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ABSTRACT - The association between metformin use and low vitamin B12 levels in type 2 diabetes mellitus 
patients is well-established. However, many aspects of the topic remain to be elucidated. There is still 
controversy on the current diagnostic approaches to vitamin B12 deficiency. It is now believed that measuring 
the serum levels of the vitamin may not reflect its metabolic status. Moreover, there were conflicting results 
from studies attempting to quantify and explore metformin-associated vitamin B12 deficiency and its clinical 
impacts. This article reviews the cellular functions of vitamin B12, the biomarkers utilized to define the vitamin 
deficiency and metformin-induced vitamin B12 deficiency with an emphasis on its prevalence and clinical 
impacts. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
_______________________________________________________________________ 
 
INTRODUCTION 
 
Type 2 diabetes mellitus (T2DM) is a chronic 
metabolic disorder that is increasingly becoming a 
pandemic in developed and developing worlds (1). 
In 2010, 285 million people, representing about 6% 
of the world’s adult population, were T2DM 
patients (2). This number is expected to reach 439 
million by 2030 (3). The disease is associated with 
various systemic macrovascular and microvascular 
complications. T2DM can lower the quality of life 
and result in heavy social and economic burdens, 
making the disease a public health concern. T2DM 
absorbs 5-10% of healthcare budget in many 
countries (4). 

Both the European and American guidelines 
recommend the use of metformin as a first-line 
pharmacological therapy in T2DM (5). Findings 
from clinical studies confirmed that the medication 
improves cardiovascular outcomes in T2DM 
patients (6). Due to its proven effectiveness, relative 
safety and potential for use with other anti-diabetic 
medications, metformin is currently the most 
widely prescribed oral anti-diabetic agent (7). It is 
estimated that the medication is routinely prescribed 
to 120 million patients with diabetes around the 
world (8). 

In 1971, vitamin B12 malabsorption was 
reported in metformin-treated diabetic patients (9). 
Since then, the association between metformin use 
and low vitamin B12 levels has been supported by  

 
 
different levels of evidence. Several aspects of the 
topic, however, still await clarifications. The 
reported prevalence of vitamin B12 deficiency 
among metformin-treated patients has shown great 
variation and ranged between 5.8% and 52%  (10-
20). A substantial part of the problem is the yet 
incompletely defined term of vitamin B12 
deficiency. The diagnostic criteria of vitamin B12 
deficiency are controversial and not agreed upon. 
Consensus is still lacking on which biomarkers are 
most indicative of the deficiency and what their 
ideal cut-offs are. The mere measurement of serum 
vitamin B12 levels is not considered sufficient to 
reflect the vitamin metabolic status (21). Moreover, 
research on the clinical implications of metformin-
induced low vitamin B12 has yielded conflicting 
results. 

In this review, vitamin B12 kinetics and 
intracellular functions are described. Tests for 
defining vitamin B12 deficiency, their diagnostic 
values, cut-off points and limitations are discussed. 
Proposed mechanisms and prevalence estimates of 
metformin-induced vitamin B12 deficiency are 
reviewed. Factors possibly affecting such estimates 
are also explained.  
_________________________________________ 
 
Corresponding Author: Marwan Awad Ahmed, University of 
Pretoria, South Africa; Email: mrwnwd@yahoo.com. 



J Pharm Pharm Sci (www.cspsCanada.org) 19(3) 382 - 398, 2016 
 

 
 

383 

The impact of metformin use on serum vitamin B12 
levels and on other vitamin status-assessing 
biomarkers as well as the clinical consequences of 
vitamin B12 deficiency in metformin-treated T2DM 
patients are reviewed. 
 
VITAMIN B12 
 
Overview of vitamin B12 
Vitamin B12, also known as cobalamin, is a water-
soluble cobalt-containing vitamin that serves as a 
co-factor for metabolically significant enzymes. 
Vitamin B12 is a general term for all forms of 
cobalamins active in humans, including 
cyanocobalamin, hydroxocobalamin, 
methylcobalamin and 5-deoxyadenosyl cobalamin 
(adenosyl-Cbl). The first three forms are available 
as commercial products in different dosage forms. 
All forms of vitamin B12 are converted 
intracellularly into adenosyl-Cbl and 
methylcobalamin, the biologically active forms at 
the cellular level (22). As a co-factor, vitamin B12 
plays a crucial role in intracellular enzymatic 
reactions related to DNA synthesis as well as amino 
and fatty acid metabolism. Such reactions are 
essential for the central nervous system functioning 
and erythropoiesis. 
 
Vitamin B12 from diet to target cells 
Vitamin B12 reaches its target cells through a 
complex course that involves several proteins and 
receptors (figure 1). Comprehending this multistep 
course is essential for understanding the 
multifaceted nature of vitamin B12 deficiency and 
the controversies associated with its diagnosis. 

Dietary vitamin B12 is normally bound to 
proteins. Food-bound vitamin B12 is released in the 
stomach under the effect of gastric acid and pepsin. 
Therefore, proton pump inhibitors (PPIs) and 
histamine-2 receptor antagonists (H2RAs) may 
cause vitamin B12 deficiency by suppressing 
gastric acid secretion (23). The free vitamin is then 
bound to R-binder, a glycoprotein in gastric fluid 
and saliva that protects vitamin B12 from the highly 
acidic stomach environment. Pancreatic proteases 
degrade R-binder in the duodenum and liberate 
vitamin B12. The free vitamin is then bound by the 

intrinsic factor (IF) – a glycosylated protein 
secreted by gastric parietal cells – forming IF-
vitamin B12 complex (24). IF resists proteolysis 
and serves as a carrier for vitamin B12 to the 
terminal ileum where the IF-vitamin B12 complex 
undergoes a receptor-mediated endocytosis. 
Pernicious anemia is an autoimmune disease 
characterized by the production of antibodies that 
target IF or the gastric parietal cells, resulting in 
vitamin B12 malabsorption and deficiency.  

IF-vitamin B12 complex binds to the ileal 
cubilin receptor. Cubilin is a glycosylated protein 
expressed on the apical side of ileal enterocytes 
(25,26). IF-vitamin B12 complex binds to specific 
cubilin domains (27). Such interaction requires 
calcium cations, which may strengthen the 
functional affinity of the complex to the receptor 
(24). The complex of IF-vitamin B12-cubilin 
receptor is then endocytosed by the ileal enterocyte. 
Following the internalization, the IF-vitamin B12 
complex detaches from cubilin. The complex 
reaches the lysosome where IF is degraded and 
vitamin B12 passes the lysosomal membrane to the 
cytoplasm.  

The vitamin then appears in circulation bound 
to transcobalamin-I (TC-I) or transcobalamin-II 
(TC-II). It is estimated that 20-30% of the total 
circulating vitamin B12 is bound to TC-II protein 
(28). The protein binds newly absorbed vitamin and 
transports it to the target tissues where its 
absorption occurs through a receptor-mediated 
internalization process (28). Measuring vitamin 
B12-bound TC-II (holo-TC-II) is utilized as a 
diagnostic tool to evaluate vitamin B12 status. TC-I 
binds 70-80% of circulating vitamin B12, 
preventing the loss of the free unneeded portion 
(28). 

The liver and, to a lesser extent, the kidneys 
represent the main stores of vitamin B12. The 
human liver stores 1-1.5mg of vitamin B12 (28). 
Vitamin B12 is known to undergo enterohepatic 
circulation involving its excretion in bile and 
reabsorption in the distal ileum (29). It is estimated 
that 4mcg of vitamin B12 is secreted daily in bile in 
a form bound to R-binder (29). Enterohepatic 
circulation may result in the reabsorption of more 
than half of the biliary vitamin B12 (29). 
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Figure 1 Vitamin B12 digestion, absorption, transport and intracellular function. See text for detailed explanation. 

 
 
Intracellular kinetics and functions of vitamin 
B12 
Different forms of vitamin B12 are converted to 
cobal(II)amin divalent cation in the target cells by 
processes that involve heterolytic and homolytic 
cleavage mechanisms (22). Cobal(II)amin is then 
converted to adenosyl-Cbl or methylcobalamin, 
which enter the methylmalonyl-CoA mutase 
(MCM) and methionine synthase (MS) pathways, 
respectively (figure 1). 
 

1. Methionine synthase pathway 
 
Homocysteine accepts a methyl group from 
methylcobalamin, resulting in the formation of 
methionine and cobal(I)amin, a monovalent super-
nucleophilic intermediate (22). Cobal(I)amin then 
removes a methyl group from methyl-
tetrahydrofolate, giving tetrahydrofolate and re-
forming methylcobalamin. The reaction is catalyzed 
by the MS enzyme encoded in humans by CblG 
locus (30,31). Overall, MS catalyzes the transfer of 
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a methyl group from methyl-tetrahydrofolate to 
homocysteine to form tetrahydrofolate and 
methionine, using methylcobalamin as a co-factor. 
Vitamin B12 deficiency can prevent the ultimate 
methyl transfer from methyl-tetrahydrofolate to 
form tetrahydrofolate. Folate is hence “trapped” in 
the metabolically inactive form, methyl-
tetrahydrofolate. Cytoplasmic conversion of 
homocysteine to methionine is also suppressed and 
the plasma levels of the homocysteine are elevated 
under vitamin B12 deficiency. Plasma 
homocysteine is utilized in diagnosing cellular 
vitamin B12 deficiency. As methyl-tetrahydrofolate 
is the methyl group donor in the methylation of 
homocysteine to methionine, folate deficiency can 
also result in elevated plasma homocysteine levels. 

The MS pathway can explain the pathogenesis 
of a part of the clinical manifestations of vitamin 
B12 deficiency. Reduced synthesis of 
tetrahydrofolate results in an impaired DNA 
synthesis that may cause megaloblastic anemia and 
other hematologic signs of vitamin B12 deficiency. 
Low intracellular availability of methionine also 
reduces the formation of s-adenosylmethionine 
(SAM), which is an essential methyl group donor in 
DNA synthesis reactions (32). 
 
2. Methylmalonyl-CoA mutase pathway 
 
Adenosyl-Cbl is synthesized in the mitochondria 
under the catalysis of ATP-dependent cobalamin 
adenosyl transferase enzyme. Adenosyl-Cbl serves 
as a co-factor in the isomerization reaction 
catalyzed by MCM enzyme and involves the 
conversion of methylmalonyl-CoA to the Krebs 
cycle intermediate succinyl-CoA (22). The 
mechanism by which adenosyl-Cbl acts is radical-
based and involves the formation of a free radical 
and the migration of a hydrogen atom to synthesize 
succinyl-CoA (22). Deficiency in vitamin B12 
blocks the conversion of methylmalonyl-CoA to 
succinyl-CoA. Accumulated methylmalonyl-CoA is 
hydrolyzed to methylmalonic acid (MMA) in a 
reaction catalyzed by  methylmalonyl-CoA 
hydrolase (MCH) enzyme. Vitamin B12 deficiency 
results in elevated plasma levels of MMA. MMA is 
thus used as a diagnostic test to evaluate the cellular 
status of vitamin B12. 
 
 
 
 

VITAMIN B12 DEFICIENCY 
 
Overview  
The complex and multistep nature of vitamin B12 
absorption in the gastrointestinal tract increases the 
possibility of malabsorption when the process is 
interrupted at any point during the course. 
Therefore, malabsorption is the main cause of 
vitamin B12 deficiency. As animal products 
represent the main source of the vitamin for 
humans, dietary insufficiency is a potential cause of 
deficiency in cases of strict veganism or 
vegetarianism (33). 

Age-related low vitamin B12 status is believed 
to be attributed to chronic poor absorption and low 
dietary intake (34). In older individuals, most 
deficiency cases are attributed to “food-vitamin B12 
malabsorption” (35,36) . Those with the disorder are 
unable to release vitamin B12 from its carrier in 
food. Reduced gastric acid secretion and gastric 
dysfunction are the main causes of the disorder 
(36). Pernicious anemia is also a known cause of 
vitamin B12 deficiency. Other stomach-related 
clinical conditions, including achlorohydria, gastric 
atrophy, gastrectomy, gastric surgery and, possibly, 
helicobacter pylori persistent infection, can 
interfere with the absorption of vitamin B12 and 
result in deficiency (24). Pancreatitis (37), ileal 
resection, Crohn’s disease and parasite infections 
can also lead to vitamin B12 deficiency. 

Medication-associated vitamin B12 deficiency 
is also well described. The association between the 
use of H2RAs or PPIs and low vitamin B12 was 
reported in several clinical studies (23,38-40). 
Metformin-induced vitamin B12 deficiency is 
currently well-known. The clinical advantages of 
metformin as a first-line medication in T2DM along 
with the increasing incidence and prevalence of the 
disease uncovered the real volume of the problem. 
The debate continues on whether metformin-
associated low vitamin B12 has the potential for 
clinical implications.  

 
Clinical manifestations of vitamin B12 deficiency 
The clinical picture of vitamin B12 deficiency 
consists mainly of neurological and hematological 
manifestations. Hematological manifestations 
include macrocytosis and megaloblastic anemia 
which may be associated with other signs and 
symptoms of deficiency, such as pancytopenia, 
glossitis, gastrointestinal dysfunction, psychosis or 
neurological disorders (33). Neurological signs and 
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symptoms may take many forms, including 
peripheral neuropathy (PN) which generally 
manifests as numbness and paresthesia (41), optic 
neuropathy (33), and neuropsychiatric disorders 
such as chronic fatigue syndrome, psychosis, mood 
disorders (42) or depressive symptoms (43). 

Vitamin B12 deficiency may also result in 
disordered bowel motility, manifested as mild 
constipation or diarrhea, and loss of bowel or 
bladder control may develop (33). The deficiency 
may impair immune response (44-46) and lower 
bone mineral density (47). 
 
Diagnosis of vitamin B12 deficiency 
The diagnosis of vitamin B12 deficiency has always 
been controversial. Diagnostic tests depend on the 
direct measurement of the circulating vitamin or on 
measuring the levels of other biomarkers that 
accumulate as a result of cellular deficiency. Serum 
vitamin B12 and holo-TC-II tests measure the 
circulating part of the vitamin. Homocysteine and 
MMA are the biomarkers of metabolic vitamin B12 
deficiency that show elevated levels when the 
vitamin is deficient at the cellular level.  

It has always been difficult to determine the 
specificities and sensitivities of the tests used in 
assessing vitamin B12 status due to the absence of a 
gold standard comparator. Researchers currently 
compare biomarkers against other biomarkers that 
are believed to have better diagnostic accuracy (48). 
However, even the more accurate biomarkers have 
their own sensitivity and specificity limitations 
(48). In diagnostic research, the true positive and 
true negative cases are determined by a reference 
test: the gold standard. The absence of such a 
reference test in the diagnosis of vitamin B12 
deficiency renders any claimed specificity or 
sensitivity liable to criticism and uncertainty. 
 
1. Serum vitamin B12 test   
The sensitivity of the serum vitamin B12 test in 
assessing the vitamin’s status is generally 
considered high. Studies have showed that vitamin 
B12 levels <148 pmol/L have a sensitivity that 
exceeds 95% in patients with megaloblastic anemia 
(49,50). Bolann et al. used >50% post-therapy 
decline in MMA as a gold standard to define 
vitamin B12 deficiency, and reported 90% 
sensitivity of <148 pmol/L cut-off point of serum 
vitamin B12 (51). Contrarily, the specificity of 
serum vitamin B12 test is low. Clarke et al. applied 
strict MMA criteria of >450 and >750 nmol/L as 

reference tests, and found that serum vitamin B12 
<200 pmol/L had specificities of 72% and 75%, 
respectively (52). 

In the 1950s, the serum vitamin B12 
concentration cut-off point of ≤90 pmol/L was used 
to define vitamin B12 deficiency (53). Currently, 
the cut-off point of < 148 pmol/L is more 
commonly used in research and clinical fields (48). 
A roundtable convention revised the relevance and 
accepted the cut-off points of 148 pmol/L and 200 
pmol/L currently used by scientists and clinicians 
(21). The cut-off point of 148 pmol/L misses 3-5% 
of deficient cases, while the cut-off of 200 pmol/L 
identifies all deficient cases but results in higher 
false positive rates (21). With the discovery of the 
biomarkers that describe vitamin B12 metabolic 
status and its subclinical deficiency, suggestions to 
change the cut-offs to <221 or <258 appeared in an 
attempt to capture more deficient cases (54,55). 

Falsely low serum vitamin B12 levels were 
reported in pregnancy and folate deficiency (53). 
TC-I protein carries 80% of circulating vitamin B12 
and can thus affect its serum levels. Carmel et al. 
reported that 15% of cases of low serum vitamin 
B12 levels may be attributed to TC-I deficiency 
(56). Elevated TC-I concentrations can also result in 
falsely raised serum vitamin B12 levels. 
Myelogenous leukemia and some types of cancer 
represent the known causes that may result in 
elevated TC-I. Jeffery et al. reported that high TC-I 
levels account for 8% of cases with elevated serum 
vitamin B12 levels (57). People of black ethnicity 
tend to show higher circulatory levels of TC-I and 
vitamin B12 (58). The concentrations of vitamin 
B12 are also elevated in individuals with impaired 
renal function (59). 
 
2. MMA test 
Vitamin B12, under the catalysis of the enzyme 
methylmalonyl-CoA mutase, synthesizes succinyl-
CoA from methylmalonyl-CoA in the mitochondria. 
Deficiency of vitamin B12 thus results in elevated 
MMA levels. Therefore, it can be said that 
measuring MMA levels provides a more accurate 
estimation of the cellular status of vitamin B12 
compared with the vitamin’s serum levels. That is, 
testing for MMA can better reflect the metabolic or 
the functional status of vitamin B12.  

Elevated MMA test has >95% sensitivity to 
vitamin B12 deficiency in patients with pernicious 
anemia (60). In such overt deficiencies, sensitivity 
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of MMA elevation is slightly better than that of low 
vitamin B12 levels (48). 

MMA test cut-offs ranging between 210 and 
480 nmol/L are used to define vitamin B12 
deficiency. Hence, the prevalence of the deficiency 
as defined by MMA elevation can vary according to 
the cut-off points used. The cut-off of >270nmol/L 
is currently the most commonly used. Pfeiffer et al. 
used the low cut-off point of 210 nmol/L as a 
physiologic choice based on MMA levels in 
vitamin B12-repleted individuals (61). That point 
represented the maximal inhibition of MMA levels 
by administering vitamin B12. However, such low 
cut-offs carry greater risks of overdiagnosis when 
MMA is the only tool used to define vitamin B12 
deficiency (48). 

A large epidemiologic study in Norway found 
that MMA levels were affected by creatinine 
concentrations, age and sex (62). It was also 
suggested that contracting plasma volume plays a 
role in some cases of unexplainable high MMA 
levels (50). The antibiotics’ ability to reduce MMA 
levels suggests a role for the gut bacteria that 
produce propionic acid, the precursor of MMA 
(60,63). Therefore, the specificity of the MMA test 
is uncertain and the test is not qualified for use as a 
gold standard for defining vitamin B12 deficiency. 
 
3. Holo-TC-II test 
Vitamin B12 circulates in plasma bound to TC-I 
and TC-II carrier proteins. The portion attached to 
TC-II protein is known as holo-TC-II. Holo-TC-II 
attaches 20-30% of total plasma vitamin B12, and 
the remainder is attached to TC-I, forming a 
metabolically inert complex (28). Measuring holo-
TC-II is believed to reflect the bioavailable vitamin 
B12 as the protein is responsible for the immediate 
transfer of the newly absorbed vitamin from the 
ileal enterocytes to the target cells. Chen et al. 
found that the metabolic status of vitamin B12 was 
a major determinant of holo-TC-II serum levels 
(64). Furthermore, they concluded that the 
absorption status of vitamin B12 also influenced 
serum holo-TC-II levels.  

The diagnostic accuracy of holo-TC-II remains 
controversial. The test is thought to have 
sensitivities and specificities comparable to that of 
serum vitamin B12 when compared to MMA 
elevations (48). Several studies suggested that holo-
TC-II slightly outperformed the serum vitamin B12 
test (65,66). The specificity of the holo-TC-II test 
remains unclear. 

The used cut-offs of holo-TC-II show great 
variation, perhaps because of the relatively limited 
utilization of the test. Laboratories use cut-offs that 
range between 11 and 41 pmol/L (66). 
Relationships between chosen cut-offs and resultant 
outcomes warrant additional research. 

Renal failure is associated with elevated levels 
of holo-TC-II (67). Mild renal insufficiency has a 
modest impact on serum vitamin B12 and holo-TC-
II levels, unlike its effect on MMA and 
homocyteine concentrations (59). Several studies 
suggested that the levels of holo-TC-II are affected 
by folate disorders, use of oral contraceptives, 
myelodysplasia, certain hematologic disorders and 
alcoholism (66,68,69). Having the half-life of just 
six minutes and being dependent on the absorbed 
vitamin B12, holo-TC-II levels may fluctuate 
following dietary perturbations (70). The undefined 
sites of synthesis and kinetics, relatively limited 
utilization in practice and research, lack of 
systematic investigations on accuracy, and 
fluctuations reflecting dietary absorption, are all 
limitations against the use of holo-TC-II as a 
reliable test for assessing vitamin B12 status. 
 
4. Homocystein test 
The MS enzyme catalyzes the transfer of a methyl 
group from methyl-tetrahydrofolate to 
homocysteine to result in the formation of 
tetrahydrofolate and methionine, utilizing vitamin 
B12 as a co-factor. Therefore, homocysteine 
elevated concentrations are associated with vitamin 
B12 deficiency, and homocysteine may be used as a 
test to assess the metabolic status of vitamin B12. 

An expert panel recommended setting cut-offs 
for homocysteine levels considering age and folate 
fortification status (71). In folate-fortified 
communities, the panel recommended 12 
micromol/L and 16 micromol/L for those aged 15-
65 years and >65 years, respectively. For 
communities where folic acid fortification is not 
implemented, cut-offs of 15 and 20 micromol/L for 
those aged 15-65 years and >65 years, respectively, 
are recommended. 

The plasma homocysteine test has a sensitivity 
comparable to that of MMA (72). However, 
confounders limit the value of the test and reduce 
its specificity in the diagnosis of vitamin B12 
deficiency. Folate deficiency elevates homocysteine 
levels. In populations where folic acid fortification 
is implemented, vitamin B12 deficiency is the main 
cause of high homocysteine levels (73). Renal 
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failure and old age are other major causes of 
elevated plasma homocysteine levels (74,75). 
Vitamin B6 and vitamin B2 (riboflavin) 
deficiencies can also increase homocysteine 
concentrations (76,77). 
 
5. Response to treatment  
The response of homocysteine and MMA to 
therapeutic doses of vitamin B12 can be 
diagnostically informative (48). However, the holo-
TC-II response to therapy carries no diagnostic 
significance as pharmacologic administration of 
vitamin B12 will increase its blood level, but not 
necessarily reverse the deficiency (48). Using 
biochemical response as a diagnostic tool is 
impractical. In addition, the observed response can 
be a mere representation of “regression to the 
mean” phenomenon (48). It can also be argued that 
responsive MMA and homocysteine do not prove 
their clinical impact. 
 
New concepts in vitamin B12 deficiency 
Subclinical (marginal, borderline or subtle) vitamin 
B12 deficiency and functional vitamin B12 
deficiency are recently introduced terms. 
Subclinical vitamin B12 deficiency is defined by 
low-normal vitamin B12 levels with elevated 
concentrations of metabolic biomarkers in the 
absence of clinical symptoms and signs (78). The 
cut-off points used to define the elevated metabolic 
biomarkers and the low-normal vitamin B12 levels 
are controversial. The most commonly accepted 
low-normal definition for serum vitamin B12 levels 
ranges between 150 and 220 pmol/L (79). 
Malabsorption of food-bound vitamin B12 is a 
possible etiology of the subclinical deficiency 
(48,80). The significance of subclinical deficiency 
is yet to be studied thoroughly. The follow-up of 
individuals with subclinical deficiency showed that 
they may regress to the normal status, progress to 
overt deficiency, or remain asymptomatic for years 
(48,80,81). The condition may be associated with 
neurologic or cognitive manifestations (21). 
Clinical research has not proved whether the early 
detection and treatment of subclinical vitamin B12 
deficiency inhibits the progression to the overt 
deficiency (48). 

Functional vitamin B12 deficiency, often 
referred to as vitamin B12 resistance, describes the 
presence of elevated levels of MMA, despite the 
normal serum concentrations of the vitamin. Studies 
reported that 7-30% of the elderly have elevated 

MMA levels despite normal vitamin B12 
concentrations (82,83). Pharmacological doses of 
the vitamin reduced the MMA levels in most 
elderly individuals with high MMA (84,85). The 
condition has been linked to anemia, decreased 
cognitive function and neuropathy (86,87). 
Functional vitamin B12 deficiency is believed to be 
more common in T2DM patients (88,89). Vitamin 
B12 therapy was reported to reduce MMA and 
improve neuropathic symptoms in diabetes patients 
with functional vitamin B12 deficiency (78).  
 
METFORMIN AND VITAMIN B12 
DEFICIENCY 
 
Overview 
Tomkin et al. were the first to describe metformin-
associated vitamin B12 malabsorption in 1971 (9). 
Currently, there is a consensus on the medication’s 
ability to lower vitamin B12 serum levels. 
However, the debate continues on metformin’s 
ability to cause cellular vitamin B12 deficiency and 
result in clinical consequences. The absence of a 
gold standard diagnostic test for vitamin B12 status 
generated controversies over the accuracy of tests 
currently used to assess the deficiency, adding 
complexity to the topic of metformin-induced 
vitamin B12 deficiency. 

The usual metformin prescribed dose ranges 
between 1000mg and 3400mg per day. The dose is 
quite high in terms of milligrams. Therefore, 
interference with dietary vitamin B12 absorption is 
plausible, considering it is recommended that the 
medication be taken with or immediately after food. 

 
The effect of metformin on vitamin B12 levels 
The relationship between metformin use and low 
vitamin B12 was described in many observational 
studies (11,12,15-17,20,90). Randomized clinical 
trials have proved that receiving the medication for 
a few months can significantly lower vitamin B12 
levels (91-93). The percentage of reduction in 
vitamin B12 levels attributable to metformin use 
ranged from 17.8% to 26.8% in cross-sectional 
studies (11,12,15,16) and from 6.3 % to 18.7% in 
clinical trials with 6-16-week durations (91-93). 

De Jager et al. provided the strongest evidence 
of metformin-associated low vitamin B12 levels by 
conducting a 4.3 years duration randomized 
controlled trial (10). The trial reported a 19% 
metformin-associated reduction in vitamin B12 
levels. The study was the first to show the 
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progressive decrease in vitamin B12 levels in 
patients on metformin over time, and the first to 
report the medication’s potential to lower the 
vitamin to levels that usually require 
pharmacological substitution. Following the trial’s 
publication, more epidemiological studies targeted 
the investigation of the possible clinical 
consequences of metformin-induced vitamin B12 
deficiency. 

A recent meta-analysis also confirmed that 
metformin induces a reduction in vitamin B12 
levels (94). The study reported the positive 
association between the metformin dose and the 
lowering of the vitamin concentrations. 

 
Mechanism of metformin-induced 
malabsorption of vitamin B12 
Many mechanisms were proposed to explain how 
metformin interferes with the absorption of vitamin 
B12. Intestinal bacteria overgrowth resulting in the 
binding of IF-vitamin B12 complex to bacteria 
instead of being absorbed was an early suggested 
mechanism (95). It was also proposed that 
metformin reduces the vitamin absorption by 
altering the intestinal motility (96).  

The most currently accepted mechanism 
suggests that metformin antagonizes the calcium 
cation and interferes with the calcium-dependent 
IF-vitamin B12 complex binding to the ileal cubilin 
receptor (97). The reversal of metformin-associated 
vitamin B12 malabsorption by calcium 
supplementation greatly supported the latter 
mechanism. The study of Bauman et al. proposed 
the mechanism that describes the malabsorption of 
vitamin B12 by metformin (97). Type-2 diabetic 
participants were divided into two groups: the first 
group was given metformin, and the second 
(control) group was given a sulfonylurea. The 
metformin group, but not the control group, showed 
a statistically significant gradual decrease in serum 
vitamin B12 and holo-TC-II levels over the first 
three months. Oral calcium supplementation was 
then introduced to the metformin group for one 
month. At the end of that month, holo-TC-II levels 
increased in the metformin group by 53%. The 
absence of bacterial overgrowth was confirmed by 
hydrogen breath tests and by similar baseline and 

study end concentrations of serum vitamin B12 
analogs. The authors built on the previously 
reported ability of biguanides to give a positive 
charge to the membrane’s surface (98) and on the 
essential role the calcium plays in the binding of IF-
vitamin B12 complex to ileal receptors (99) to 
introduce the theory of the mechanism by which 
metformin inhibits vitamin B12 absorption. They 
proposed that the protonated metformin molecule 
directs itself towards the hydrocarbon core of the 
ileal cell membrane and positively charges the 
membrane surface, displacing the divalent calcium 
cations by repulsion forces (figure 2). Such 
displacement impairs the calcium-dependent 
binding of IF-vitamin B12 complex to the ileal 
cubilin receptor and malabsorption of the vitamin 
ensues. 

Since bile is secreted into the duodenum, the 
above theory connotes that metformin may inhibit 
the absorption of bile vitamin B12 later in the distal 
ileum. Therefore, the medication has the theoretical 
potential to inhibit both dietary and enterohepatic 
vitamin B12 absorption. 

 
Impact of metformin on the biomarkers of 
cellular vitamin B12 deficiency 
 
1. Impact on homocysteine levels 
The results of a 16-week randomized controlled 
trial showed that, when compared to the control 
group, metformin use resulted in a significant 14% 
decrease in vitamin B12 and a 4% increase in 
homocysteine (but folate was also reduced) (92). 
Sato et al. reported a negative correlation between 
vitamin B12 and homocysteine levels among 
metformin-treated T2DM patients (79). A positive 
correlation between the cumulative dose of 
metformin and the levels of homocysteine was also 
reported (100). Metformin-users were found to have 
slightly higher homocysteine levels than non-users 
(101). In the randomized controlled trial of De 
Jager et al., the 4.3-year treatment with metformin 
resulted in a minor statistically significant increase 
in homocysteine concentrations (10). However, 
homocysteine levels did not show a progressive 
increase with time similar to that reported with 
vitamin B12 levels. 
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Figure 2 Mechanism of inhibition of vitamin B12 absorption by metformin. See text for detailed explanation. 
 

 
A clinical trial in Norway proved that a 12-

week folic acid supplement in patients with T2DM 
using metformin significantly reduced 
homocysteine levels (102). This finding raised the 
question whether the metformin-induced elevated 
homocysteine mentioned above was mediated by 
low vitamin B12 and not by low folate. Several 
studies have also concluded that metformin did not 
elevate homocysteine levels, like the cross-sectional 
study in Thailand which showed that homocysteine 
concentrations were not significantly affected by 
metformin use (103). A randomized trial showed 
that taking metformin for 16 weeks did not affect 
the levels of homocysteine in women with 
polycystic ovary syndrome (93). Reinstatler et al. 
also found no statistically significant difference in 
the mean levels of homocysteine when metformin 
users and non-users were compared (11). 
 
2. Impact on MMA levels  
Unlike other tests of vitamin B12 status, testing for 
MMA is a costly process that uses gas 
chromatography-mass spectrometry (GC-MS) 

techniques and requires special equipment. This 
may be the reason behind the relatively low 
utilization of MMA tests in the investigation of 
metformin’s impact on the functional status of 
vitamin B12.  

A case-control study reported higher MMA 
levels in T2DM patients who were taking 
metformin compared to the group not taking 
metformin (100). The study also reported a 
correlation between the cumulative dose of the 
medication and the MMA levels for the first time. 
However, a British cross-sectional study found no 
statistically significant differences in MMA 
concentrations between the users and non-users of 
metformin (104). A randomized controlled trial in 
Norway also reported no metformin effect on MMA 
in women with polycystic ovary syndrome treated 
with the medication for 16 weeks (93). Similar 
results were obtained by Greibe et al. after treating 
women with polycystic ovary syndrome with 
metformin for six months (105). 
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Prevalence of metformin-induced vitamin B12 
deficiency 
Comparing the prevalence estimates of metformin-
associated vitamin B12 deficiency obtained from 
different epidemiological studies is not 
straightforward and requires judicious 
considerations of certain factors. Most importantly, 
the biomarkers used to define the deficiency, 
together with their cut-offs, can greatly affect the 
value of the prevalence estimate. However, most of 
the studies used serum vitamin B12 as a marker and 
the cut-off points of <148 pmol/L or <150 pmol/L. 
Attention should also be paid to the mean ages in 
different studies as vitamin B12 levels decrease 
with age. Variations in doses and durations of 
metformin use can also impact the final prevalence 
values. Other variables, such as the study settings 
and whether the renally-impaired patients were 
excluded, should also be considered. Table 1 shows 
the studies that measured the prevalence of 
metformin-induced vitamin B12 deficiency, their 
diagnostic cut-off points and other sample and 
study characteristics. 
 
Clinical consequence of metformin-induced low 
vitamin-B12  
Following the establishment of the association 
between long-term metformin use and low vitamin 
B12 levels by observational and interventional 
studies, researchers moved to the next step and 
investigated the clinical implications of such an 
association. 
 
1. Peripheral neuropathy 
PN is a primary complication of T2DM and a direct 
manifestation of vitamin B12 deficiency. 
Examining the anticipated relationship between 
vitamin B12 and PN in metformin users became 
essential following the clinical studies that proved 
the lowering effect of vitamin B12. 

Both randomized controlled trials, the gold 
standard in clinical research, and cohort studies lack 
the practicality to give immediate answers to the 
question of the association of metformin-induced 
vitamin B12 deficiency with PN due to the 
anticipated insidiousness of such neuropathy. Case-
control and cross-sectional studies are perhaps the 
most convenient designs to examine the possible 
association. This explains the fact that all the 
current evidence comes from such epidemiological 
studies. Unfortunately, case-control and cross-
sectional designs have more weaknesses relative to 

randomized controlled trials and cohort studies, and 
their results are generally less reliable.  

PN as a clinical consequence of metformin-
induced vitamin B12 deficiency was recently 
investigated by five observational studies with 
conflicting results. Three studies reported no 
association, two reported increased neuropathy 
among metformin-exposed patients, and one study 
revealed that non-users of the medication had more 
severe neuropathy. The studies showed substantial 
variation in designs and settings and, more 
importantly, used PN-assessing tools with different 
degrees of subjectivity. Table 2 shows the settings, 
designs and results of studies investigating the 
impact of metformin-induced low vitamin B12 on 
PN in T2DM patients. 
 
2. Neuropsychiatric manifestations 
Low vitamin B12 levels were previously linked to 
depressive symptoms (43,108) and cognitive 
impairment (109). Two recent studies reported that 
the vitamin deficiency among metformin-treated 
patients was associated with worsened cognitive 
performance and increased risk of depression 
(107,110). 
 
3. Hematological manifestations 
Studies on metformin-associated low vitamin B12 
have not reported any significant impact of 
medication use on the hematological findings – 
hemoglobin concentrations, prevalence of anemia, 
mean corpuscular volume or macrocytosis (11-
13,15,16,90). It is worth mentioning that none of 
these studies had the investigation of hematological 
findings as a primary objective. The results were 
part of comparing the clinical and laboratory 
variables in metformin exposed and non-exposed 
patients. 
 
CONCLUSIONS 
 
There is almost a current consensus on metformin’s 
potential to lower vitamin B12 levels. Whether the 
medication can cause cellular vitamin B12 
deficiency remains controversial. The reported 
prevalence of the deficiency has shown great 
variation due to differences in the utilized 
diagnostic biomarkers, their cut-off points as well 
as sample- and study-related factors. Controversy 
over proper and practical vitamin B12 deficiency 
diagnostic approaches is probably a factor behind 
the relatively slow advancement of research on 
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metformin-induced vitamin deficiency. The yet 
undefined clinical implications of marginal and 
functional vitamin B12 deficiency further 
complicated the topic. 

Several studies have recently investigated 
metformin-induced vitamin B12 deficiency’s ability 
to cause or worsen PN in T2DM patients with 
conflicting results. Exploiting large electronic 
record databases and using more objective assessing 
tools to quantify the outcomes may be beneficial for 
the progression of research on the clinical 
consequences of metformin-induced vitamin B12 
deficiency. 
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Table 1. Clinical studies that measured the prevalence of metformin-induced vitamin B12 deficiency, their diagnostic cut-off points and other sample and study 
characteristics 
Study  Obtained 

prevalence 
Cut-off 
point of 
vitamin B12 
(pmol/L) 

Mean 
age 
(years) 

Mean 
metformin 
dose (mg) 

Mean 
metformin 
duration 
(years) 

Study settings Exclusion of 
renally-impaired 
patients  

De Jager et al. 
(10)  

9.9% 
28.1% 

<150  
<220  

64 2050 4.3  Outpatient clinics, the Netherlands Yes  

Reinstatler et al. 
(11)  

5.8% 
22% 

≤148  
≤221  

63.4 - 5* NHANES, United States Yes 

Hermann et al. 
(12)   

8% 
23% 

<150 
<200  

58.2 2200 5.2 Outpatient clinic, Sweden Yes  

Liu et al. (13)  29% 
52% 

<150 
<220  

79.7 - - Geriatric outpatient clinic, Hong Kong No 

Nervo et al. (14)  6.9% 
43.7% 

<125 
<250  

63.7 2550* 4* Internal medicine clinic, Brazil No 

Iftikhar et al. 
(15)   

31% <111 
 

56 1740 1.8 Outpatient internal medicine clinic, Pakistan Yes 

Calvo Romero 
and Ramiro 
Lozano (18) 

8.6% <146 71.6 1770 3.6 Internal medicine clinic, Spain No 

Kang et al. (19) 14.2% ≤222 59.4 1305 6.9 Hospital diabetes center, South Korea Yes 
Beulens et al. 
(20) 

28.1% ≤148 61.6 1306 5.3 Primary care center, the Netherlands No 

De Groot-
Kamphuis et al. 
(17) 

14.1% <150 62.6 - 4.9* Outpatient clinic, the Netherlands No 

Singh et al. (16) 7.1% 
28.5% 

<111 
<163 

53 - - Patients referred to department of internal 
medicine of a tertiary hospital, India 

Yes 

Ahmed et 
al.(106) 

28.1% <150 58.5 2400 9.6 Outpatient diabetes clinics of two 
tertiary hospitals, South Africa  

Yes 

*median values, all units of vitamin B12 levels were converted to pmol/L; NHANES: National Health and Nutrition Examination Survey. 
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Table 2. Settings, designs and results of studies investigating the impact of metformin-induced low vitamin B12 on peripheral neuropathy in T2DM patients 
Study Setting Design  Results  
Wile and Toth 
(100) 

Neuromuscular clinic at a 
university hospital, Canada 

Case-control study. Cases were 
T2DM patients on metformin with 
primary diagnosis of PN. Controls 
were T2DM patients not taking 
metformin with primary diagnosis 
of PN.  

Metformin group had more severe PN (assessed by TCSS and NIS). 
Electrophysiological markers showed no significant difference 
between the two groups. Cumulative metformin dose showed a 
significant positive correlation with TCSS scores (rho = 0.80) and NIS 
scores (rho = 0.79).    

Singh et al. (16) Internal medicine clinic in a 
tertiary hospital, India 

Cross-sectional study. Randomly 
selected T2DM patients were 
divided into metformin users and 
non-users. 

Metformin group had more severe PN (assessed by TCSS). Cumulative 
metformin dose revealed a significant positive correlation with TCSS 
(rho= 0.53). 

De Groot-
Kamphuis et 
al. (17) 

Secondary care outpatient 
diabetes clinic, the 
Netherlands 

Cross-sectional study. Randomly 
selected T2DM patients were 
divided into metformin users and 
non-users. 

Prevalence of neuropathy (obtained from records) was significantly 
lower in metformin group. 

Chen et al. 
(104) 

Diabetes clinic of a tertiary 
hospital, UK 

Cross-sectional study. Randomly 
selected T2DM patients were 
divided into metformin users and 
non-users. 

All PN-assessing tools (monofilament, neurothesiometry, NTSS-6 and 
s-LANSS) showed no significant differences between the two groups. 

Biemans et al. 
(107)  

Four primary care centers, 
the Netherlands 

Cross-sectional study. Metformin-
treated T2DM patients were 
divided into vitamin B12-deficient 
and normal groups. 

There were no significant differences in PN (assessed by MNSI and 
extracted from records) between the two groups. 

Ahmed et al. 
(106) 

Diabetes clinics of two 
tertiary hospitals, South 
Africa 

Cross-sectional study. Metformin-
treated T2DM patients were 
divided into vitamin B12-deficient 
and normal groups. 

There was no difference in presence of PN (assessed by NTSS-6) 
between the two groups. Levels of vitamin B12 and NTSS-6 scores 
were not correlated. 

MNSI: Michigan Neuropathy Screening Instrument; NIS: Neuropathy Impairment Score; NTSS-6: Neuropathy Total Symptom Score-6; rho: Spearman's rank 
correlation coefficient; s-LANSS: Self-administered Leeds Assessment of Neuropathic Symptoms and Signs; TCSS: Toronto Clinical Scoring System. 


