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ABSTRACT - Purpose: Novel, “outside of the box” approaches are needed for evaluating candidate molecules, 
especially in oncology. Throughout the years of 2000-2010, the efficiency of drug development fell to barely 
acceptable levels, and in the second decade of this century, levels have improved only marginally. This dismal 
condition continues despite unprecedented progress in the development of a variety of high-throughput tools, 
computational methods, aggregated databases, drug repurposing programs and innovative chemistries. Here we 
tested a hypothesis that the economic impact of targeting a particular gene product is predictable a priori by 
employing a combination of transcriptome profiles and quantitative metrics reflecting existing literature. 
Methods: To extract classification features, the gene expression patterns of a posteriori high-impact and low-
impact anti-cancer target sets were compared. To minimize the possible bias of text-mining, the number of 
manuscripts published prior to the first clinical trial or relevant review paper, as well as its first derivative in this 
interval, were collected and used as quantitative metrics of public interest. Results: By combining the gene 
expression and literature mining features, a 4-fold enrichment in high-impact targets was produced, resulting in 
a favourable ROC curve analysis for the top impact targets. The dataset was enriched by the highest impact anti-
cancer targets, while demonstrating drastic differences in economic value between high and low-impact targets. 
Known anti-cancer products of EGFR, ERBB2, CYP19A1/aromatase, MTOR, PTGS2, tubulin, VEGFA, BRAF, 
PGR, PDGFRA, SRC, REN, CSF1R, CTLA4 and HSP90AA1 genes received the highest scores for predicted 
impact, while microsomal steroid sulfatase, anticoagulant protein C, p53, CDKN2A, c-Jun, and TNSFS11 were 
highlighted as most promising research-stage targets. Conclusions: A significant cost reduction may be 
achieved by a priori impact assessment of targets and ligands before their development or repurposing. 
Expanding a suite of combinational treatments could also decrease the costs, while achieving a higher impact 
per developed ligand.  
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
_______________________________________________________________________ 
 
INTRODUCTION  
 

Despite tremendous historical progress in anti-
cancer research and the decrease in mortality rates 
associated with many forms of cancer (1), including 
tumors of the prostate, breast, testis, and colon, as 
well as many forms of leukemia, the outcomes for 
pancreatic, lung and brain tumors remain dismal. It 
is difficult to pinpoint individual factors 
contributing to the organ-specific treatment success 
rates. For some forms of cancer, including breast, 
ovary, prostate, uterus, leukemia, thyroid, and testis, 
there is a tremendous gap in outcomes for patients 
with treatment-sensitive and treatment-resistant 
tumors. For other cancers, the role of 

targeted/chemotherapy remains secondary, while 
long-term remission is being achieved through a 
combination of radiotherapy and early radical 
surgery.  
However, on average, a ten-year survival rate for all 
cancer forms increased from 22% in 1971 to 45% in 
2007, with the most significant contribution to this 
increment being novel therapeutics.  Health-
improvements in breast cancer that could be 
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attributed to chemotherapy were estimated at 
between 14% and 27% in 1998 (2). It is likely that 
the more recently developed regimens show even 
greater impact. The broadly cited assessment of De-
Vita et al. attributes 50% of the increase in survival 
rates to drug-based therapies (3). In this manuscript, 
we discuss a novel cost-effective strategy for 
developing anti-cancer therapeutics and their 
combinations. This strategy is based on a premise 
that the spectrum of efficient physiological anti-
cancer mechanisms is relatively limited, and that 
improvement in survival rates is primarily due to 
the targeting of so-called “super-targets”. Examples 
of well-known “super-targets” that were drugged 
since long time ago include DNA (4), folate 
reductase (5), and microtubules (6); these “super-
targets” are still commonly tackled by either 
combinational therapy (7) or adjuvant therapy (8).  

Discovery of a novel high-impact anti-cancer 
“super-target” is a significant event, further 
increasing cancer survival rates by approximately 
1%, in our estimate. However, the existing statistics 
pertaining to the introduction of novel anti-cancer 
therapies point to stagnation (9-12). This trend 
occurs in the backdrop of Food and Drug 
Administration (FDA)'s attempts to expedite the 
review process (12). Even more concerning is that 
the downturn in the number of New Drug 
Applications (NDA) takes place at the time when 
the enabling technologies appear to explode (13-15), 
including the newest investments in personalized 
genome projects, gene knock-out techniques, 
toolboxes for biological network modeling, 
RNAseq, genome-wide association studies along 
with centralization and dissemination of biomedical 
information by NCBI and other portals. Another 
alarming trend is the cost of drug design, reaching 
$5bn per an approved drug in 2013 (16). The 
combination of the NDA contraction and the 
exponentially rising costs of drug development 
points to a wall of resistance that has to be 
penetrated.  

In this report we demonstrate a possibility to 
predict that anti-cancer molecule would tackle a 
super-target a priori. In other words, we describe 
the methodology of the “success mining” that 
attempts to identify the features of known “winner” 
molecules at the preclinical stage, then to prioritize 
current candidate molecules according to relative 
resemblance of a “winner” profile. This approach 
would aid in reallocating available funding to the 
most promising candidates and minimize costly 

attrition at later development stages. 
Some attempts to evaluate the pharmacological 

promise of a given target or its ligand have been 
made before. Ma'ayan et al. introduced graph-
theory methods to analyze the FDA-approved drugs 
and their known molecular targets (17).  Zhu et al. 
in (18) explored multiple factors that collectively 
contribute to druggability of various targets, 
including its protein sequence, structural, 
physicochemical, and systems profiles. Importantly, 
the techniques to explore each of these profiles for 
target identification have been developed, but they 
have not been collectively used. Chen et al. in (19) 
proposed that a disease-independent property of 
proteins, "drug-target likeness", can be explored to 
facilitate the genomic scale target screening. 
Sakharkar et al. in (20) described quantitative 
characteristics of the currently explored (those that 
are not yet associated with any marketed drug) and 
successful (targeted by at least one marketed drug) 
biomolecules; these characteristics were translated 
into simple rules for selecting a target with larger 
possibility of success. These rules highlight target 
proteins with 5 or less homologs outside of their 
own family, proteins encoded by single-exon gene 
architecture and proteins interacting with more than 
3 partners as more likely to be druggable.  Bender 
et al. in (21) reported a success mining approach 
applied to ligands in the context of in vitro 
interaction profiles of their targets. According to 
Bender et al., Preclinical Safety Pharmacology (PSP) 
approach may anticipate adverse drug reactions 
(ADRs) during early phases of drug discovery by 
testing compounds in relatively simple in vitro 
binding assays. 

All of these previously implemented 
methodologies attempt to discriminate the targets 
that have already acquired a ligand from the targets 
that are either in the process of ligand acquisition or 
would never acquire an approved ligand. We find 
that this approach needs supplementing due to a 
number of considerations. First, some targets may 
eventually acquire a somewhat beneficial and a 
relatively harmless ligand that would pass safety 
and efficiency criteria, if a sufficient investment is 
made. Secondly, the targets that have acquired the 
approved ligand may lose the association with the 
approval if the ligand is pulled from the market later. 
Finally, the practical impact of ligands is in 
proportion to the significance of the target for the 
pathophysiological mechanism that drives a given 
pathology. A still developing candidate with 
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expected huge clinical (and market) niche, but 
without approved associated ligands, may be more 
valuable than a comparable target with an approved 
ligand of a more modest impact.  

In this report we attempt to predict an impact of 
a pharmacological target candidate using its future 
market share as a proxy. The more clinical trials and 
especially advanced clinical trials are conducted 
around a certain ligand, the more likely the target 
would eventually be tackled by a high-impact 
therapeutics that would be inherently successful due 
to a combination of favorable biology and 
pharmacology. Aiming at the largest possible target 
impact significantly differs from using the criterion 
of being simply FDA approval; such studies have 
not been conducted yet. Incorporation of the 
forecasted future impacts in the decision criteria put 
forth by funding and regulatory agencies may aid in 
creating a policy instrumental in rolling back the 
escalating costs of the drug development.  
 
METHODS 
 
Overview of methodology 
The proposed impact forecasting technique relies on 
the target impact predictors available at the 
preclinical stage. The independent predictors were 
combined into an Index enabling to gauge the 
commercial potential of a target candidate before 
the bulk of investment is committed.  
 
Sources of data included in the study 
The study used GEO Datasets at NCBI at 
http://www.ncbi.nlm.nih.gov/gds/; PubMed at 
http://www.ncbi.nlm.nih.gov/PubMed/ and 
Therapeutic Target Database (TTD) at 
http://bidd.nus.edu.sg/group/cjttd/.  The GEO 
Datasets was searched for similarly normalized 

gene expression data, collected from normal and 
cancerous specimens of various tissue origins. 
Dataset GSE7307 includes 677 normal and diseased 
human tissues profiled for gene expression using 
the Affymetrix U133 plus 2.0 array. The target 
status information was extracted from TTD, where 
the ligand and clinical trial status for each target 
candidate is specified as either “successful” 
(approved ligand is associated with the gene's 
products) or “research” (no approved ligand is 
associated with the gene's products). The text-
mining was performed using PubMed with the gene 
names and their synonyms extracted from TTD. 
 
Definition of target impacts 
Target impacts were approximated by the number of 
clinical trials associated with the gene's name. The 
number of clinical trials associated with the gene 
was extracted by applying the PubMed filters. 
Weights 1, 2, 5 and 10 were assigned to the ligands 
in Phase I, II, III clinical trials and marketed ligands, 
respectively. The values of these weights were 
selected in proportion to the attrition rate of the 
ligands at each trial level. By resources committed, 
the ligand at the Phase I stage is cheaper by than a 
ligand that have reached the Phase III stage, and the 
approximate differences in the costs are reflected in 
the weights, see Supplemental Table 1 for the data. 
The number of the ligands in each category was 
multiplied by weights producing proxy target 
impacts that reflect the prospective revenue of the 
target reached in case of successful development.  
These values were defined as “real-life impacts”, 
while the predicted impacts were derived from both 
microarray and text-mining data. The proxies for 
real-life impacts were designated Y for the purpose 
of deriving a prediction rule as a linear classifier, 
see below. 

 
 
Table 1. Modeled relative impacts for the successful anti-cancer targets. 
Gene ID Synonyms  Target impacts 
EGFR ERBB, ERBB1, HER1, PIG61, mENA, EGFR, epidermal growth factor receptor,  avian 

erythroblastic leukemia viral (v-erb-b) oncogene homolog| 
1254 

ERBB2 CD340, HER-2, HER-2/neu, HER2, MLN 19, NEU, NGL, TKR1, ERBB2    v-erb-b2 
avian erythroblastic leukemia viral oncogene homolog 2 c-erb B2/neu protein|herstatin| 

1202 

CYP19A1/ 
aromatase 

ARO, ARO1, CPV1, CYAR, CYP19, CYPXIX, P-450AROM, CYP19A1  cytochrome 
P450, family 19, subfamily A, polypeptide 1  aromatase, cytochrome P-450AROM, 
cytochrome P450 19A1 

620 

MTOR FRAP, FRAP1, FRAP2, RAFT1, RAPT1,  mechanistic target of rapamycin 
(serine/threonine kinase)       FK506 binding protein 12-rapamycin associated protein 2 

259 

PTGS2 COX-2, COX2, GRIPGHS, PGG/HS, PGHS-2, PHS-2, hCox-2, prostaglandin-
endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) 

246 
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Table 1. Continued….. 
 
Tubuline DAAP-285E11.4, M40, OK/SW-cl.56, TUBB1, TUBB5, tubulin, beta class I   beta 5-

tubulin|beta Ib tubulin|beta-4 
227 

VEGFA RP1-261G23.1, MVCD1, VEGF, VPF,  vascular endothelial growth factor A 220 
BRAF B-RAF1, BRAF1, NS7, RAFB1, BRAF v-raf murine sarcoma viral oncogene homolog 

B 
162 

PGR NR3C3, PR, progesterone receptor   nuclear receptor subfamily 3 group C member 3 123 
PDGFRA PDGFRA  CD140A, PDGFR-2, PDGFR2, RHEPDGFRA, platelet-derived growth 

factor receptor, alpha polypeptide 
95 

SRC RP5-823N20.1, ASV, SRC1, c-SRC, p60-Src, v-src avian sarcoma (Schmidt-Ruppin A-
2) viral oncogene homolog proto-oncogene c-Src 

87 

REN HNFJ2, renin   angiotensin-forming enzyme, angiotensinogenase, renin precursor, renal 84 
CSF1R CSF1R   C-FMS, CD115, CSF-1R, CSFR, FIM2, FMS, HDLS, M-CSF-R, CSF1R     

colony stimulating factor 1 receptor    CD115 antigen|CSF-1 receptor|FMS proto-
oncogene 

70 

CTLA4 CD152, CELIAC3, CTLA-4, GRD4, GSE, IDDM12, CTLA4        cytotoxic T-
lymphocyte-associated protein 4     CD152 isoform|celiac disease 3|cytotoxic T 
lymphocyte associated antigen 4 short spliced form|cytotoxic T-lymphocyte antigen 4 

58 

HSP90AA1 EL52, HSP86, HSP89A, HSP90A, HSP90N, HSPC1, HSPCA, HSPCAL1, HSPCAL4, 
HSPN, Hsp89, Hsp90, LAP2, HSP90AA1 heat shock protein 90kDa alpha (cytosolic), 
class A member 1 

53 

IGF1R CD221, IGFIR, IGFR, JTK13, IGF1R        insulin-like growth factor 1 receptor 51 
RET CDHF12, CDHR16, HSCR1, MEN2A, MEN2B, MTC1, PTC, RET-ELE1, RET51,  ret 

proto-oncogene 
47 

CD52 CAMPATH-1 antigen, CDW52 antigen, HEL-S-171mP, cambridge pathology 1 antigen, 
epididymal secretory protein E5, epididymis secretory sperm binding protein Li 171mP, 
human epididymis-specific protein 5 

39 

IL2RA RP1-261G23.1, MVCD1, VEGF, VPF, VEGFA,  vascular endothelial growth factor A 39 
RRM1 R1, RIR1, RR1,  ribonucleotide reductase M1,     ribonucleoside-diphosphate reductase 

large subunit 
37 

ADA adenosine deaminase, adenosine aminohydrolase 33 
STAT3 APRF, HIES,signal transducer and activator of transcription 3 (acute-phase response 

factor) 
31 

TOP2A TOP2, TP2A,  topoisomerase (DNA) II alpha, DNA gyrase, DNA topoisomerase (ATP-
hydrolyzing, DNA topoisomerase 2-alpha, DNA topoisomerase II 

30 

TYMS OK/SW-cl.29, HST422, TMS, TS,  thymidylate synthetase,  TSase 25 
CXCR4 CD184, D2S201E, FB22, HM89, HSY3RR, LAP3, LCR1, LESTR, NPY3R, NPYR, 

NPYRL, NPYY3R, WHIM, CXCR4  chemokine (C-X-C motif) receptor 4 
23 

KDR CD309, FLK1, VEGFR, VEGFR2, KDR kinase insert domain receptor  21 
PPARG CIMT1, GLM1, NR1C3, PPARG1, PPARG2, PPARgamma, peroxisome proliferator-

activated receptor gamma 
21 

ABL1 RP11-83J21.1, ABL, JTK7, bcr/abl, c-ABL, c-ABL1, p150, v-abl, ABL1 c-abl oncogene 
1, non-receptor tyrosine kinase Abelson tyrosine-protein kinase 1|bcr/c-abl oncogene  

18 

TLR7 RP23-139P21.3,  toll-like receptor 7 14 
LCK RP4-675E8.4, LSK, YT16, p56lck, pp58lck, lymphocyte-specific protein tyrosine kinase 8 
CCKBR CCK-B, CCK2R, GASR, CCKBR ,  cholecystokinin B receptor,      CCK-B receptor, 

CCK-BR, CCK2 receptor, CCK2-R, cholecystokinin-2 receptor, gastrin receptor 
6 

RXRA NR2B1, RXRA     retinoid X receptor, alpha      nuclear receptor subfamily 2 group B 
member 1, retinoic acid receptor RXR-alpha, retinoid X nuclear receptor alpha 

5 

RRM2 R2, RR2, RR2M,  ribonucleotide reductase M2,  ribonucleoside-diphosphate reductase 
subunit M2 

4 

FYN RP1-66H14.1, SLK, SYN, p59-FYN 3 
ESR1 RP1-130E4.1, ER, ESR, ESRA, ESTRR, Era, NR3A1, ESR1 ,    estrogen receptor 1,     

ER-alpha, estradiol receptor, estrogen nuclear receptor alpha 
2 



J Pharm Pharm Sci (www.cspsCanada.org) 19(4) 475 - 495, 2016 
 

 
 

479 

 
Table 1. Continued….. 
 
GNRH1 Gnrh, Gnrh2, LHRH, Lhrh1, Lnrh, hpg, Gnrh1, gonadotropin releasing hormone 1 2 
SSTR2 somatostatin receptor 2 SRIF-1, SS2R, somatostatin receptor type 2 2 
VDR NR11, VDR      vitamin D (1,25- dihydroxyvitamin D3), receptor  1,25-

dihydroxyvitamin D3 receptor|nuclear receptor subfamily 1 group I member 1| 
2 

BDKRB2 B2R, BK-2, BK2, BKR2, BRB2, BDKRB2, bradykinin receptor B2 , BK-2 receptor 1 
NTRK2 GP145-TrkB/GP95-TrkB, Tkrb, trk-B, trkB,  neurotrophic tyrosine kinase, receptor, type 

2  BDNF/NT-3 growth factors receptor 
1 

TOP1 RP3-511B24.1, TOPI,  topoisomerase (DNA) I   DNA topoisomerase 1 1 
ALPL AP-TNAP, APTNAP, HOPS, TNAP, TNSALP, ALPL       alkaline phosphatase 0 
CALM1 CALML2, CAMI, CPVT4, DD132, PHKD, caM, CALM1    calmodulin 1 

(phosphorylase kinase, delta) 
0 

CSF2RA CSF2RA  CD116, CDw116, CSF2R, CSF2RAX, CSF2RAY, CSF2RX, CSF2RY, GM-
CSF-R-alpha, GMCSFR, GMR, SMDP4, CSF2RA      colony stimulating factor 2 
receptor, alpha, low-affinity (granulocyte-macrophage) 

0 

DNMT1 ADCADN, AIM, CXXC9, DNMT, HSN1E, MCMT, DNMT1,   DNA (cytosine-5-)-
methyltransferase 1,  CXXC-type zinc finger protein 9 

0 

EDNRA ET-A, ETA, ETA-R, ETAR, ETRA, hET-AR, EDNRA     endothelin receptor type A,  G 
protein-coupled receptor, endothelin receptor subtype A, endothelin-1 receptor 

0 

EDNRB RP11-318G21.1, ABCDS, ET-B, ET-BR, ETB, ETBR, ETRB, HSCR, HSCR2, WS4A, 
EDNRB    endothelin receptor type B 

0 

FASN FAS, OA-519, SDR27X1, FASN      fatty acid synthase     short chain 
dehydrogenase/reductase family 27X, member 1 

0 

FECH EPP, FCE, FECH  ferrochelatase 0 
HDAC1 RP4-811H24.2, GON-10, HD1, RPD3, RPD3L1, HDAC1,  histone deacetylase 1 0 
HPSE HPA, HPA1, HPR1, HPSE1, HSE1, heparanase,  endo-glucoronidase, heparanase-1  0 
IFNAR1 CD118, Ifar, Ifnar, Ifrc, Infar, Ifnar1 interferon (alpha and beta) receptor 1, IFN-R-1, 

IFN-alpha/beta receptor 1 
0 

IMPDH1  IMPD, IMPD1, LCA11, RP10, sWSS2608, IMP (inosine 5'-monophosphate) 
dehydrogenase 1   

0 

IMPDH2 hCG_2002013, IMPD2, IMPDH-II, IMPDH2    IMP (inosine 5'-monophosphate) 
dehydrogenase 2   

0 

ITGA2B BDPLT16, BDPLT2, CD41, CD41B, GP2B, GPIIb, GT, GTA, HPA3, ITGA2B        
integrin, alpha 2b (platelet glycoprotein IIb of IIb/IIIa complex, antigen CD4 

0 

LHCGR HHG, LCGR, LGR2, LH/CG-R, LH/CGR, LHR, LHRHR, LSH-R, ULG5, LHCGR        
luteinizing hormone/choriogonadotropin receptor 

0 

MME CALLA, CD10, NEP, SFE, MME,  membrane metallo-endopeptidase  atriopeptidase, 
common acute lymphocytic leukemia antigen 

0 

OXTR OT-R, OXTR      oxytocin receptor 0 
PARP1 RP11-125A15.2, ADPRT,  ADPRT1, ARTD1, PPOL, pADPRT-1, poly (ADP-ribose) 

polymerase 1  ADP-ribosyltransferase (NAD+);  
0 

PDE4A PDE4A   DPDE2, PDE4, PDE46, PDE4A,  cAMP-specific 3',5'-cyclic 
phosphodiesterase 4A 

0 

PTH1R PFE, PTHR, PTHR1, PTH1R parathyroid hormone 1 receptor, PTH/PTHr 
receptor|PTH/PTHrP type I receptor|PTH1 receptor|parathyroid hormone receptor 1 

0 

RARA NR1B1, RAR,  retinoic acid receptor, alpha 0 
TSPO RP3-526I14.4, BPBS, BZRP, DBI, IBP, MBR, PBR, PBS, PKBS, PTBR, mDRC, pk18, 

TSPO translocator protein (18kDa)    benzodiazepine peripheral binding site 
0 

TXNRD1 GRIM-12, TR, TR1, TRXR1, TXNR, TXNRD1   thioredoxin reductase 1, KM-102-
derived reductase-like factor 

0 
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Microarray-based predictive features 
The microarray data were retrieved by GEO NCBI 
at http://www.ncbi.nlm.nih.gov/gds/. The dataset 
GSE7307 is described above. Using this dataset, 
normal and cancer specimen pairs were formed for 
skin, lung, prostate, liver, uterus and ovary tissue 
environments. For each paired environment 
(cancer-norm), differential expression values were 
computed as: 
 
D1 = [cancer]/[norm in the same environment]   (1) 

 
D2 = [cancer ]/[average norm in all environments] 

(2) 
 
Differential expression consistency metric was 
derived based on these primary data points. The 
direct data D1 and D2 were transformed in bonus-
penalty data using the following rule: 
 
If D1 > cutoff1,  D'1 (cutoff1)  = 2;   If D1 < cutoff1, 

D'1 (cutoff1) = 0  (3) 
 

If D2 > cutoff2,  D'2 (cutoff2)  = 2;   If D2 < cutoff2, 
D'2 (cutoff2) = 0 

       
The transformed indirect values D'1 and D'2 were 
multiplied for each environment and the products 
were summed to produce the Differential 
Expression Consistency Score (DEXCON). 

In this system, the leading scores were assigned 
to the genes that show high expression levels in 
cancer, but low expression levels in the normal 
environment related to the tumor as well as low 
expression levels in all unrelated normal 
environments. It is apparent that the potential 
targets with such parameters would possess wider 
therapeutic windows under all other circumstances 
being equal. 

The absolute levels of gene expression were 
measured across the panel of 90 tissue 
environments and this feature was termed 
INTENSITY, to reflect intensity of absolute mRNA 
transcript expression. 

The parameters DEXCON and INTENSITY 
became the features embed in an integrated 
classifier and were designated as X1 and X2 for the 
future reference. See the specific values of the 
parameters and corresponding bonus-penalty points 
in the Supplemental Table 2. 

 
 

Text-mining predictive features 
The future target impacts were anticipated by 
extracting the levels of early scientific interest as 
measured by the number of non-review research 
publications available prior to the first review 
published and by first derivative of the research 
interest. This extraction was accomplished by 
querying the PubMed with gene name and all its 
synonyms followed by manual review of the result 
to ensure that all selected articles are relevant to the 
biology of the target and the resultant therapeutic 
avenues. 

The derivative was measured as the ratio of the  
 

ABS (NT – NR)/(Spacing) (5) 
 
where NT – is the number of non-review 
publications addressing the role of the gene in the 
disease of interest prior to the date of the first 
clinical trial inception; NR – is the number of non-
review publications addressing the role of the gene 
in the disease of interest prior to the date of the first 
review published; Spacing – is the number of years 
between first clinical trial and first review. The 
function ABS is the absolute value operator and it 
accounts for the fact that the first review and the 
first clinical trial may follow in any order. 
 

The average N = (NT + NR)/2   (6) 
 
The average measures the absolute number of peer-
reviewed research publications related to the gene. 
All numbers were normalized for the natural growth 
of PubMed population in time, by the formula: 
 

N (T2)/N(T1) = 1.045^(T2-T1)  (7) 
 
The features (5) and (6) were designated as X3 and 
X4 for combining them within the integrated 
classifier. 
 
Classifier design 
To design a linear classifier locating high-impact 
targets, the values of Y were transformed as 
 

Y' = log (Y + 1)  (8) 
 
The purpose of transform was to smooth the data-
set by relatively diminishing the effects of a few 
very high Y values, dominating the numerical 
structure. The smoothing allows effective increase 
of diversity in the training set and is equivalent to 
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the increased training set size, facilitating a more 
objective training process. The correction term + 1 
in (8) accounts for zero Y values not amenable to 
log transform. The distortion introduced by + 1 
correction is minimal and does not outweigh the 
benefit of the smoothing procedure. The features 
X1-X4 were ranked. The Y' was related to the 
ranked X1-X4 by a linear regression: 
 
YP' = W1X1 + W2X2 + W3X3 + W4X4 + A  (9) 
 
where W1-W4 are the corresponding weight 
coefficients to be determined by an error 
minimization procedure: 
 

Sum (Y' – YP')^2  = MIN (10) 
 
where YP' are the predicted impacts for the entire 
population of the training set, Y' are the above 
defined “true impacts” for the entire population of 
the training set. The set of training weights [W1-
W4, A] was determined by minimizing (10) using 
the Least Square Method. 

Further steps taken to improve the resolution of 
the method included the following. The ranked 
values of X1-X4 were each scored in the following 
manner: the top rank [0.9-1.0] received a score of 2, 
the next bin [0.75-0.89] received a score of 1 and all 
bins below 0.75 received  score of 0. 

The direct column vectors of features were 
replaced with the bonus-penalty values as defined 
here. The error minimization procedure was 
repeated and the proportions between the weight 
coefficients W remained practically unchanged. 

The meaning of the bonus-penalty transform is 
to emphasize the role of informative outliers on the 
side of the model factors X (as opposed to the 
outputs Y) and to smooth the effects of the random 
noise, distributed equally among the members of 
the training set.  To re-phrase, the bonus-penalty 
system selects only the most informative genes for 
contributions in the prediction rule and maximizes 
the signal-to-noise ratio at the given size of the 
training set. 
 
Validation of selected approach  
The list of targets was randomly divided in the 
training and testing sets of equal size. The testing 
set was set apart until the prediction rule was 
derived in the training set. Based on the derived 
prediction rule, the residual errors were computed 
in the training and test sets by comparing the 

predicted and real impacts. The populations of the 
residual errors (10) were compared for the training 
and testing sets to assess generalization by the 
prediction rule. We tested for the statistical equality 
of the error populations in the absence of over-fit. 
To select a proper T-test form (equal or unequal 
variance, 2-tail), a preliminary F-test was run to 
compare variances. The F-test reported equal 
variances between the error populations and based 
on these data equal variance T-test was applied for 
population comparison. The populations of errors 
were identical, with no over-fitting detected. Based 
on this conclusion, the training and testing 
populations were merged for the plotting of 
Receiver Operating Characteristic (ROC) curve. 
Ranking of real impacts were used for defining high 
and low real impact categories and respective 
labeling of the targets. At the next step, predicted 
target scores were ranked, and the distribution of 
real score labels was traced as a function of the 
predicted score. The bin with high predicted score 
on the ROC curve provided significant enrichment 
to the real high impact labels, thus, validating our 
approach. 
 
ROC curve plotting and its use for computing 
relative enrichment 
The true impacts Y were subdivided based on rank 
in the “high-impact” bin with the ranks [0.75-1.0] 
and “low-impact” bin with the ranks [0 – 0.75]. The 
members of these groups acquired the positive and 
negative labels respectively. The predicted scores 
PY' were ranked as well, and the population of true 
impacts followed the rank of PY', producing a non-
ideal, but a generally correlating pattern. The true 
“high-impact” labels were predominantly 
concentrated in the higher regions of PY' rank. The 
predicted score ranks were explored from the top 
(1.0) to the bottom (0.0) values. 

The fraction of high-impacts f1 was computed 
by summarizing the positive labels as defined above. 
The fraction of low-impacts f2 was computed in a 
similar fashion.  

The fraction f1 of “high-impact” Y and the 
fraction f2 of “low-impact” Y were forming the Y-
axis and the X-axis of the plot, respectively. Per 
each 0.1 (10%) increment of “low-impact” count, 
the fractional increment of “high-impact” targets 
was also computed.  Every point on ROC curve can 
be represented in the coordinates [summary fraction 
of “low-impact” values; summary fraction of “high-
impact” values], the summary fraction is the sum of 
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all increments over the previous intervals. To 
exemplify, the “low-impact” summary fraction 0.1 
+ 0.1 + 0.1 = 0.3; the matching value of the “high-
impact” summary fraction becomes 0.5 + 0.1 + 0.05 
= 0.65. 

The ratio of the summary fractions 
characterizes the relative enrichment in the true 
“high-impact” values as a function of the predicted 
impact rank. To exemplify, in the highest 0.1 
fraction of the predicted impact rank corresponding 
to the left-most part of the ROC curve and [1.0-0.9] 
bin of the PY' rank, the summary fraction of the 
“high-impact” values is 0.5, therefore the relative 
enrichment is 0.5:0.1 = 5.  Considering a predicted 
impact bin of rank [1.0-0.8], the summary fraction 
of the “high-impact” values is 0.5 + 0. 1 = 0.6, 
while the summary fraction of the “low-impact” 
values is 0.1 + 0.1 = 0.2, therefore the relative 
enrichment is 0.6:0.2 = 3. On comparative basis, 
using the top rank bin of the PY' rank produces 5-
fold higher chance to encounter a true “high-
impact” label than using the population before the 
computational filter was applied. 
 
RESULTS  
 
A priori evaluation of future economic impact of 
a putative anti-cancer targets 
Figure 1 illustrates the attempt to predict target 
impacts based on the combination of DEXCON (X1) 
and INTENSITY (X2) gene expression features, 
extracted from the microarray data by the above-
described methodology. Figure 2 illustrates the 
attempt to predict target impacts based on text-
mining features. Figure 3 illustrates the attempt to 
predict target impacts based on the combination of 
DEXCON and INTENSITY gene expression 
features as well as the text-mining features. The 
ROC curves demonstrate non-zero area between the 
diagonal baseline, which reflects the ratio of false 
positive to false positive summary functions in each 
bin, and the thicker upper line which reflects the 
ratio of true positive and false positive summary 
functions in each bin. The ratio of true positives to 
the false positives was significantly higher than the 
baseline, as it is especially evident for the left 
corner of the ROC plot that describes the highest 
range of the predicted scores. The regions with 
higher predicted scores embed the majority of real-
life high impact targets, while the regions with 
lower predicted scores are depleted in real-life high 
impact targets. These Figures point to the 

possibility of predicting high-impact target category 
a priori, already at the stage of preclinical 
development and before the onset of the most 
expensive clinical trial phase. It is very unlikely that 
the inherent biological mechanism determining the 
target's future impact at the preclinical development 
stages remain obscure.  This mechanism leaves its 
signature in a variety of large-scale high-throughput 
studies as well as in collective research activity 
patterns. The more diverse sources of information 
are incorporated and the more the prediction point 
is shifted away from an onset of active clinical trial 
stage, the lesser the role of “me-too” bias factor in 
the emergence of the detected patterns. 

The Tables 1 and 2, respectively, show the sets 
of FDA-approved and “still-in a-pipeline” anti-
cancer targets with the predicted impacts identified 
on the above-described basis. The impact leaders on 
the side of the targets with the approved ligands are 
EGFR, ERBB2, CYP19A1, MTOR, PTGS2, tubulin, 
VEGFA, BRAF, PGR and PDGFRA. The functions 
and cancer-related status of the genes were explored 
using database Genes at NCBI. The predicted 
impact leaders demonstrate favorable biological 
anti-cancer features due to their central roles in 
more universal pathophysiological mechanisms. 
Thus, many forms of cancer depend on 
overexpression of EGFR and ERBB2 for their 
survival. Blockade of these kinases synergizes with 
cytotoxic therapeutics. In normal cells, such 
dependence is rare or absent; therefore, the 
combinational regimens based on EGFR and 
ERBB2 have an access to a broad therapeutic 
window. The aromatase CYP19A1 is a key enzyme 
in estrogen synthetic pathway and is selectively 
important for the cancer subtypes that rely on 
estrogen stimulation for growth and survival. 
Mammalian target of rapamycin (mTOR) regulates 
the functions of cell survival, motility, proliferation, 
protein synthesis and transcription, making this 
target extremely important for rapidly propagating 
cells characterized by destabilized metabolism. 
PTGS2 (cyclooxygenase-2) is among the most 
important mediators of inflammation. Consequently, 
this target is indispensable for the growth 
stimulation produced by stromal immune cells and 
for metastasis. Many tumor types directly depend 
on prostaglandin stimulation. Tubulins are 
selectively more important for rapidly dividing cells 
undergoing mitotic process. VEGFA pathway is 
necessary for neovascularization of tumor foci. 
VEGFA also produces autocrine stimulation of 
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multiple pro-cancer survival pathways, thus, its 
inhibition selectively affects almost all cancers. 
BRAF (serine-threonine kinase B-Raf) is a proto-
oncogene with a broad transforming potential and, 
therefore, the blockade of its product is selectively 
more important for the cells where BRAF is 
constitutively activated. Progesterone receptor 
(PGR) is selectively more important for ovarian, 
mammary and endometrium cell populations that 
depend on progesterone for their growth and 
survival. Finally, PDGRFA (platelet-derived growth 
factor receptor, alpha polypeptide) is the powerful 
mitogen indispensable in certain tissues. To 
summarize, all genes demonstrating high predicted 
impacts also demonstrate highly selective 
involvement in specific cancer types and lack of 
such involvement in a majority of normal tissues. 
These differential roles and the ability to bind 

relatively non-toxic ligands explain their observed 
ranks presented in Table 1. 

The sets of targets presented in the Table 2 are 
not yet drugged by suitable ligands. The target STS 
(steroid sulfatase, EC 3.1.6.2) is a member of a 
steroid synthesis pathway that is capable to produce 
in selected cancer cell populations the same 
dependence as other steroid pathway mediators, 
explaining its relatively high predicted impact. 
PROC (protein C) is actively involved in blood 
anti-coagulation pathways, stimulates cell migration 
and influences the secretory behavior of tumor cells, 
while suppressing NK killers and T helper cells of 
TH2, TH17 and TH21 subtypes. Therapeutic 
activation of TP53 is intended to restore the 
powerful tumor-suppressor phenotype mediated by 
protein, explaining its high predicted impact. 

 

 
Figure 1. ROC curve of high-impact targets vs low-impact targets. The ROC curve was built using DEXCON and 
INTENSITY parameters, using the following procedure: 1) divide the combined list of targets (successful and research) by 
impact categories, the top 25% forming the “high-impact” class and the rest forming “low-impact” class. 2) apply bonus-
penalty scoring approach to the DEXCON and INTENSITY values for the list of targets and combining the indirect bonus-
penalty scores with the optimized weight in a 2-feature classifier. 3) rank the target list by the values of the 2-feature 
classifier. 4) determine the fractions of the “high-impact” and “low-impact” categories in each 0.2 bin of rank by the 2-
feature classifier. 5) summarize the differential fractions for each category accrued on the range from 0 (highest ranked 2-
feature scores) to the given point of rank for the 2-feature score. 6) the sum of differential fractions for “low-impact” 
categories forms a X-axis coordinate; the sum of differential fractions for “high-impact” categories forms a Y-axis 
coordinate. The diagonal thin baseline at 45 degrees across the plot reflects the ratio of false positives to false positives for 
each new point in the form of summary functions, while thicker line reflects the ratio of true positive summary function to 
the false positive summary function in ROC analysis. At the far right corner, the summary function for the true and false 
positives are both equal to 1, and the lines cross. The area between the lines is proportional to the resolution quality at 
multiple possible cut-offs.  
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Attempts to reactivate CDKN2A (cyclin-dependent 
kinase inhibitor 2A, multiple tumor suppressor 1) 
are performed within the same therapeutic paradigm 
as for TP53. Proto-oncogene c-JUN encodes 
transcription factor that mediates apoptosis 
resistance, with good potential of pharmacological 
inhibition for a significant impact. TNFSF11 
(Tumor necrosis factor (ligand) superfamily, 
member 11) is involved in metastasis and bone-
remodeling. Remarkably, the high predicted impact 
was assigned to TNFSF11 based on Therapeutic 
Target Database definition of the candidate as not 
yet matching an FDA-approved ligand. However, 
we found that TNFSF11 ligand denosumab was 
approved in 2010 under the names of Xgeva and 
Prolia, thus, validating our approach. CD40 (TNF 
receptor superfamily member 5) is a co-stimulatory 
protein found on antigen presenting cells and as 
such is a key molecule in establishing an immune 

response. Alterations of CD40 function determine 
probability of cancer emergence and metastasis. 
Proto-oncogene c-MET is involved in de novo 
angiogenesis and metastasis; its activation in tumors 
is correlated with poor prognosis. Being a receptor 
component adds up to its potential for higher impact 
upon drugging. Hepatocyte growth factor/scatter 
factor HGF is activating a tyrosine kinase signaling 
cascade of c-Met, thus, contributing to the same 
metastasis-related pathway. In leukemia patients, 
JAK2 (Janus kinase 2) forms fusions with the 
TEL(ETV6) (TEL-JAK2) and PCM1 genes 
providing the targets that do not exist in normal 
cells. These targets are druggable in the same 
manner as by well-known Gleevec. To summarize, 
the genes pinpointed as promising tend to 
participate in the most central mechanism of tumor 
cells survival and propagation. 

 

 
Figure 2: ROC curve of high-impact targets vs. low-impact targets. The ROC curve was built using text-mining parameters, 
using the following procedure: 1) divide the combined list of targets (successful and research) by impact categories, the top 
25% forming the “high-impact” class and the rest forming “low-impact” class. 2) apply bonus-penalty scoring approach to 
the N (Number of publications between first review and first clinical) and time-derivative of N for the list of targets and 
combining the indirect bonus-penalty scores with the optimized weight in a 2-feature classifier. 3) rank the target list by the 
values of the 2-feature classifier. 4) determine the fractions of the “high-impact” and “low-impact” categories in each 0.2 
bin of rank by the 2-feature classifier. 5) summarize the differential fractions for each category accrued on the range from 0 
(highest ranked 2-feature scores) to the given point of rank for the 2-feature score. 6) the sum of differential fractions for 
“low-impact” categories forms a X-axis coordinate; the sum of differential fractions for “high-impact” categories forms a 
Y-axis coordinate. The diagonal thin baseline at 45 degrees across the plot reflects the ratio of false positives to false 
positives for each new point in the form of summary functions, while thicker line reflects the ratio of true positive summary 
function to the false positive summary function in ROC analysis. At the far right corner, the summary functions for the true 
and false positives are both equal to 1, and the lines cross. The area between the lines is proportional to the resolution 
quality at multiple possible cut-offs.  
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Figure 3: ROC curve of high-impact targets vs low-impact targets. The ROC curve was built using DEXCON, 
INTENSITY and text-mining parameters, using the following procedure: 1) divide the combined list of targets (successful 
and research) by impact categories, the top 25% forming the “high-impact” class and the rest forming “low-impact” class. 2) 
apply bonus-penalty scoring approach to the DEXCON and INTENSITY values for the list of targets. 3) apply bonus-
penalty scoring approach to the ranked derivative of early research interest and to the volume N of early research interest. 4) 
combine the secondary bonus-penalty values for all features with the optimized training weights in a 4-feature classifier. 5) 
rank the target list by the values of the 4-feature classifier. 6) determine the fractions of the “high-impact” and “low-
impact” categories in each 0.2 bin of rank by the 4-feature classifier. 7) summarize the differential fractions for each 
category accrued on the range from 0 (highest ranked 4-feature scores) to the given point of rank for the 4-feature score. 8) 
the sum of differential fractions for “low-impact” categories forms a X-axis coordinate; the sum of differential fractions for 
“high-impact” categories forms a Y-axis coordinate. The diagonal thin baseline at 45 degrees across the plot reflects the 
ratio of false positives to false positives for each new point in the form of summary functions, while thicker line reflects the 
ratio of true positive summary function to the false positive summary function in ROC analysis. At the far right corner, the 
summary functions for the true and false positives are both equal to 1, and the lines cross. The area between the lines is 
proportional to the resolution quality at multiple possible cut-offs.  
 
 

The genes with the lowest rank in the Table 1 
were analyzed in a similar fashion. IMPDH1 (IMP 
(inosine 5'-monophosphate) dehydrogenase 1) is 
mostly involved in transplant rejection and retinitis 
pigmentosa, its link to the cancer is tenuous. 
IMPDH2 (inosine 5'-monophosphate 
dehydrogenase 2) is also involved in autograft 
rejection, and its connections to cancer are not 
apparent. ITGA2B (integrin, alpha 2b (platelet 
glycoprotein IIb of IIb/IIIa complex, antigen CD41) 
is mostly involved in fibrinogen activation and 
coagulopathies, however, its connections to 
metastasizing are proven. LHCGR (luteinizing 
hormone/choriogonadotropin receptor) is involved 
in a broad diversity of pathways and its levels 
correlate with survival in ovarian epithelial cancer 

patients. MME (MME membrane metallo-
endopeptidase) shows a strong link to cancer, to 
both prognosis and metastasis, however targeting of 
metallo-endopeptidases (MMPs) was historically 
not successful, despite an investment of a lot of 
efforts. OXTR (oxytocin receptor) is mostly 
involved in behavior and social adaptation and its 
involvement in tumorigenesis is a stretch. PARP1 
(poly (ADP-ribose) polymerase is strongly related 
to malignancy, however its expression is ubiquitous, 
and only a few clinical trials have been published 
for the targeting of this gene. While PDE4A 
(phosphodiesterase 4A, cAMP-specific) is involved 
in cardiac muscle activity and fibroblast 
proliferation, the links to malignancy are indirect. 
PTH1R (parathyroid hormone 1 receptor) functions 
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are pleiotropic, with known roles in transplant 
rejection, organ development and bone maturation, 
with some evidence of its contribution to certain 
breast cancers. RARA (retinoic acid receptor, alpha) 
is vital for differentiation of hematopoietic lineages 
and respective malignancies. However, the utility of 
RARA agonists is confined to leukemia field, and 
the number of clinical trials in this area is limited. 
TSPO (translocator protein) is involved in microglia 
and retinal inflammation, HIV-1 virus maturation, 
while overexpression of TSPO correlates with the 
progress of breast cancer. However, the number of 
clinical trials for drugs that target this molecule is 
small, and its expression is not highly specific to 
cancer samples. TXNRD1 (thioredoxin reductase 1) 

participates in redox processes, apoptosis, 
membrane raft formation, while its overexpression 
correlates with glioblastoma multiforme 
progression. Speaking generally, comparison of 
high and low-impact score bins indicates that the 
higher ranking score gene set consistently ignites 
substantially higher interests of members of 
research community. The entire list of the high 
score bin members is associated with prominent 
cancer-related finding and produces relevant 
DEXCON signals, exceeding the threshold of 
interest. The drugging of candidates with highest 
impact ranks would be the most influential on 
cancer outcomes and deserves prioritization.

 
Table 2. Modeled impacts for anti-cancer targets at the “research” stage 
Gene ID Synonyms  Target impacts 

STS ARSC, ARSC1, ASC, ES, SSDD, XLI, STS  steroid sulfatase (microsomal), 
isozyme S arylsulfatase C, estrone sulfatase, steryl-sulfatase, steryl-sulfate 
sulfohydrolase 

155 

PROC APC, PC, PROC1, THPH3, THPH4,  protein C (inactivator of coagulation factors 
Va and VIIIa),  anticoagulant protein C, autoprothrombin IIA, blood coagulation 
factor XIV 

108 

TP53 BCC7, LFS1, P53, TRP53,  tumor protein p53 103 

CDKN2A ARF, CDK4I, CDKN2, CMM2, INK4, INK4A, MLM, MTS-1, MTS1, P14, 
P14ARF, P16, P16-INK4A, P16INK4, P16INK4A, P19, P19ARF, TP16 

80 

c-JUN AP1, V-jun avian sarcoma virus 17 oncogene homolog, activator protein 1, proto-
oncogene c-jun, transcription factor AP-1 

72 

TNFSF11 RP11-86N24.2, CD254, ODF, OPGL, OPTB2, RANKL, TRANCE, hRANKL2, 
sOdf, TNFSF11, tumor necrosis factor (ligand) superfamily, member 11 ,  TNF-
related activation-induced cytokine, osteoclast differentiation factor, 
osteoprotegerin ligand 

66 

CD40 Bp50, CDW40, TNFRSF5, p50, TNF receptor superfamily member 5, B cell 
surface antigen CD40 

41 

c-MET AUTS9, HGFR, RCCP2, c-Met, MET  met proto-oncogene  HGF receptor, 
HGF/SF receptor, SF receptor, hepatocyte growth factor receptor, met proto-
oncogene tyrosine kinase 

41 

JAK2 JTK10, THCYT3,  Janus kinase 2  JAK-2, Janus kinase 2 (a protein tyrosine 
kinase), tyrosine-protein kinase JAK2 

40 

HGF DFNB39, F-TCF, HGFB, HPTA, SF,  hepatocyte growth factor (hepapoietin A; 
scatter factor), fibroblast-derived tumor cytotoxic factor 

29 

PRKCA AAG6, PKC-alpha, PKCA, PRKACA, PRKCA    protein kinase C, alpha PKC-A, 
aging-associated gene 6, protein kinase C alpha type 

27 

PRKCB PKC-beta, PKCB, PRKCB1, PRKCB2, protein kinase C, beta  PKC-B, protein 
kinase C beta type 

27 

CXCR2 CD182, CDw128b, CMKAR2, IL8R2, IL8RA, IL8RB,  chemokine (C-X-C motif) 
receptor 2 

23 

TGFB1 CED, DPD1, LAP, TGFB, TGFbeta,  transforming growth factor, beta 1 , TGF-
beta-1 

22 

TLR9 UNQ5798/PRO19605, CD289, toll-like receptor 9 22 
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Table 2 Continued….. 
 
AKT1 AKT, CWS6, PKB, PKB-ALPHA, PRKBA, RAC, RAC-ALPHA, v-akt murine 

thymoma viral oncogene homolog 1 PKB alpha, RAC-PK-alpha, RAC-alpha 
serine, threonine-protein kinase 

20 

BCL2 Bcl-2, PPP1R50,   B-cell CLL, lymphoma 2   apoptosis regulator Bcl-2, protein 
phosphatase 1, regulatory subunit 50 

18 

CLU AAG4, APO-J, APOJ, CLI, CLU1, CLU2, KUB1, NA1/NA2, SGP-2, SGP2, SP-
40, TRPM-2, TRPM2,   clusterin, aging-associated protein 4, apolipoprotein 
J|complement cytolysis inhibitor 

18 

HIF1A HIF-1A, HIF-1alpha, HIF1, HIF1-ALPHA, MOP1, PASD8, bHLHe78, hypoxia 
inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor) 

18 

IL6 BSF2, HGF, HSF, IFNB2, IL-6,  interleukin 6   B-cell differentiation factor, B-cell 
stimulatory factor 2, BSF-2, CDF, CTL differentiation factor 

18 

KIF11 EG5, HKSP, KNSL1, MCLMR, TRIP5, kinesin family member 11, TR-interacting 
protein 5,TRIP-5, kinesin-like protein 1|kinesin-like protein KIF11 

17 

TNFRSF10A APO2, CD261, DR4, TRAILR-1, TRAILR1, TNFRSF10A  tumor necrosis factor 
receptor superfamily, member 10a  TNF-related apoptosis-inducing ligand receptor 
1 

16 

TNFRSF10B UNQ160/PRO186, CD262, DR5, KILLER, KILLER/DR5, TRAIL-R2, TRAILR2, 
TRICK2, TRICK2A, TRICK2B, TRICKB, ZTNFR9,  tumor necrosis factor 
receptor superfamily 

16 

IGF1 IGF-I, IGF1A, IGFI,  insulin-like growth factor 1 (somatomedin C)    IGF-IA, IGF-
IB, MGF, insulin-like growth factor I, insulin-like growth factor IA 

15 

MYC MRTL, MYCC, bHLHe39, c-Myc, MYC v-myc avian myelocytomatosis viral 
oncogene homolog 

15 

ANGPT2 AGPT2, ANG2, ANGPT2,  angiopoietin 2, ANG-2, Tie2-ligand, angiopoietin-2, 
angiopoietin-2B, angiopoietin-2a 

14 

MAP2K1 CFC3, MAPKK1, MEK1, MKK1, PRKMK1, mitogen-activated protein kinase 
kinase 1, ERK activator kinase 1, MAPK/ERK kinase 1 

14 

TERT CMM9, DKCA2, DKCB4, EST2, PFBMFT1, TCS1, TP2, TRT, hEST2, hTRT, 
TERT    telomerase reverse transcriptase 

13 

CDK4 CMM3, PSK-J3,  cyclin-dependent kinase 4       cell division protein kinase 4 10 

MDM2 ACTFS, HDMX, hdm2, MDM2 oncogene, E3 ubiquitin protein ligase 9 

NQO1 DHQU, DIA4, DTD, NMOR1, QR1, NQO1, NAD(P)H dehydrogenase, quinone 1,  
DT-diaphorase, NAD(P)H dehydrogenase [quinone] 1 

9 

MMP2 CLG4, CLG4A, MMP-II, MONA, TBE-1, MMP2  matrix metallopeptidase 2, 
gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase 

8 

MMP9 CLG4B, GELB, MANDP2, MMP-9,  matrix metallopeptidase 9 (gelatinase B, 
92kDa gelatinase, 92kDa type IV collagenase) 

7 

MMP3 CHDS6, MMP-3, SL-1, STMY, STMY1, STR1,  matrix metallopeptidase 3 
(stromelysin 1, progelatinase)    

6 

ERBB3 ErbB-3, HER3, LCCS2, MDA-BF-1, c-erbB-3,  erbB3-S, p180-ErbB3, p45-
sErbB3, p85-sErbB3, v-erb-b2 avian erythroblastic leukemia viral oncogene 
homolog 3 proto-oncogene-like protein  

5 

IL4R 582J2.1, CD124, IL-4RA, IL4RA, interleukin 4 receptor  IL-4 receptor subunit 
alpha, IL4R nirs variant 1, interleukin-4 receptor alpha chain 

5 

PLK1 PLK, STPK13, polo-like kinase 1 ,  cell cycle regulated protein kinase, polo 
(Drosophia)-like kinase, polo like kinase 

5 

PPARD FAAR, NR1C2, NUC1, NUCI, NUCII, PPARB, PPARD    peroxisome proliferator-
activated receptor delta 

5 
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Table 2 Continued….. 
 
EPHB4 HTK, MYK1, TYRO11,  EPH receptor B4 ephrin receptor EphB4, ephrin type-B 

receptor 4, hepatoma transmembrane kinase 
4 

PLAUR CD87, U-PAR, UPAR, URKR, plasminogen activator, urokinase receptor       
monocyte activation antigen Mo3, u-plasminogen activator receptor form 2 

4 

TXN RP11-427L11.1, TRDX, TRX, TRX1,  thioredoxin     ADF, ATL-derived factor, 
SASP, TXN delta 3, surface-associated sulphydryl protein, thioredoxin delta 3 

4 

ERBB4 ALS19, HER4, p180erbB4, v-erb-b2 avian erythroblastic leukemia viral oncogene 
homolog 4  

3 

FGFR3 ACH, CD333, CEK2, HSFGFR3EX, JTK4,  fibroblast growth factor receptor 3 3 

MCL1 BCL2L3, EAT, MCL1-ES, MCL1L, MCL1S, Mcl-1, TM, bcl2-L-3, mcl1/EAT, 
myeloid cell leukemia 1 bcl-2-like protein 3 

3 

NRP1 C530029I03, NP-1, NPN-1, Npn1, Nrp, neuropilin 1    A5 protein, Neuropilin-1 
precursor (A5 protein), neuropilin-1 

3 

CDK9 RP11-228B15.5, C-2k, CDC2L4, CTK1, PITALRE, TAK, cyclin-dependent kinase 
9,  CDC2-related kinase, cell division cycle 2-like protein kinase 4 

2 

CENPE CENP-E, KIF10, PPP1R61, CENPE   centromere protein E, Centromere 
autoantigen E 

2 

CHEK2 RP11-436C9.1, CDS1, CHK2, HuCds1, LFS2, PP1425, RAD53, hCds1, CHEK2 ,  
checkpoint homolog 

2 

FGFR1 BFGFR, CD331, CEK, FGFBR, FGFR-1, FLG, FLT-2, FLT2, HBGFR, HH2, 
HRTFDS, KAL2, N-SAM, OGD, bFGF-R-1, fibroblast growth factor receptor 1 

2 

FN1 CIG, ED-B, FINC, FN, FNZ, GFND, GFND2, LETS, MSF, FN1   fibronectin 1   
cold-insoluble globulin, fibronectin, migration-stimulating factor 

2 

MMP1 MMP1, CLG, CLGN, MMP1 matrix metallopeptidase 1 (interstitial collagenase), 
fibroblast collagenase, interstitial collagenase, matrix metalloprotease 1 

2 

SMO E130215L21Rik, Smoh, bnb, smoothened, Smo       smoothened homolog 
(Drosophila) bent body|smoothened homolog 

2 

TEK CD202B, TIE-2, TIE2, VMCM, VMCM1, TEK  tyrosine kinase, endothelial  
angiopoietin-1 receptor 

2 

CCR2 hCG_14621, CC-CKR-2, CCR-2, CCR2A, CCR2B, CD192, CKR2, CKR2A, 
CKR2B, CMKBR2, MCP-1-R, CCR2      chemokine (C-C motif) receptor 2 

1 

CDK6 PLSTIRE, CDK6   cyclin-dependent kinase 6,  cell division protein kinase 6, 
serine/threonine-protein kinase PLSTIRE 

1 

CDK7 CAK1, CDKN7, HCAK, MO15, STK1, p39MO15, CDK7    cyclin-dependent 
kinase 7,  39 KDa protein kinase, CAK, CDK-activating kinase 1, TFIIH basal 
transcription factor complex kinase subunit 

1 

IKBKB IKK-beta, IKK2, IKKB, IMD15, NFKBIKB, IKBKB     inhibitor of kappa light 
polypeptide gene enhancer in B-cells, kinase beta 

1 

MAPK14 RP1-179N16.5, CSBP, CSBP1, CSBP2, CSPB1, EXIP, Mxi2, PRKM14, PRKM15, 
RK, SAPK2A, p38, p38ALPHA, mitogen-activated protein kinase 14 

1 

MPO myeloperoxidase  1 

NGFR RP23-67E18.6, LNGFR, Tnfrsf16, p75, p75NGFR, p75NTR,  nerve growth factor 
receptor (TNFR superfamily, member 16) 

1 

PRKCD CVID9, MAY1, PKCD, nPKC-delta, protein kinase C, delta protein kinase C delta 
VIII, protein kinase C delta type, tyrosine-protein kinase PRKCD 

1 

WEE1 WEE1A, WEE1hu, WEE1  G2 checkpoint kinase, WEE1+ homolog, wee1-like 
protein kinase, wee1A kinase 

1 

MMP14 MMP-14, MMP-X1, MT-MMP, MT-MMP 1, MT1-MMP, MT1MMP, MTMMP1, 
WNCHRS, matrix metallopeptidase 14 (membrane-inserted) 

0.333333333 
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Table 2 Continued….. 
 
ACVRL1 ACVRL1, ACVRLK1, ALK-1, ALK1, HHT, HHT2, ORW2, SKR3, TSR-I, 

ACVRL1 activin A receptor type II-like 1, TGF-B superfamily receptor type I, 
activin A receptor 

0 

BCL2L2 BCL-W, BCL2-L-2, BCLW, PPP1R51, BCL2-like 2     apoptosis regulator BCL-W, 
bcl-2-like protein 2, protein phosphatase 1, regulatory subunit 51 

0 

CCR1 Cmkbr1, Mip-1a-R, Ccr1  chemokine (C-C motif) receptor 1, C-C CKR-1, C-C 
chemokine receptor type 1, CC-CKR-1, MIP-1 alpha R, MIP-1 alphaR 

0 

CDC42 CDC42   RP1-224A6.5, CDC42Hs, G25K,  cell division cycle 42  G25K GTP-
binding protein, GTP binding protein, 25kDa 

0 

CDH2 CDHN, N-cadherin, Ncad, Cdh2, cadherin 2,neural cadherin 0 

CSF1 RP11-195M16.2, CSF-1, MCSF,  colony stimulating factor 1 (macrophage),  
lanimostim, macrophage colony-stimulating factor 1 

0 

CTSK RP11-363I22.4, CTS02, CTSO, CTSO1, CTSO2, PKND, PYCD,  cathepsin K,  
cathepsin O, cathepsin O1, cathepsin O2, cathepsin X 

0 

FNTB FPTB, farnesyltransferase, CAAX box, beta, CAAX farnesyltransferase subunit 
beta, FTase-beta protein farnesyltransferase subunit 

0 

GHSR growth hormone secretagogue receptor, GH-releasing peptide receptor, GHRP, 
GHS-R, ghrelin receptor, growth hormone secretagogue receptor type 1 

0 

GRPR BB2,  gastrin-releasing peptide receptor      GRP-R|GRP-preferring bombesin 
receptor|bombesin receptor 2 

0 

GSK3B glycogen synthase kinase 3 beta GSK-3 beta, GSK3beta isoform, glycogen 
synthase kinase-3 beta, serine/threonine-protein kinase GSK3B 

0 

GUCY2C GUCY2C  DIAR6, GUC2C, MECIL, MUCIL, STAR, GUCY2C , guanylate 
cyclase 2C , heat stable enterotoxin receptor,  GC-C STA receptor, guanylyl cyclase 
C, hSTAR 

0 

HDAC4 AHO3, BDMR, HA6116, HD4, HDAC-4, HDAC-A, HDACA,  histone deacetylase 
4,   histone deacetylase A 

0 

IL7R CD127, CDW127, IL-7R-alpha, IL7RA, ILRA, IL7R   interleukin 7 receptor,  
CD127 antigen, IL-7 receptor subunit alpha, IL-7R subunit alpha, IL-7RA, 
interleukin 7 receptor alpha chain 

0 

LTA4H leukotriene A4 hydrolase, LTA-4 hydrolase, leukotriene A-4 hydrolase 0 

LTB4R BLT1, BLTR, CMKRL1, GPR16, LTB4R1, LTBR1, P2RY7, P2Y7, leukotriene B4 
receptor G protein-coupled receptor 16, G-protein coupled receptor 16, LTB4-R 
1|LTB4-R1|P2Y purinoceptor 7, chemoattractant receptor-like 1 

0 

MAPK12 ERK3, ERK6, P38GAMMA, PRKM12, SAPK-3, SAPK3, mitogen-activated 
protein kinase 12, ERK-6, MAP kinase 12, MAP kinase p38 gamma 

0 

MAPK6 ERK3, HsT17250, PRKM6, p97MAPK, MAPK6   mitogen-activated protein 
kinase 6,  ERK-3, MAP kinase 6, MAP kinase isoform p97 

0 

MAPK8 JNK, JNK-46, JNK1, JNK1A2, JNK21B1/2, PRKM8, SAPK1, SAPK1c, MAPK8   
mitogen-activated protein kinase 8 ,    JUN N-terminal kinase 

0 

METAP2 METAP2  MAP2, MNPEP, p67, p67eIF2,  methionyl aminopeptidase 2, eIF-2-
associated p67 homolog, initiation factor 2-associated 67 kDa glycoprotein 

0 

MMP12 HME, ME, MME, MMP-12, matrix metallopeptidase 12 (macrophage elastase) 0 

MMP13  CLG3, MANDP1, MMP-13,  matrix metallopeptidase 13 (collagenase 3)      
collagenase 3|matrix metalloproteinase 13 (collagenase 3) 

0 

MMP7 MPSL1, PUMP-1,  matrix metallopeptidase 7 (matrilysin, uterine) matrilysin, 
matrin, matrix metalloproteinase 7 (matrilysin, uterine) 

0 

NFKB1 EBP-1, KBF1, NF-kB1, NF-kappa-B, NF-kappaB, NFKB-p105, NFKB-p50, 
NFkappaB, p105, p50 

0 
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Table 2 Continued….. 
 
NPEPPS AAP-S, MP100, PSA, aminopeptidase puromycin sensitive      cytosol alanyl 

aminopeptidase 
0 

NTSR1 NTR, NTSR1      neurotensin receptor 1 (high affinity), NTRH, high-affinity 
levocabastine-insensitive neurotensin receptor, neurotensin receptor type 1 

0 

P2RY1 P2Y1, purinergic receptor P2Y, G-protein coupled, 1   ATP receptor, P2 
purinoceptor subtype Y1, P2Y purinoceptor 1, platelet ADP receptor 

0 

PPIA CYPA, CYPH, HEL-S-69p, peptidylprolyl isomerase A,  (cyclophilin A),  PPIase 
A, T cell cyclophilin, cyclophilin, cyclosporin A-binding protein 

0 

PRKCG PKC-gamma, PKCC, PKCG, SCA14, protein kinase C, gamma protein kinase C 
gamma type 

0 

PRLR HPRL, MFAB, hPRLrI,  prolactin receptor      PRL-R, hPRL receptor, secreted 
prolactin binding protein 

0 

PTPN11 BPTP3, CFC, NS1, PTP-1D, PTP2C, SH-PTP2, SH-PTP3, SHP2, protein tyrosine 
phosphatase, non-receptor type 11      PTP-2C, protein-tyrosine phosphatase 1D 

0 

PTPN22 LYP, LYP1, LYP2, PEP, PTPN8,  protein tyrosine phosphatase, non-receptor type 
22 (lymphoid)   PEST-domain phosphatase|hematopoietic cell protein-tyrosine 
phosphatase  

0 

RPS6KB1 PS6K, S6K, S6K-beta-1, S6K1, STK14A, p70 S6KA, p70(S6K)-alpha, p70-S6K, 
p70-alpha,ribosomal protein S6 kinase, 70kDa, polypeptide 1  p70 S6 kinase 

0 

SLC44A4 SLC44A4 DAAP-66K18.1, C6orf29, CTL4, NG22, TPPT,  solute carrier family 44, 
member 4,  choline transporter-like protein 4 

0 

SPHK1 SPHK,  sphingosine kinase 1 , SK 1, SPK 1 0 

TEP1 TLP1, TP1, TROVE1, VAULT2, p240,  telomerase-associated protein 1, TROVE 
domain family, member 1, p80 telomerase homolog, telomerase protein 1 

0 

YES1 HsT441, P61-YES, Yes, c-yes,    v-yes-1 Yamaguchi sarcoma viral oncogene 
homolog 1 

0 

 
 

By contrast, the lower scoring members not 
always show well-established association with 
cancer phenotypes as evident from the functional 
description entries that passed manual curation 
before linking to respective gene names in “Genes” 
subdivision of NCBI. For this group of genes, a 
majority of evidence is based on correlation of 
mRNA or protein expression levels to cancer 
phenotypes or outcomes, however, an independent 
evaluation of the consistency of overexpression 
findings does not confirm uniformity of this 
observation. However, retrospective post-prediction 
analysis revealed an important caveat which is 
likely to result in future improvements of the impact 
score concept. Some genes, like RARA or MME, 
demonstrate strong links to cancer, but produce low 
scores due to relatively narrow utility, i.e. limiting 
the applicability of developed ligands to limited 
spectrum of tumors. As these diseases are generally 
considered “orphan”, it is important that the 
development of the ligands aimed at the treatment 

of these pathologies should continue unimpeded 
despite low scores for respective targets. Hence, the 
model that we propose should be further optimized 
by introducing an “orphan” disease coefficient that 
would preclude an attrition of the targets that are 
highly specific to certain malignancies that ail 
relatively low number of patients. 
 
An impact of targeting “super-targets” as a 
component of a combinatorial treatment 
Typically, anti-cancer therapies are combinatorial as 
they include at least 2 components. Assuming 
typical three-component therapy approach, n-fold 
increase in the number of available high-impact 
targets would result in n3 increase in the number of 
available drug combinations, prompting further 
progress in their evaluation and testing. Based on 
the data in Table 1 and different evaluations (2- 3), 
the effect of the current pool of therapies can be 
substantially magnified by this combinatorial 
expansion.  Above we discussed that a conservative 



J Pharm Pharm Sci (www.cspsCanada.org) 19(4) 475 - 495, 2016 
 

 
 

491 

estimate of the contribution of therapeutics to the 
observed doubling of cancer survival is at 40%. 
Designating this increment as SIDT (Survival 
Increment Due To Therapies), being equal of 40%, 
one can draw a model: 
 

SIDT(2) = SIDT (1) N nm  (12) 
 
where SIDT (1) is the survival increment due to 
therapies at the current level, SIDT(2) is the 
survival increment at the projected level, N is the 
number of available therapies at the current level, m 
is the increment in the number of high-impact 
targets applied in cancer field. The exponential 
coefficient 2-3 assumes a formation of two or three-
component drug cocktails, however this number 
may be greater or lesser in the future. 

Based on the model (12), at n = 2 and m = 2, 
the SIDT(2) would increase 4-fold, which would be 
coming very close to curing at least some types of 
cancer (see Table 1), and improving ten year 
survival rates for lung, brain and pancreatic cancers 
by at least 30%. At n = 3 and m = 2, the SIDT (2) 
would increase 9-fold, making many now lethal 
types of cancer eradicated, producing >60% 
improvement of the survival rates after 10 years 
observation for many other malignant disorders. 

 
DISCUSSION  
 
A significant progress is achieved for treatment of 
the majority of cancer form, with the average 
survival rate practically doubling over the last 45 
years (Table 3 compiled according to the UK data 
presented at (1). The rate of progress appears to be 
constant for most of individual sub-ranges of the 
plot, however a certain recent acceleration is 
observed. Likely, increase in the number of 
available treatments contributes to this 
improvement, although not as a single factor. 
Assuming that the level of investment, and, 
therefore, projected impacts correctly reflect the 
level of future revenues/sales both for the 
‘successful” and for the “research” sets of targets 
and also assuming that the level of sales correctly 
reflects the benefit to society, one can argue that the 
top 10% of the successful targets, or just seven of 
them, produce 75% of all anti-cancer effects. The 
top impact target alone, EGFR, mediates 23% of 
total anti-cancer effect, while the second best target, 
ERBB2, mediates 22% of total effect. While from 
purely clinical point of view these numbers seem 

disproportional, many novel therapies rely on a 
combinatorial synergy with EGRF and ERBB2 
ligands (22-23). Hence, introduction of novel high-
impact targets could alter the survival dynamics 
even further for at least some of the cancer forms. 

The technique presented in this paper allowed 
us to evaluate the potential impact of the targets 
which are currently at the research stage.  Our 
analysis highlighted microsomal steroid sulfatase 
(estrone sulfatase) at the top of the list which, after 
some score gap, was followed by anticoagulant 
protein C, p53, CDKN2A, c-Jun, TNSFS11, CD40, 
c-MET and JAK2, all of which were highlighted as 
the most promising research-stage targets. Accoring 
to our calculations, the relative importance of 
microsomal steroid sulfatase is at approximately the 
same level as that of well-known anticancer targets 
BRAF kinase and progesterone receptor. A PubMed 
search using term ”estrone sulfatase” or “estrone 
sulfatase” AND “cancer” returns 193 and 125 
manuscripts, respectively. Recent years resulted in 
the development of a number of potent estrone 
sulfatase inhibitors aimed at the suppression of the 
formation of both E1 and breast carcinoma-
promoting steroid dehydroepiandrosterone (DHEA) 
from DHEA-sulfate (DHEAS) (24-26). As 
approximately 40% of breast tumors are estrogen-
dependent, successful advancement of estrone 
sulfatase inhibitors into clinical practice could 
potentially lead to sizable global effects. On the 
other hand, many potential targets were predicted to 
have minimal impact; deprioritization of these 
targets may lead to substantial savings and 
subsequent shift of clinical development efforts 
toward the most promicing drug candidates. 

Our impact scoring technique is, in a nutshell, a 
4-feature bonus-penalty classifier which comprises 
two components, the microarray and the literature 
mining. The INTENSITY feature is the level of 
absolute transcript expression demonstrated by the 
target candidate. With all other factors being equal, 
the candidates with more intensive expression 
would influence biological signal transduction 
events more robustly as they produce higher 
amounts of mRNA, and, therefore, the protein. 
While the detected correlation of the impacts and 
the transcript levels is relatively weak (r = 0.2), it is 
sufficient to boost performance of a classifier of the 
bonus-penalty type. The DEXCON feature reflects 
the stability of the differential expression signal in 
tumors of various tissue origins, and in the tumors 
of same origin. As it was shown earlier, the 
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DEXCON score is superior to typical t-test based 
evaluations of the significance of observed 
differential expression patterns, as it takes into 
consideration a consistency of evidence (27). It is 
important to note that microarray-derived features 
are capable of serving as predictors even when 
completely novel target candidates comes into the 
scope of study; hence, their value is higher than that 
of text-mining features. The text-mining features 
rely on pre-existing information regarding a 
potential action mechanism and perceived value of 
a target candidate. When a majority of scientific 
data is collected prior to the major information 
disseminating event, i.e. publishing of influential 

review and/or result of a clinical trial, and the “me-
too” bias is minimized by pre-dissemination choice 
of cut-off, the literature mining features become a 
less-than-obvious predictor, although still inferior to 
the experimental measurements such as microarrays. 
It is obvious that the bibliometric aspect of the 
study may be improved by taking into account the 
impact factors of the journals, number of patents, 
relative sizes of each study, total amount of grant 
support etc. In this initial report, the bibliometric 
aspects were limited to the number of publications 
and to the rate of accumulation prior to the critical 
bias-producing events.   

 
 
Table 3: 10 year survival rates post-diagnosis based on the data collected in UK during 1971-2007 period, survival 
increments are computed over entire period. 
 Cancer localizations  
  

Period of Diagnosis Survival increment % 
from 1971 to 2007 

  1971-1972 1980-1981 1990-1991 2007(2)  

Bladder 34.6 52.2 50.3 48.9 +14.4 

Bowel Colon 22.6 33.3 38.3 50.4 +27.8 

Rectum  
(1)  

23.9 29.9 33.4 49.3 +25.4 

Brain 5.7 7.4 8.7 9.4 +2.9 

Breast (Female) 38.9 49.3 61.1 77.0 +38.1 

Cervix 48.4 52.6 59.5 63.0 +14.6 

Hodgkin Lymphoma 49.0 57.8 68.7 77.9 +28.9 

Kidney 22.2 27.1 31.7 43.5 +21.3 

Larynx (Male) 50.5 56.9 55.1 59.6 +9.1 

Leukemia 8.1 13.8 23.5 33.2 +25.2 

Lung 
  

3.2 3.9 3.7 5.3 +2.1 

Malignant Melanoma 49.3 57.5 69.5 83.2 +32.1 

Myeloma 5.3 8.8 9.3 17.1 +11.8 

Non-Hodgkin Lymphoma (1) 21.8 29.7 35.0 50.8 +29 

Oesophagus 
  

3.6 4.5 4.6 10.0 +6.4 

Ovary 18.0 21.9 25.3 35.4 +17.4 

Pancreas 1.9 2.1 1.7 2.8 +0.9 

Prostate 20.4 30.1 30.9 68.5 +48.1 

Stomach 4.6 7.2 8.5 13.5 +8.9 

Testis 67.4 84.7 91.7 96.5 +28.6 

Uterus 55.2 62.9 64.4 74.5 +18.7 

Other Cancers 34.0 31.4 30.1 36.3 +2.3 

All Cancers 23.7 30.0 33.7 45.2 +21.5 
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The rationale behind our approach is that both the 
total number of publications and their accelerating 
deposition into the PubMed are proxies to research 
interest, which, in turn, correlates with the objective 
value of the target. The research interest 
fundamental also drives publishing in higher impact 
journals and determines awarded grant support, 
which is instrumental to perform studies in larger 
groups of animals or patients cohorts. Hence, 
introduction of additional bibliometric parameters 
will also introduce co-correlating variables. 
Relative weights for each of these parameters 
should be evaluated by experimenting in silico. On 
the other hand, target gene expression related 
features are a-priori independent of the 
bibliometrics and, therefore, more likely to add an 
input to the model. 

The linear classifier for YP’ was selected due to 
its robustness which aids in prevention of model 
overfitting. Since the training set was as small as ~ 
30 successful anticancer targets, this precaution 
appears to be warranted, especially if the number of 
features would be increasing due to inclusion of 
other information sources, for example, the 
networks of biomolecules. The least square method 
was selected for regression modeling, with the 
ranking-based cutoffs for high and low real impact. 
High rank was defined as the highest quartile and 
the low rank was defined as two lowest quartiles. 
These cut-offs are somewhat arbitrary and, 
therefore, the results of the study are qualitative 
rather than quantitative. However, the proposed 
technique for estimating the commercial promise of 
still potential targets, which are costly to develop, is 
inexpensive, and, therefore, of value. In this study, 
selected cut-offs clearly separated the high and low 
impact groups of targets while preserving sufficient 
number of targets in each group and, by that, 
allowing for ROC plotting.  

To generate a high proxy impact Y, a target 
should demonstrate a consistent promise in multiple 
clinical trials. There is certainly an informational 
gap between early research interest and clinical trial 
results. An intriguing discovery of a novel 
pharmacological mechanism and its experimental 
confirmations at pre-clinical level may not even 
acknowledge possible inability of a target to acquire 
a non-toxic ligand, unfavorable patterns of 
expression or pharmacodynamics etc. From the 
point of information theory, a predictor is a function 
that contributes a quantity of information sufficient 
to measure the pattern of the future event or 

approach it. 
 

I2 = I1 + ΔI  (11) 
 
Where I2 - is the final state, the completeness of 
information allows reliably describe the target 
pattern of the future; I1 - is the initial state, the 
fragmentary or zero initial information concerning 
the target pattern is insufficient 
 

ΔI – the predictor produces the increment of 
information rendering knowledge of the future 

pattern. 
 
Based on the formula (11), the microarray setting 
corresponds to I1 ~ 0 (little is known about any 
aspect of the target and its behavior prior to the 
experiment), while text-mining corresponds to I1 > 
0 (substantial knowledge about the target and its 
expected behavior prior to computation of metrics). 

From these considerations it is apparent that a 
perfect microarray classifier that allows complete 
prediction of a future pattern produces a greater 
informational increment than an equally perfect 
text-mining classifier. At the same time, the 
contribution of the text-mining classifier is non-zero, 
unless the information gap between the present state 
and the future state is negligible. Thus, we argue 
that the proposed text-mining approach is at least 
partially objective and, therefore, provides an added 
value when coupled with the microarray data. 
Speaking generally, the fusion of orthogonal sets of 
features produces a greater summary �I to 
elucidate the final state more reliably than the 
component set of features in isolation. In that sense, 
the imperfect (biased) contribution of the text-
mining features is still useful, due to its informative 
component permitting to bridge the information gap 
in the equation sooner (11). The method of 
extracting text-mining features employed in this 
report is analogous to consensus forecasting used in 
economic modeling. In most of cases the expert 
consensus is correct, but historical record attests 
that it never should be applied in isolation (28-29). 
Thus, the text-mining derived features and 
microarray features act synergistically, supporting 
each other, and provide an integrated predictor. 

The current rates of attrition for the ligands and 
targets are discussed extensively (30, 31). As an 
example, Hutchinson et al reports an average 
attrition rate for the anti-cancer therapies as 95-96% 
(30). As the leads to the loss of all the costs accrued 
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by the rejected ligands, the attrition of more 
advanced candidates is more damaging event. 
Implementation of targets evaluation by their 
potential for eventual success will lead to earlier 
elimination of some ligands off the development 
pipelines. The preference towards anti-cancer 
targets with the widest possible therapeutic window 
would contract the overall volume of the clinical 
trials. If we would treat a clinical trial as a test with 
a certain signal-to-noise ratio, we could apply 
known statistical observation that the size of the test 
is smaller if the signal-to-noise ratio is inherently 
higher. In other words, if the targets are selected on 
their favorable gene expression pattern with 
preferential expression in tumors rather that in 
normal cells, lesser toxicities are expected, and an 
enrollment of lower numbers of patients into dose 
escalation trials would be necessary.  
 
CONCLUSION  
 
The main result of the report is demonstration that 
the promising behavior of a pharmacological target 
is predictable early based on their expression 
signatures and text-mining of the pattern of the 
early research interest. Considering a very divergent 
levels of promise displayed by the currently 
approved targets, we conclude that most of survival 
increment attributed to anticancer therapies in 
general is achieved via the high-impact targets. 
Improvement in predicting the targets with 
inherently wide therapeutic window may result in 
clinical trials stage savings and, eventually, in 
explosion of therapeutic opportunities that would 
benefit the entire society. 
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Supplemental Table 1. Cost structure for different stages in drug development process. From A. Roy 
“Stifling new cures: the true cost of lengthy clinical trials, FDA Project reports, V. 5, 2012 

Function Share of Total 
(expenses) 

Probability of FDA 
approval 

Reciprocal of approval probability 
(tested ligands per a marketed ligand)

Preclinical 28% 8% 12.5 

Phase I 9.2% 21% 4.9 

Phase II 17.4% 28% 3.8 

Phase III 39.8% 58% 1.6 

Approval 5% 90% 1.1 

 
 


