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ABSTRACT. The cosolvency models frequently used in solubility data modeling of drugs in mixed 
solvents were reviewed and their accuracies for calculating the solubility of solutes were briefly discussed. 
The models could be used either for correlation of the generated solubility data with temperature, solvent 
composition etc or for prediction of unmeasured solubility data using interpolation/extrapolation technique. 
Concerning the correlation results employing a given number of independent variables, the accuracies of the 
investigated models were comparable, since they could be converted to a single mathematical form, 
however, the accuracies were decreased when models emplyed more independent variables. The accurate 
correlative models could be employed for prediction purpose and/or screening the experimental solubility 
data to detect possible outliers. With regard to prediction results, the best predictions were made using the 
cosolvency models trained by a minimum number of experimental data points and an ab initio accurate 
prediction is not possible so far and further mathematical efforts are needed to provide such a tool. To 
connect this gap between available accurate correlative models with the ab initio predictive model, the 
generally trained models for calculating the solubility of various drugs in different binary mixtures, various 
drugs in a given binary solvent and also a given drug in various binary solvents at isothermal condition 
and/or different temperatures were reported. Available accuracy criteria used in the recent publications were 
reviewed including mean percentage deviation (MPD). The MPD for correlative models is 1-10% whereas 
the corresponding range for predictive models is 10-80% depend on the model capability and the number of 
independent variables employed by the model. This is an update for a review article published in this journal 
in 2008. 
_______________________________________________________________________________________ 
 
INTRODUCTION 
 
Solubility is an important issue in the 
pharmaceutical industry and still is considered as 
a topic under investigation (1,2), since forty 
percent of the marketed compounds are poorly 
soluble and approximately ninety percent of under 
development drugs can be categorized as poorly 
soluble (3). Solubility of a drug is the simplest 
phenomenon in pharmaceutical investigations and 
is required in many applications in the industry 
including; solubilization of a drug, crystallization 
from solutions, preparation of liquid drug 
formulations, preparation of nano-particles etc. 
Low aqueous solubility of drugs could also cause 
crystalluria and is a limitation in clinical 
application of drugs (4) or may cause beneficial 
effect such as prolongation of drug action in the 
target tissue (5). Among various solubilization 
methods, cosolvency is the most common and 
feasible method. Aqueous-organic solvent 
mixtures could be used in the formulation of 
liquid dosage forms, in solution preparation 
and/or crystalization processes. The solubility 
data in cosolvent + water mixtures could also be  

 
 
used in preparation of nanosuspensions of the 
pharmaceuticals using the bottom-up technique 
(6). Non-aqueous solvent mixtures are also widely 
used in the pharmaceutical industry in 
crystallization, synthesis media, nanoparticle 
formation or preparation of non-aqueous solutions 
of drugs. 

The experimental determination of drug’s 
solubility is still the most reliable method for 
obtaining accurate and valid data (7). Various 
methods were reported for drug solubility 
determination which were reviewed in previous 
works (8,9). The experimental determination is a 
time consuming and costly procedure and 
alternative methods are in demand. Smart and 
automated solubility determination methods (9) 
could be considered as an applicable alternative. 
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The mathematical models were also proposed to 
validate the accuracy of measured solubility data 
or facilitate the prediction of the solubility data at 
other temperatures and/or solvent compositions. 
From a practical application and ease of use 
viewpoints, the models vary from the simplest 
log-linear model of Yalkowsky (10) to the 
complex model of Ruckenstein and Shulgin (11). 
It is obvious that, simple models are more 
preferred in pharmaceutical applications of the 
models. 

The pioneers of solubility data modeling 
include; Joel H. Hildebrand (1881-1983) who 
introduced the Hildebrand solubility approach 
(12) which is applicable only to the solubility of 
non-polar solutes in non-polar solvents. Its 
extended versions were reported to provide better 
predictions for pharmaceutical systems including 
methods based on solubility parameters developed 
by Alfred N. Martin (1919-2003) and his co-
workers (13). The linear solvation energy 
relationship models proposed by Michael H. 
Abraham are the most accurate models to predict 
the solubility of a solute in the mono-solvent 
systems (14). The Abraham solvent coefficients 
which derived from experimental solubility data 
are available for a limited number of solvents, 
however, they are not available for some 
pharmaceutically relevant cosolvents like 
polyethylene glycols. The model provides 
solubility values with relatively high prediction 
error, however, it possesses an advantage of in 
silico prediction of aqueous solubility of drugs 
and no experimental data is required as input data. 
Another predictive model was developed by 
Samuel H. Yalkowsky is the general solubility 
equation (15) for aqueous solubilities which 
requires the melting point and logP of the drug as 
input data. The logP values could be computed 
using software such as ACD with reasonable 
accuracy.  

Anthony N. Paruta and co-workers (16) 
correlated the solubility of drugs to the dielectric 
constant of the mixed solvent system. The log-
linear model of Yalkowsky (10) was the next 
model providing a simple equation to calculate 
the solubility of drugs in cosolvent + water 
mixtures and the constants of this model were 
reported for most of pharmaceutically relevant 
cosolvents. The model requires experimental 
aqueous solubility data along with its logP as 
input data. The extended Hildebrand solubility 
approach of Martin et al. (13, 17-18) and further 
extensions of this approach made by Pilar 
Bustamante and her co-workers (19, 20) were the 
other versions of the cosolvency models. The 

excess free energy models of Gordon L. Amidon 
and his colleagues (21) was provided more 
accurate predictions by including experimental 
solubility data in the mono-solvents and also 
molar volumes of water, cosolvent and the drug. 
Kenneth A. Connors and his co-workers (22) 
proposed a phenomenological model derived from 
the free energy changes of the processes involved 
in the dissolution of a solute in the solvent 
system. The combined nearly ideal binary 
solvent/Redlich–Kister (CNIBS/R-K) equation 
was derived by William E. Acree Jr (23) and 
provided the most accurate solubility calculations 
in comparison with the above mentioned models. 
The general cosolvency model was reported by 
Mohammad Barzegar-Jalali and his co-workers 
(24), which is derived from above mentioned 
models. During last twenty years, the applications 
of the CNIBS/R-K equation was extended to 
represent solvent composition and temperature 
effects on solute solubility and applied to other 
physico-chemical properties (PCPs) of mixed 
solvent systems (25-37) and re-named as the 
Jouyban-Acree model. The model provided 
reasonably accurate predictions employing 
experimental data in mono-solvents and a number 
of data in mixed solvents at various temperatures. 
Further works on computational methods and also 
determination of drug solubilities in mixed 
solvents are ongoing in our research group. 

Although considerable progresses were made 
in computer sciences and sophisticated software 
and powerful hardware are available, it must be 
frankly stated that we are still not able to predict 
the solubility of drugs as stated by Hildebrand in 
the last century: “There is scarcely anything more 
important for a chemist than a knowledge of 
solubilities, but unfortunately he finds it more 
difficult to predict how soluble a substance will 
be in a given solvent than it is to predict almost 
any other important property.”. No accurate 
prediction tool is available for solubility of drugs 
in water, organic solvents or mixed solvent 
systems (7, 38, 39). More experimental and 
computational efforts are demanded to provide 
such a tool. It is obvious that the quality of the 
experimental data is an important factor in 
providing accurate models (40-42). To achieve 
this valuable task, more comprehensive solubility 
database in mono- and mixed solvents should be 
generated by the research groups around the 
world and also more comprehensive and 
preferably theoretical predictive tools should be 
provided. Available solubility data of solutes in 
water (43) and the solubility of pharmaceuticals in 
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organic mono-solvents and mixed solvents (1) 
were compiled as separate handbooks. 

A simple search using “( TITLE ( solubili* )  
AND  TITLE-ABS-KEY ( model )  AND  TITLE 
( mix* ) )” as search words in Scopus database 
(44), resulted in 720 papers. Figure 1 illustrated 
the relative frequency of the employed solubility 
models in the published works in 2008-2018. 
 
MODELS REPRESENTING SOLUBILITY 
DATA IN A GIVEN SOLVENT AT 
VARIOUS TEMPERATURES 
 
The van’t Hoff equation is extensively used to 
correlate the logarithm of solute’s mole fraction 
solubility ( Tln x ) to the reciprocal of absolute 

temperature (
T

1
) (45). The van’t Hoff equation is: 

 

RT

H

R

S

T

B
Ax dd

 



Tln                         (1) 

 
where Tx  is the solubility at a given solvent 

composition at various temperatures, A and B are 
the constants computed from correlation of the 

experimental solubility data. 
dH  is the molar 

enthalpy of dissolution, 
dS  refers to molar 

entropy of dissolution and R  is the gas constant. 
These coefficients reflect the variations in activity 
coefficients and indicate the effect of solution 
non-ideality on the solubility.  
 
Hildebrand equation presents Tln x  as a linear 

function of Tln  as: 
 

TBAx lnln ''
T                                      (2) 

 

in which 'A  and 'B  are the model constants (46). 
Grant et al. (47) represented a three parameter 
equation to provide better correlations. The 
equation is: 
 

TC
T

B
Ax lnln ''

''
''

T                                (3) 

 

in which ''A , ''B and ''C  are the model constants. 
The model was derived from van’t Hoff relation 
by employing apparent partial molar enthalpy of 

solution ( *H ) instead of the partial molar 

enthalpy of solution ( H ) and *H  was 
assumed as a linear function of temperature as: 
 

TH   *                                                 (4) 
 
in which   could be considered as the 

hypothetical value of *H  at T=0 K and   as 
the change in the apparent partial molar heat 
capacity of the solute at a constant pressure 
( pC ). Equation 3 was represented by Apelblat 

and Manzurola in 1999 (48) and is commonly 
used in the recent literature as Apelblat equation 
(49-53). Both Hildebrand and van’t Hoff 
equations provide accurate calculations especially 
at a narrow temperature range which is commonly 
used in the pharmaceutical applications. However, 
Grant et al. (47) recommended when more than 
five data points covering a relatively wide 
temperature range are available, it is better to use 
Eq. 3. The main advantage of the Hildebrand and 
van’t Hoff equations over Apelblat equation is 
their linear patterns which make them more 
reliable for prediction of the solubility at various 
temperatures using interpolation and/or 
extrapolation techniques. 

The Buchowski model (54) with two 
adjustable parameters (λ and h) correlates the 
mole fraction solubility of the solute ( Tx ) and 

temperature T. It is expressed as: 
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                    (5) 

 
where  Tfus refers to the fusion temperature of the 
solute.  

The main limitation of the models correlating 
the solubility of a drug in a given mono-solvent 
(or mixed solvent) as a function of temperature is 
that their trained versions are valid only for the 
solvent and there is no way to extend the 
prediction capability to other mono-solvents or 
solvent compositions. It is obvious that this sort of 
predictions are required in the pharmaceutical 
applications when recrystalization processes are 
designed based on anti-solvent addition and 
decreasing the temperature of the solution. 
 
COSOLVENCY MODELS AT 
ISOTHERMAL CONDITIONS 
Semi-theoretical models 
The logarithm of the mole fraction solubility of a 
drug in the solvent mixtures ( mln x ) at a constant 

temperature T and different solvent mass fractions  
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can be calculated using the algebraic mixing rule 
(10): 
 

2211m lnlnln xwxwx                                (6) 

 
where w1 and w2 represent the fraction of mono-
solvents 1 and 2 in binary solvent mixtures in the 
absence of the drug, 1x  and 2x  are the drug 
solubility in the mono-solvents 1 and 2. The 
model could be converted to the log-linear model 
of Yalkowsky (10) simply by repalcing w2 with 
(1-w1) and subsequent re-arrangements as: 
 

 
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                         (8) 

 
since 2ln x  and  21 lnln xx   are constant 

values at a given temperature, one may write the 
equation as: 
 

1mln wSlopeInterceptx                         (9). 

 
The log-linear model could also be derived from 
Hildebrand solubility approach as has been shown 
in an earlier report (55). 

The excess free energy models of 
Williams-Amidon (21) are expressed by: 
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Figure 1. Relative frequency of solubility models employed in recent studies 
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where A1-2, A2-1, Cs, D12, C2 and C1 are solvent-solvent or solute-solvent interaction terms, V1 and V2 
represent the molar volumes of solvents 1 and 2, respectively (21).  

The CNIBS/R-K was derived from a thermodynamic mixing model and expressed as: 

 



2
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21212211 lnlnln
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i
im wwSwwxwxwx                                                                                   (13) 
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where iS  stand for the model constants. The iS  

terms are computed using either a classical least 
square analysis (56) or a no intercept least squares 
analysis (57). The latter numerical method 
produces more accurate computations for drug’s 
solubility in aqueous binary solvents (57) and is 
recommended for future applications. The 
application of Eq. 13 could be extended to 
calculate the solute solubility in ternary solvent 
mixtures based on the model parameters obtained 
from solubility data in the sub-binary solvent 
systems as (58, 59): 
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in which '
iS  and ''

iS  are the model constants 

calculated using solubility data in sub-binary 
solvent mixtures. One may add ternary solvent 
interaction terms to provide more accurate 
calculations (60) as: 
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in which '''
iS  are the model constants calculated 

using solubility data in ternary solvent mixtures. 
The modified Wilson model represents a drug 

solubility in binary solvents at a given 
temperature as (61): 

 

2211

22

1221

11
m

)ln1()ln1(
1ln

ww

xw

ww

xw
x











 (16) 

 
in which λ12 and λ21 are the model parameters 
computed using a non-linear least square analysis. 

Most of these models could be converted to a 
general single model (GSM) or unified 
cosolvency model (UCM) as has been shown in 
previous papers (24, 62). The GSM was derived 
from the excess free energy and the CNIBS/R-K 
models (24) and was already used as an empirical 
equation to correlate solute solubility in the 

pharmaceutical literature (17, 63, 64). GSM is 
expressed as (24): 
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where 30 KK   denote the model constants 

calculated using least squares analysis. 
Using similar algebraic manipulations and some 
simplifications, UCM could be derived from non-
linear cosolvency models (61) as: 
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where '
iK  and ''

iK  terms denote the model 

constants. 
The cosolvency models usually overestimate 

or underestimate the solubility data and to provide 
better calculations, mean predicted solubility 
(MPS) approach was proposed and it was shown 
that, MPS approach provides more accurate 
correlations and/or predictions. In this approach, 
the solubility data calculated using various 
cosolvency models were averaged (65). 
 
Empirical models 
The mixture response surface method for 
correlation of solubility values is written as: 
 

' ' ' '
1 1 2 2 3 4 5 1 2' '

1 2

1 1
ln mx w w w w

w w
    

   
       

   
 

                                                                         (19) 
 

here, 1 5   are model’s constants and '
1w  and 

'
2w  are given by '

1 10.96 0.02w w   and 
'
2 20.96 0.02w w   (66). 

The double log-log model for linearizing 
the solubility data can be presented as (67): 
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in which 
5.0mx  is drug solubility in the fraction of 

0.5 of the cosolvent, D and d are the model’s 
constants. The double log-log model considers 
whole composition range of a binary solvent 
mixture as solvent 1 rich area and solvent 2 rich 
area and believed that should provide more 
accurate calculations. A number of other 
empirical models were reported which did not 
attract more attention from the research groups 
(68). 

The main disadvantage of these models (Eqs. 
6-21) is that they could be used at isothermal 
condition and should be trained for each 
temperature of interest. 
 
COSOLVENCY MODELS AT VARIOUS 
TEMPERATURES 
Semi-theoretical models 
The logarithm of the mole fraction solubility of a 
solute at temperature T and different solvent 
compositions ( Tm,ln x ) is calculated using an 

extended version of the algebraic mixing rule as 
(69, 70): 
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which is just a simple replacement of T1,ln x and 

T2,ln x  with their values from van’t Hoff 

equation. It is obvious that Eq. 22 represents the 
ideal mixing behaviour of the solution and is not 
the case for most of pharmaceutical solutions. In 
the Jouyban-Acree model, additional solute-
solvent and solvent-solvent interaction terms 
could cover non-ideal mixing behaviour of the 
solutions. It correlates the solubility data in terms 
of temperature and solvent composition and 
represented as (71, 72): 
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where T,1x  and T,2x  are the solubility in the 

mono-solvents 1 and 2 at various temperatures T 
and Ji are the model constants computed using 
regression of  T,22T,11Tm, lnlnln xwxwx   
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 (57, 72). Equation 23 requires 

two experimental solubility data points at each 
temperature and this restricts its practical 
applications. On the other hand, since the effect of 
drug solid state charactristics is an important 
parameter in its solubility, e.g. different 
polymorphs of a drug, and its effects could be 

reflected in T,1x  and T,2x  values. Employing 

these experimental data points in such cases is 
preferred and provided a useful tool for predictive 
purposes. As an example, the solubility of two 
polymorphs of a drug could be represented using 
the model parameters of one polymorph and the 
solubility data of other polymorph in the mono-
solvents (73).  

To provide a more practical version of the 
model to calculate drug solubility in solvent 
mixtures, the Jouyban-Acree model could be 
combined with van’t Hoff equation as (69, 74, 
75): 
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where Ai, Bi and Ji parameters have the same 
meanings in Eqs. 1 and 23. The constants of Eq. 
24 could be computed using either: 
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 using a no intercept least 

square analysis; which is a recommended 
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procedure for data sets in which the solubility in 
neat mono-solvents are not available. 

The numerical values of J terms computed 
from two numerical methods are slightly different 
from each other, but the overall fitness of the 
models is the same. 

The model was also combined with Apelblat 
model as (76): 
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                                                                         (25) 
 

in which ''
1A , 

''
1B , ''

1C , ''
2A , 

''
2B , and ''

2C  are the 
model constants. 
 
Empirical models 
Equation 22 could be re-arranged as: 
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in which E0-E3 are the model constants. 
 
Yang et al. (77) and Sun et al. (78) manipulated 
Eq. 23 and reported a modified version of the 
model as: 
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                                                                         (30) 
 
in which G terms are the model constants. There 
is no way to derive Eq. 30 from their 
manipulations and the correct derivation could be 
obtained from a similar manipulations on Eq. 24 
as has been shown in previous papers (79, 80). 
The correct derivation is: 
 
The replacement of 2w  with  11 w  in Eq. 24 
and series of algebraic manipulations:
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and like terms are combined: 
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Since all of the A, B and J terms in Eq. 36 are constant values, one may re-write it in a simplified version of 
Eq. 30. 
 Equation 24 could be re-arranged as: 
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by replacing w2 with (1-w1) and further algebraic manipulations (81, 82). G terms are the model constants 
and computed using a classical least square analysis. 
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The correlation abilities of Eqs. 24, 30 and 37 
were compared employing 56 solubility data sets 
of drugs in aqueous and non-aqueous binary 
solvent mixtures at various temperatures (83). 
The obtained mean percentage deviations (MPD) 
were 9.9 ± 11.8, 14.1 ± 21.4% and 14.1 ± 21.4 %, 
respectively for Eqs. 24, 30 and 37. There were 
five data sets producing relatively large MPD 

values for all models, and by excluding these five 
data sets, the MPDs were reduced to 6.6 ± 4.5, 8.6 
± 6.6% and 8.7 ± 6.6 %, respectively for the 
mentioned equations (83). 

Zhou et al. (84) introduced a modified version 
of Eq. 25 by replacing w2 with (1-w1). The 
modified Jouyban-Acree-Apelblat model (85) is: 
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in which F terms are the model constants. 

Although both modified versions and the 
classical version of the Jouyban-Acree model 
produce the same accuracies for correlation of the 
solubility data of a given drug in a certain 
cosolvent + water mixtures, the classical version 
of the Jouyban-Acree model is preferred for 
future works. The main reasons for this 
preference are: 

 
1. Theoretical basis of the model (71, 72) 
2. Capability of providing the most accurate 

correlation/prediction for solubility of drugs 
in various cosolvent + water mixtures (63, 83, 
86) 

3. Possibility of extension of the model’s 
applicability to calculate the solubility in 
ternary or higher order solvent mixtures (87-
89) 

4. Providing generally trained models to predict 
the solubility of drugs in a given cosolvent + 
water mixtures (90-96) 

5. Providing generally trained model for a given 
drug in different solvent mixtures (97, 98) 

6. Accurate representation of some commonly 
observed phenomena in the solutions such as 
chameleonic effect (99) and solubility of 
various polymorphs of a drug in cosolvent + 
water mixtures (73) 

7. Providing globally trained versions of the 
model using Abraham parameters (100) 
and/or Hansen solubility parameters (101) 

8. The model could be used for representing 
both solvent composition effects and salt 
formation (102, 103), surfactants (104, 105), 
complexing agents (106-108), combined 
effects of surfactants and complexing agents 
(109), polymers (110, 111), and ionic strength 
(112). 

9. Possibility of representing drug’s pKa in 
solvent mixtures at various temperatures (27) 

10. Representing thermodynamic parameters of 
the solutions in mixed solvents (113) 

11. Possibility of representing the solvent 
mixtures properties such as viscosity (31), density 
(32) etc at various temperatures. The general form 
of the Jouyban-Acree model is: 
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where PCPm,T, PCP1,T and PCP2,T are the 
numerical values of the physico-chemical 
property of the mixture and solvents 1 and 2 at 
temperature T, respectively, w1 and w2 are the 
volume (weight or mole) fractions of solvents 1 
and 2 in the mixture and Ji represent the model 
constants. 
12. The applicability of the model to extend 
for representation of the solubility and PCPs in 
ternary solvents as: 
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                                                                               (41) 
 
where subscript 3 is the solvent 3 characteristics, 

'
iJ , "

iJ and '"
iJ  are the sub-binary model 

constants (114). 
 
ACCURACY OF COSOLVENCY MODELS 
MPD is one of the most commonly used scale-
independent accuracy criteria in cosolvency 
computations. The possible determination errors 
in solubility experiments may result in an outlier 
point which will produce large MPD value in the 
computations. The MPD value could be directly 
compared with the relative standard deviation 
which is a measure of accuracy and precision of 
experimental determination procedure. It could be 
extremely large when the target experimental 
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solubility datum is very close to zero (83). MPD 
will be ~100 when the calculated solubility datum 
is very close to zero. On the other hand, scale-
dependent accuracy measures such as average 
absolute error (AAE) and root mean square error 
(RMSE) are vastly affected from the high 
solubility data and neglects the lower ones. The 
solubility in mole fraction unit is ranged from ~0 
to ~1. This is the reason why MPD was the most 
widely used criteria despite its mentioned 
limitation.  

The other generally used accuracy 
criterion includes the RMSE defined as (115-116): 
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2Pr

  (47) 

 
where N is the number of predicted solubility data 
points. The next criterion  is the AAE which is 
defined as (115, 117): 
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The RMSE and AAE values could be defined in 
logarithmic ( mxlog  or mxln ) or arithmatic ( mx ) 

scales and to compare its reported values in 
different papers, the scale should be kept in mind. 
The percentage deviation (%Dev.) (118-122) is: 
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The mean squared deviation (MSD) was 

also used in the literature: 
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where p is the number of the parameters of the 
model (123). 
 
 The MPD was used by our group (61, 83, 
91-95) and is defined as: 
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The same definition was also used in some 

reports using various terminologies, such as 

percent mean error (124), average percentage 
deviation (125) and percent deviation (63). 
The squares of the percent difference between 
calculated and experimental solubilities 

(  2% D ) is defined as (126): 
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                                                                        (52). 
 
Accuracy of correlative models 
The ideal value for the accuracy criterion for a 
correlative model is ~0 which means data 
excellently fit to the model. However, due to the 
experimental and other erros associated with the 
experimental data, the value is usually more than 
zero (63, 71, 83, 86). One may consider the 
accuracy criterion around the uncertainity values 
for repeated experiments (which is usually 1-
10%) as an ideal value for the accuracy of the 
correlative models. As discussed in this work, 
MPD is a very similar term to the relative 
standard deviation (RSD) for repeated 
experiments and the expected MPD for 
correlative models could be considered in the 
range of 1 to 10 % as an acceptable range. 

Barzegar-Jalali et al. (126) compared the 
accuracy of 3 cosolvency models for correlating 
the solubility data sets of 11 drugs in 
pharmaceutical cosolvents + water at 25 C using 

 2% D  as an accuracy criterion and found 

that the CNIBS/R-K model provided the most 
accurate correlations.  
 
Accuracy of predictive models trained using a 
minimum number of experimental data points 
Solubility prediction by employing the trained 
models using a minimum number of experimental 
data points (65, 69, 126-132) is perhaps the most 
accurate and feasible prediction method so far. It 
has been shown that the trained models using 
sufficient number of training data points provide 
acceptable predictions and could be used in the 
pharmaceutical industry. One could predict the 
solubility of a drug at a narrow temperature range 
after training the van’t Hoff equation using just 
two experimental data points, since the van’t Hoff 
equation is a linear model (69). For solubility 
prediction of a drug in a binary solvent mixture, 
one datum (10, 14, 90), two data points (10, 129), 
three data points (128), four data ponits (128), 
five data points (65, 126) and seven data points 
(107, 131) have been examined. The overall MPD 
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for predictive models is 10-80% for various 
models used in recent publications. As a general 
rule, the more data points in the training set, 
resulted in more accurate solubility predictions. 
On the other hand, more independent variables 
included, the more comprehensive solubility 
predictions were provided, however less accurate 
predictions were made. As an example, the van’t 
Hoff model with only one independent variable, 
i.e. temperature, produced the most accurate 
predictions, while the Jouyban-Acree-Abraham 
model (100) with four independent variables, i.e. 
solvent composition, temperature, nature of 
solvents and nature of solutes, produced less 

accurate predictions. This point should be 
considered when accuracy comparison of the 
solubility models are investigated. 
 
Models for a given drug in various solvent 
mixtures 
Trained versions of the Jouyban-Acree model 
were reported for prediction of paracetamol (87) 
and salicylic acid (132) in water + ethanol + 
propylene glycol ternary and sub-binary solvent 
mixtures. A trained version of the Jouyban-Acree-
Abraham model was proposed to calculate the 
solubility of hesperidin in a number of cosolvents 
+ water mixtures at various temperatures as (133): 
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which is a simplified version of Eq. 54. Abraham 
solvent coefficients; e is the excess molar 
refraction, s is the dipolarity/polarizability of the 
solvent, a denotes the hydrogen-bond acidity of 
solvent, b stands for hydrogen-bond basicity of 

solvent, and v is the McGowan volume of the 
solvent. Another trained version was reported for 
calculating the solubility of lamotrigine in non-
aqueous binary solvent mixtures as (134): 
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(54) 

 
 
Models for various drugs in a given solvent 
mixture 
The predictive version of the log-linear model of 
Yalkowsky (135) was applied to predict the 
solubility of drugs in various cosolvent + water 
mixtures at room temperature using: 
 

 
)log(lnln 1012m NPMwxx                   (55) 

 
where P10log  is the logarithm of drug’s partition 

coefficient. Table 1 summerized the M and N 
values for a number of cosolvent systems.  
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Table 1. Numerical values of M and N values of common cosolvents for calculating the slope ( ) of the log-linear 
model (133) 
 M N 
Acetone 1.14 -0.10 
Acetonitrile 1.16 -0.49 
Butylamine 0.64 1.86 
Dimethyl acetamide 0.96 0.75 
Dimethyl formamide 0.83 0.92 
Dimethyl sulphoxide 0.79 0.95 
Dioxane 1.08 0.40 
Ethanol 0.95 0.30 
Ethylene glycol 0.68 0.37 
Glycerol 0.35 0.28 
Methanol 0.89 0.36 
Polyethylene glycol 400 0.88 0.68 
1-Propanol 1.09 0.01 
2-Propanol 1.11 -0.50 
Propylene glycol 0.78 0.37 
Carbitol 1.60a 5.43a 
a Taken from a reference (94). 

 
 

Attempts were made to calculate the 
solubility of structurally related drugs in a given 
cosolvent + water mixtures to provide prediction 
tools for practical applications in the 
pharmaceutical industry. Bustamante et al. (19) 
proposed a modified version of the extended 
Hildebrand solubility approach as: 

 

mbmmDrugm BBBBxBxBBx  6
3
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4322110m lnlnln 

                                                                         (56) 
 

in which m  is the solubility parameter of the 

solvent mixture calculated using  2211  ww  , 

and mb  is the basic solubility parameter of the 

solvent mixture. The accuracy of Eq. 56 was 
compared with that of the CNIBS/R-K model 
using 8 solubility data sets of sulfonamides in 
dioxane + water and 8 alkylbenzoates in 
propylene glycol + water mixtures, where the 
CNIBS/R-K model provided more accurate 
correlations (125). 

Abraham and Acree (14) proposed the 
Abraham solvent coefficients for ethanol + water 
mixtures with 0.1 fraction intervals and predicted 
the solubility of various drugs in ethanol + water 
mixtures employing their Abraham solute 
parameters (14). The accuracy of this method was 

not compared using accuracy criterions and the 
authors just compared using graphical 
comparisons of a sample data sets (see Figures 1-
4 of the original paper (14) for details). The 
graphical comparisons reveal that the accuracy of 
the proposed method (14) was comparable with 
that of the Jouyban-Acree-Abraham model (Eq. 
65) for calculating the solubility of drugs in 
ethanol + water mixtures. A disadvantage of the 
method is that it cannot be used for interpolation 
of the solubility data in the fractions other than 
0.1 intervals. 

The trained versions of Eq. 23 were reported 
for solubility prediction of drugs in the aqueous 
mixtures of ethanol and several cosolvents at 
various temperatures (90-96). In these models, the 
J terms of Eq. 23 were assumed as independent 
parameters from drugs interactions which is not 
the case for most of the pharmaceutical systems. 
Attempts were made to cover this point by 
including HyperChem® solute parameters or 
Abraham solvent and solute parameters in the 
computations. The calculated structural 
parameters of drugs using HyperChem 7.0 (136) 
were employed to consider the effects of drugs’ 
stuructures on their solubilities, and the obtained 
models for dioxane + water and ethyl acetate + 
ethanol solvent mixtures were: 
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where HE is hydration energy, HOMO is energy of the highest occupied molecular orbital, TE is total 
energy, Vol is molar volume, and logP is the logarithm of partition coefficient, all computed by HyperChem 
as described in the published work (136). Their normalized values were used in the computations and 
calculated using: 
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HCww
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where HC  is the mean of HC  value for the investigated drugs. Eqs. 57 and 58 were correlated the data 
with the overall MPDs of 17.9 % and 9.6 %, respectively for dioxane + water and ethyl acetate + ethanol 
solvent mixtures which were significantly less than their simplified models without structural parameters 
(136). More variables from HyperChem computations were included to the model and the results were tested 
using solubility data sets in aquoeus binary mixtures of propylene glycol, ethanol and PEG 400. The 
combined model was: 
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The Abraham solute parameters, i.e. E, S, A, B and V represent the interactions of solute with 
solvent system. The combined version of Eq. 23 with Abraham parameters was (100): 
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                                                       (61) 

 
in which   terms are the model constants. Trained versions of Eq. 61 were provided for dioxane + water 
(100), ethanol + water (100), ethanol + ethyl acetate (138), ethanol + propylene glycol (139) and some other 
binary solvent mixtures. 
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Models for calculating the solubility of various drugs in different binary solvent mixtures: 
An attempt was also made to provide a general version of the Jouyban-Acree-Abraham model to correlate 
the solubility of anthracene in non-aqueous binary solvents as: 
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where the overall MPD of 5.5 % was obtained by 
employing the experimental solubility data of 
anthracene in the mono-solvents as input data. 
When the solubilities of anthracene in the mono-
solvents predicted by the Abraham model were 
replaced in the above equation, the overall MPD 
of 37.9 % was obtained (140). The applicability 
of Eq. 62 to predict the solubility of anthracene in 
49 binary solvents and 32 ternary solvent systems 
have been shown where the overall MPD of 7.9 % 

and 10.7 % were obtained. By replacing the 
Abraham equation predicted solubilities in the 
mono-solvents, the overall MPDs of 47.9 % and 
23.9 %, were observed respectively for binary and 
ternary prediction data sets (141). 

To provide more generally trained models, 
both solutes and solvents parameters were 
included in the computations. The solubility of 
five polycyclic aromatic hydrocarbons in non-
aqueous binary solvent was correlated using: 
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which calculates the solute’s solubility with the overall MPD of 4.7%. This MPD value is quite reasonable, 
when it was compared with the relative standard deviation of the repeated experiments which is between 5 to 
10%. To provide an in silico version of the model, the solute’s solubilty in the mono-solvents were 
calculated using the Abraham model and included in Eq. 63 instead of 1x  and 2x  values, where the overall 
MPD value of 33.4% was obtained (142). Further predictions for 80 data sets of anthracene and pyrene in 
non-aqueous ternary solvent mixtures confirmed the good prediction capacity of Eq. 63 (143). The solute-
solvent interactions of polycyclic aromatic hydrocarbons and non-aqueous solvents are not too complex, so 
the obtained models are accurate for these sorts of solutions. A similar version of the model for calculating 
the molar solubility of drugs in binary solvent mixtures was proposed as (90): 
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in which e1, b1, s1, a1, b1, v1 and e2, b2, s2, a2, b2, v2 

are the Abraham solvation parameters of solvents 
1 and 2 and w1 and w2 are the mass fractions of 
solvents 1 and 2 in binary mixtures, respectively. 
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The model correlates the solubility of drugs in 
four aqueous-cosolvent mixtures with the overal 
MPD of 18.5%. Theoretically the model should 
be able to predict the solubility of solutes 

employing the solubilities in the mono-solvents. 
An updated version of the model for drugs 
solubility prediction in the binary solvents at 
various temperatures was proposed as (100): 
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employing solubility of 48 drugs in 8 aqueous 
binary cosolvent mixtures at various temperatures 
which correlates the data with the overall MPD of 
42.4% (100). 

The main limitation of the Jouyban-Acree-
Abraham models (Eqs. 62-65) is that the 

Abraham solvent coefficients are not available for 
a number of pharmaceutically relevant cosolvents. 
To cover this point, another generally trained 
model based on Eq. 23 using Hansen solubility 
parameters was proposed as (101): 
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where 1h , 1p , 1d , 2h , 2p , 2d , 3h , 3p  and 

d3  are the partial solubility parameters of the 

solutes, solvents 1 and 2. δd is the energy from 
dispersion bonds between molecules, δp is the 
energy from polar bonds between molecules, and 
δh is the energy from hydrogen bonds between 
molecules. 
 
In silico models 
Solubility of anthrecene and pyrene in a number 
of non-aqueous ternary solvent mixtures was 
predicted using an in silico model reported in 
earlier papers (140-143). The Abraham model 
(14) was used to predict the solubility in the 
mono-solvents and the mixed solvent interaction 
terms of Eq. 62 was used to predict the solubility 
in solvent mixtures in which the obtained 
prediction errors were acceptable (143). Several 
attempts to provide an in silico model to predict 

drug solubility in binary solvents were not 
successful so far and more efforts should be made 
to achieve this valuable goal. 
 
CONCLUSION 
 
The accuracies of a number of cosolvency models 
were compared using 30 data sets of the solubility 
of drugs in aqueous binary solvent mixtures at a 
given temperature concerning the number of 
curve-fitting parameters and input data. The 
results showed that %Dev for correlated solubility 
data varied from 22.3% (for CNIBS/R-K model 
with three constant terms) to 3.1% (for the same 
model with 7 constant terms) as was expected. 
Concerning a given number of constant terms for 
various models, the observed %Dev were 
relatively the same for multi-linear models (63). 
This observation could be theoretically justified 
since all these models could be converted to GSM 



J Pharm Pharm Sci (www.cspsCanada.org) 22, 466 - 485, 2019 
 

 
 

480 

as discussed earlier (24). As a general conclusion, 
there is no full predictive model for solubility of 
drugs in mixed solvent systems. To provide such 
models, more comprehensive solubility database 
is required and researches are ongoing to provide 
such a big database. However, employing a 
minimum number of experimental data points for 
a given drug in a certain mixed solvent system, 
one may provide prediction tools with acceptable 
accuracy to save the time and cost of the 
experimental works in the pharmaceutical 
industry. 
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