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ABSTRACT - Purpose. Drug release from nanosystems at the sites of either absorption or effect 
biophase is a major determinant of its biological action. Thus, in vitro drug release is of paramount 
importance in gaining insight for the systems performance in vivo. Methods. A novel in vitro in 
vivo correlation, IVIVC, model denoted as double reciprocal area method was presented and 
applied to 19 drugs from 55 nano formulations with total 336 data, gathered from literature. 
Results. The proposed model correlated the in vitro with in vivo parameters with overall error of 
12.4 ± 3.9%. Also the trained version of the model predicted the test formulations with overall error 
of 15.8 ± 3.7% indicating the suitability of the approach. A theoretical justification was provided 
for the model considering the unified classical release laws. Conclusion. The model does not 
necessitate bolus intravenous drug data and seems to be suitable for IVIVC of drugs with release 
rate-limited absorption.  
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
________________________________________________________________________________ 
 
INTRODUCTION 
 
Immense attention has been paid to 
nanotechnology in various branches of 
science including medical and pharmaceutical 
sciences. Numerous research papers in the 
field of pharmaceutical nanotechnology have 
been appeared in literature citation. Our 
focus, however, is on some recently published 
review articles that deal with drug delivery 
systems administered via different routes (1-
4). The drug release from pharmaceutical 
nanosystems is a major determinant in its 
biological effect. For this reason the release 
rate of drug from nano delivery system is 
often measured in vitro to gain insight to its 
performance in vivo. In the case of various 
drug delivery systems including immediate 
and sustained release ones, the correlation 
between in vitro and in vivo parameters is of 
paramount importance. The United States 

Pharmacopeia discusses the importance as 
well as different levels of the correlation (5). 
Also the details and advantages of such 
correlations were reviewed in a recent article 
(6). One of the important advantages of 
establishing in vitro- in vivo correlation, 
IVIVC, is the calculation of in vivo parameter 
from the correlation equation after carrying 
out only in vitro test without performing in 
vivo experiment on the drug product under 
consideration (5, 6). Despite extensive 
investigations on drug nanosystems from in 
vitro and in vivo points of view, to the best of 
our knowledge no comprehensive IVIVC 
study was reported in literature. In the present 
work the available in vitro release as well as 
in vivo data of drug nanosystems gathered 
from various sources was subjected to a 
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previously empirical novel IVIVC approach 
named double reciprocal area, DRA, method 
(7, 8).The area under drug plasma 
concentration or biological response vs. time 
curve, AUCi and the area under drug release 
curve vs. time were employed as in vivo and 
in vitro parameters for correlation purpose. 
The method predicted in vivo parameter from 
corresponding in vitro data with good 
accuracy and precision. Unlike the previously 
established IVIVC methods, the proposed 
model is less invasive because it does not 
involve bolus intravenous data of drug. A 
theoretical justification was also provided for 
the empirical method. 
 

METHODS 
 
Data 
The in vitro and in vivo data of 17 drugs from 
55 nanosystems with total number of 336 data 
points were collected from literature. The 
name of drugs and the relevant references are 
given in Table 1 (9-27). As seen in the table 
the data includes several kind of nanosystems 
intended for administration via different 
routes. The coordinates of each point in the in 
vitro and in vivo profiles of drug nanosystems 
in the original papers were measured 
carefully and the data was employed in the 
subsequent IVIVC analysis.  

 
 
 

Table 1. Details of drugs, nanosystems, statistical parameters and constants of double reciprocal area IVIVC model. 
No. Drug  NF N TNS R EC RA m b j Ref. 
1 5-Fluorouracil* 3  21 NS 0.725 19.2 p.o 28.419 0.980 0.901 (9)
2 Carbazole 2  10 CL-NP 0.983 7.5 p.o 4.048 0.954 0.021 (10) 
3 Celecoxib 3  24 SLH 0.980 7.2 p.o 303.8 1.271 1.151 (11) 
4 Danazol 3  18 NS 0.889 16.6 p.o 0.114 0.637 0.002 (12)
5 Docetaxel 4  24 NM 0.956 13.8 p.o 0.005 0.796 0.000 (13) 
6 Estradiol** 2 12 NM 0.970 13.2 p.o 0.755 0.602 0.000 (14) 
7 Estradiol** 3  18 NM 0.929 12.4 p.o 0.455 0.900 0.02 (15)
8 Estradiol** 4  24 NM 0.804 8.1 p.o 0.505 1.185 0.058 (16) 
9 Flurbiprofen 2  12 LN 0.999 16.7 p.o 0.687 1.196 0.015 (17) 

10 Heparin*** 3  18 NS 0.936 9.70 p.o 0.567 1.182 0.050 (18) 
11 Insulin 4  24 NMA 0.905 11.8 n.s 0.444 1.185 0.016 (19) 
12 Methotrexate 4  24 SLN 0.958 10.5 p.o 3.057 1.312 0.333 (20) 
13 Mifepristone 2  16 NS 0.756 15.9 p.o 0.043 1.18 0.004 (21) 
14 Nifedipine 3  18 NM 0.967 8.6 p.o 0.028 0.806 0.001 (22) 
15 Nitrendipine 3  18 SLN 0.826 8.2 i.d 0.008 1.019 0.006 (23) 
16 Rhodamine 

(Model dye) 
2  10 NM 0.758 18.2 p.o 0.458 0.907 0.442 (24) 

17 Tobramycin 3  18 SLN 0.831 16.53 i.d 0.052 0.721 0.032 (25) 
18 Ucb 

(Anti asthma) 
2  12 NC 0.957 13.1 p.o 0.137 0.701 0.001 (26) 

19 Vinpocetine 3  15 SLN 0.923 8.5 p.o 3.208 0.783 0.311 (27) 
NF, number of formulations for a given drug; N, number of data for each drug; TNS, type of nanosystems; R, correlation 
coefficient; EC, error of correlation in percentage; RA, route of administration; m, b and j, model constants; NS, nanosphere; 
CL-NP, cross-linked nanoparticle; SLH, silica-lipid hybrid particle; NM, nanomatrix; LN, lipid nanoparticle; NMA, nano 
mucoadhesive; SLN, solid lipid nanoparticle; NC, nano crystal; p.o, per oral; n.s, nasal; i.d, intraduodenal. *One of the 
formulations of 5-Fluorouracil was the pure drug itself the inclusion of which improved the accuracy of the model. ** The 
difference in the molecular weight of polymer and solvents involved in the formulations as well as the particle size of the 
nanosystems affected the model parameters of the same drug estradiol. ***In the case of heparin the biological response was 
used. The overall mean error, OEC, for 19 drugs calculated by equation 3 is 12.4 ± 3.9%. 
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Double reciprocal area IVIVC method 
The double reciprocal area, DRA, model 
applied successfully for IVIVC (7, 8) has 
been advocated to establish a quantitative 
correlation between in vitro and in vivo 
parameters of all drug nanosystems given in 
Table 1. In addition to the total AUC, the 
partial AUC is also used in bioavailability 
studies (5, 8). The following nonlinear 
relationship represents the model: 
 
 

ଵ

ሺሻబ
 ൌ ݉൭ ଵ

ቂሺೝሻబ
ቃ

್൱  ݆      (1) 

 
 
Where ሺܥܷܣሻ

௧ is the area under the drug 
plasma concentration or biological responses 
vs normalized time (tn) curve between 0 and tn 
;ሺܥܷܣሻ

௧   is area under percent drug 
released vs tn curve between 0 and tn .These 
areas are observed ones. The symbols m, b 
and j are   model constants. Several factors 
are involved in drug release from the complex 
nanosystems. These include nature of drug, 
method of preparation and excipients of 
formulation, technique of release study and 
mechanisms of processes affecting the overall 
release. Some of the processes in the release 
from nanosystems are wettability, 
dispersability and penetration of water 
molecules into the nanosystem; hydration and 
swelling of the polymer in the system as well 
as drug dissolution and diffusion. These 
factors which complicate the overall drug 
release process reflect in the mentioned 
parameters. Thus, the exact nature of the 
parameters cannot be clarified. The reason for 
the use of AUCi in the correlation is based on 
well-known pharmacokinetic principles 
according which in vivo AUC of drug is 
directly related to its extent of   
bioavailability and the latter is related to 
clinical response. 

The normalized time is the ratio of any in 
vivo and in vitro sampling time with respect 
to the corresponding arbitrary last sampling 
time. The normalization of time is necessary 
to bring in vivo and in vitro times to the same 

scale. The percent released corresponding to 
each in vivo value of tn was obtained by 
interpolation of the normalized release curve. 
The values of ሺܥܷܣሻ

௧ and ሺܥܷܣሻ
௧ were 

calculated via trapezoidal rule. The left side 
of equation 1 was regressed nonlinearly 

against 
ଵ

ቂሺೝሻబ
ቃ

್	to obtain numerical values 

of m, b and j of the model. The correlation 
error, EC, for nanosystems of individual drug 
was calculated by: 
 
 

ܥܧ ൌ
ଵ

ே
ൈ ∑

ቚቂሺሻబ
ቃ

ೌ
ିቂሺሻబ

ቃ
್ೞ

ቚ

ቂሺሻబ
ቃ

್ೞ

ே
ଵ    (2) 
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andൣሺܥܷܣሻ
௧൧

௦
are number 

of data which belongs to any drug, calculated 
ሺܥܷܣሻ

௧ by the model and 

observedሺܥܷܣሻ
௧, respectively. The 

calculated AUCi is obtained after insertion of 
observed AUCr, numerical values of m, b and 
j into the correlation equation 1. The overall 
mean error of correlation, OEC, for 19 drugs 
in table 1 was also calculated using equation 
3: 
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Development of the IVIVC model 
The rate of drug release from nanosystems 
and solid dispersions in terms of amounts 
released, w, and unreleased ,M, was described 
by an equation obtained from unification of 
the Noyes- Whitney law of dissolution and 
Flick’s first law in diffusion with introduction 
of a time dependent variable X (28,29): 
 
 

ௗ௪

ௗ௧
  =െௗெ

ௗ௧
=  




 SCsX              (4) 

 
 
In which w is amount of drug released up to 
time t. dw/dt is the rate of release in term of 
w. The symbols D, S, Cs and h  are drug 
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molecule diffusion coefficient, effective 
surface area of drug, drug solubility in the 
medium and the length of diffusion path, 
respectively (28, 29). In context of drug 
nanosystems the release medium can be in 
vitro simulation of either the absorption site 
or the action biophase e.g. inside of cells after 
endocytosis. The value of X represents all 
time-dependent variables affecting drug 
release in the simulated medium. For a 
complex system such as nanoparticles, the 
classical equations of the drug release 
mentioned above do not include factors 
influencing the drug release rate among 
which penetration rate of liquid into the 
system; hydration, swelling, relaxation, 
erosion and dissolution of polymer can be 
mentioned. The extents of liquid penetration 
and the polymer contributed properties are 
directly proportional to t1/2 and powered of t, 
respectively all of which are embedded in 
variable X (28, 29).Therefore, assuming all 
parameters with the exception of Cs in the 
right-hand site of equation 4 are time- 
dependent, its integration between times 0 
and t gives: 
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M0 is the amount of drug in nanosystem at 
time 0.Since the value of w increases with 
time the integral term in equations 5 and 6 

should increase with time as well. Also, M 
deceases with time. The closest measurable 
substitute supported by experimental 
evidence for the integral term in equations 

5and 6 is .ݓ ݐ݀
௧
 , area under the release curve 

between times 0 and t,ሺܥܷܣሻ
௧  (7, 8). The 

latter parameter represents better the 
cumulative changes of time- dependent 
variables embedded in the equations at 
absorption and the biophase sites. Thus, w 
can be expressed in term of the latter area as 
power equation 7: 
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The symbols α and β are constants. The 
negative sign preceding the integral term of 
the equation 6 indicates an inverse 
relationship between M and the integral term. 
The difference between constant M0 and the 
integral term can be approximated by an 
inverse powered integral term in the form of: 
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The values of α' and β' are constants. The 
positive α and negative α' indicate that w 
increases and M decreases with time. Thus, 
equation 8 reflects explicitly the inverse 
relation between w and M. Similar power 
relationships for w and M were given in 
previous papers (28, 29). Fraction of drug 
released, F, up to any time is given by:  
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Where b= α+ α ', and µ= β′/ܥߚ௦. For 
establishing a meaningful correlation between 
in vitro and in vivo parameters it is logical to 

use area under the curve of biological 
response and/or plasma drug level, ሺܥܷܣሻ

௧  
as an in vivo parameter (7, 8). It is worth to 
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mention that the partial area under the in vivo 
curve,ሺܥܷܣሻ

௧ , has been recommended by 
USP as a measure of extent of drug 
bioavailability. It is obvious in drug release 
rate- limited biological response and/ or 
bioavailability there must be a quantitative 
correlation between ሺܥܷܣሻ

௧   and F. It would 
be reasonable to assume a direct relation 
between the latter parameters via introducing 
a proportionality constant k: 
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ൣሺೝሻబ
 ൧
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Reciprocating equation 10 and subsequent 
substitution of corresponding normalized 
areas and rearrangement yields the double 
reciprocal area method of IVIVC, equation 1, 
in which m=µ/k and j=1/k. 
 
Training DRA model for prediction 
The aim of obtaining trained model was to 
determine model parameters for each drug 
and use the parameters for estimating AUCi 
of an excluded formulation of the same drug 
from training procedure. To this end, 13 out 
of 19 drugs (Table 2) with 3 and 4 
formulations altogether 264 data were used to 
assess prediction ability of the model. The 
drugs with two formulations were omitted 
from the prediction analysis because of 
statistical limitation. In the case of drug with 
3 formulations, 3 possible combinations 
consisted of in vitro and in vivo data of 
formulations 1, 2; 1, 3 and 2, 3 were 
employed for training of the model to obtain 
the numerical values of the model constants. 
It is obvious that in the training process 
formulations 3, 2 and 1 were excluded from 
the combinations, respectively. Then, after 
inserting the in vitro parameter of the 
excluded formulation into the trained model, 
it’s in vivo parameter was predicted. The 
same procedure was followed for drugs with 
4 formulations. That is 4 possible 
combinations each consisted of 3 
formulations for prediction of the in vivo 

parameters of the excluded ones. The 
prediction error, PE, for excluded formulation 
of each drug is given by: 
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In which q is the number of in vivo data for 
excluded formulation of individual drug and 
ൣሺܥܷܣሻ

௧൧
ௗ

is its predicted area under the 

curve by means of the trained model. The 
accuracy of the trained models for each drug 
was evaluated by calculating mean prediction 
error, MPE: 
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N is 3 and 4 for drugs with 3 and 4 
formulations respectively. Also the overall 
prediction error, OMPE, was assessed taking 
the average of MPEs for 13 drugs in Table 2. 
 
RESULTS 
 
Table 1 shows the results of in vitro- in vivo 
correlation by DRA model. All the correlation 
errors were below 20%, 68.4% of ECs were 
below 15% and 36.8% were less than 10%. 
The overall error of correlation, OEC, was 
12.4 ± 3.9%. The minimum and maximum 
ECs were 7.2% and 19.2%, respectively. The 
values of R indicated that the correlations 
were highly significant (p levels between 
0.001 and 0.0005). The model parameters m, 
b and j were also highly significant at the 
mentioned levels. The model parameters m, b 
and j were also highly significant. The level 
of significance for the parameters was 
generally at p values less than 0.001. The 
correlation between ൣሺܥܷܣሻ

௧൧
௦

and 

ൣሺܥܷܣሻ
௧൧


for 336 data is depicted in Fig. 

1. 
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Figure 1. Observed area under the drug plasma concentration or biological response curve, ൣሺࢁሻ

൧࢚
࢙࢈

 , against 

the calculated area, ൣሺࢁሻ
൧࢚

ࢉࢇࢉ
 based on the proposed novel IVIVC model. The upper and lower 95% prediction 

interval is represented by the broken lines. For the sake of clarity in construction of the regression line, all drug plasma 
concentrations were expressed in µg/ml.    
 
 
When the trained models were applied to the 
excluded formulations the minimum mean 
prediction error, MPE, was 10% and the 
maximum was 22.7%. Overall mean 
prediction error, OMPE, was 15.8 ± 3.7%.  

The errors of 11 out of 13 drugs were below 
20% (Table 2). In Fig. 2 the plot of 
ൣሺܥܷܣሻ

௧൧
௦

vs ൣሺܥܷܣሻ
௧൧

ௗ
 is seen for 

264 data.  
 
 

Table 2. Drugs with 3 and 4 nanosystem formulations for training, assessing 
prediction ability of DRA model and its mean prediction error, MPE together with 
overall mean prediction error, OMPE. 
No. Drug MPE  No. Drug MPE 
1 5-Fluorouracil 22.7  8 Insulin 17.6  
2 Celecoxib 12.4  9 Methotrexate 10.0  
3 Danazol 15.2  10 Nifedipine 14.7  
4 Docetaxel 16.1  11 Nitrendipine 13.9  
5 Estradiol 14.1  12 Tobramycin 22.5  
6 Estradiol 12.7  13 Vinpocetine 16.1  
7 Heparin* 17.4   OMPE 15.8 ± 3.7 
*In the case of heparin the biological response was used. 



J Pharm Pharmaceut Sci (www.cspsCanada.org) 15(4) 583 - 591, 2012 
 

 

 
 

589 

DISCUSSION 
 
It is evident from the tables and figures that 
the proposed model can correlate not only 
very well the in vitro with in vivo data but 
also the prediction capability and 
reproducibility of its trained versions is quite 
acceptable. In the correlation procedure 
96.7% of 336 data are in 95% prediction 
interval (Fig. 1). Also 95.8% of the 264 
predicted values from the trained models are 
in the same prediction interval (Fig. 2). These 
findings indicate the suitability of the 
proposed model. 

This approach of IVIVC can be 
considered as a novel point by point method 
(similar to level A correlation in USP). 
Similar to level A correlation in USP the 
novel proposed model is a point by point 
deconvolution method. Unlike most other 
deconvolution approaches, the model requires 
no intravenous data. In the USP level A 
approach, the relationship between the 
fraction of drug absorbed up to any time and 

percent drug released in vitro up to the same 
time is linear (8). However, since the present 
novel DRA model employs the partial area in 
place of the fraction absorbed, it correlates 
with the fraction absorbed in a nonlinear 
fashion (equation 1). The partial area is 
dependent not only on the drug release rate 
but also is affected by drug clearance from 
the body. Therefore, for drugs exhibiting 
release rate limited absorption from 
nanosystems, the area should depend highly 
on the release rate at the absorption site (8).  
Due to profound effect of release and/or 
fraction absorbed it is expected that AUCi 
relates to release, but because of the 
interference of the opposing effect of 
clearance the IVIVC profile is nonlinear. The 
OEC and OMPE of the novel DRA model 
and its trained versions are12.4 ± 3.9% 
and15.8± 3.7%, respectively which are quite 
acceptable considering the inherent error 
associated with integration process employing 
the trapezoidal rule.  

 

 
Figure 2. Observed area under the drug plasma concentration or biological response curve, ൣሺࢁሻ

൧࢚
࢙࢈

 , against 

the predicted area, ൣሺࢁሻ
൧࢚

ࢊࢋ࢘
 based on the trained proposed novel IVIVC model. The upper and lower 95% 

prediction interval is represented by the broken lines. For the sake of clarity,in the construction of the regression line, 
all drug plasma concentrations were expressed in µg/ml.    
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CONCLUSION  
 
A kind of novel point by point nonlinear 
IVIVC model was presented and applied to 
17 drugs in 55 nanosystems successfully with 
overall error of correlation 12.4%. A 
theoretical justification for the model was 
also provided. When the trained versions of 
the model were used for prediction of in vivo 
parameter of untested formulations, the 
overall error was satisfactory (15.8%). Thus 
the model could be employed as a suitable 
IVIVC approach for drug nanosystems. The 
model may be suitable for IVIVC of drugs 
with release rate-limited absorption. It may 
have also advantage over the conventional 
methods in that it does not require drug data 
from bolus intravenous drug injection. 
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