MOR knockout mice had disrupted BPN-induced reduction in latency in the NIH test (m)

[175]
• Mouse model of the OPRM1 A118G polymorphism had disrupted BPN-induced
reduction in latency in NIH test (m) [176]

• OPRM1 A118G polymorphism associated with suicidal ideation (h) [177] and more severe
depression (h) [178]

0
- • Cyprodime reduced approach latency in NIH test (m) [175]

• MOR knockout mice had reduced immobility in forced swim (m) [192] and showed
reduced anxiogenic and depressive-like responses (m) [193]
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did not have an effect in the forced swim test [171] or in the novelty-
induced hypophagia test [175]. Morphine was effective at recovering
pain-reduced behaviors including a pain-induced reduction in ICSS
responding (increased ICSS threshold) [106] and pain-reduced
nesting behavior [191] (although it did not block reduced nesting
behavior caused by the KOR agonist U69,593) [191].

Mu Antagonists
The effects of MOR antagonism on depressive-like behaviors are less
conclusive (see Table 2). The selective MOR antagonist cyprodime
reduced approach latencies in the novelty induced hypophagia test in
mice [175], an antidepressant-like effect which is inconsistent with
the hypothesis that a decrease in activity at theMOR should promote
depressive behaviors. Furthermore, MOR knockout mice have
shown reduced immobility in the forced swim test [192] and
reduced anxiogenic and depressive-like responses [193]. These
data suggest that activity specifically at the MOR is less likely to
underlie the anti-suicidal and antidepressant properties of
buprenorphine, since either increases or decreases in activity at
the MOR are capable of producing antidepressant behaviors.

Overall, it appears that the evidence for MOR activation
underlying buprenorphine’s anti-suicidal effects is less
convincing than the evidence for KOR antagonism underlying
these effects. This conclusion is based primarily on: 1) the inability
of MOR antagonists to block the anti-depressive and anti-suicidal
effects of buprenorphine in humans [159, 164, 165] and 2) rodents
[173, 174], and 3) the anti-depressive effects of somemanipulations
which decrease MOR activity [175, 192, 193].

CONCLUSION

This review has summarized the human and preclinical studies
that support further investigation of the potential of
buprenorphine treatment for reducing suicidal ideation. The
unique pharmacology of buprenorphine that includes partial
MOR agonism and KOR antagonism likely contributes to its

potential therapeutic effects, where there is strong support for
KOR antagonism in alleviating anhedonia and depression. Given
the high rate of suicidal ideation and death by suicide in both
chronic pain and substance use disorder patients, further research
should focus on the development of novel KOR antagonists that
do not possess the potential for abuse. Buprenorphine is a potent
opioid analgesic (more potent than morphine), and while it is an
effective treatment for opioid use disorder, it can be used illicitly
where there is evidence of misuse, abuse and diversion [194].
Thus, it is important to understand if drugs which combine
buprenorphine with a MOR antagonist (such as naloxone;
including drugs like Suboxone®) have anti-suicide properties
similar to buprenorphine itself. Overall, buprenorphine and
KOR drugs have great potential for the treatment of suicidal
behavior and future study may lead to safer and more effective
pharmacotherapies.
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