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ABSTRACT: Purpose. The success of a new drug candidate is determined not only by its efficacy and safety, 
but also by proper pharmacokinetic behavior. The early prediction of pharmacokinetic parameters could save time 
and resources and accelerate drug development process. Plasma clearance (CL) is one of the key determinants of 
drug dosing regimen. The aim of the study is development of quantitative structure – pharmacokinetics 
relationships (QSPkRs) for the CL. Methods. A dataset consisted of 263 basic drugs, which chemical structures 
were described by 154 descriptors.  Genetic algorithm, stepwise regression and multiple linear regression were 
used for variable selection and model development. Predictive ability of the models was assessed by internal and 
external validation.  Results. A number of significant QSPkR models for the CL were derived with respect to the 
primary elimination pathway (renal excretion, metabolism, or CYP3A4 mediated biotransformation), as well for 
the unbound clearance (CLu). The models were able to predict 52 – 80% of the drugs from external validation sets 
within the 2-fold error of the experimental values with geometric mean fold error 1.57 – 2.00. Conclusions. 
Plasma protein binding was the major restrictive factor for the CL of drugs, primarily cleared by metabolism.  The 
clearance was favored by lipophilicity and several structural features like OH-groups, aromatic rings, large 
hydrophobic centers, aliphatic groups, connected with electro-negative atoms, and non-substituted aromatic C-
atoms. The presence of Cl-atoms and abundance of 6-member aromatic rings or fused rings had negative effect.  
The presence of ether O-atoms contributed negatively to the CL of both metabolism and renally excreted drugs, 
and urine excretion was favored by the presence of 3-valence N-atoms. These findings give insight on the main 
structural features governing plasma CL of basic drugs and could serve as a guide for lead optimization in the 
drug development process. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
_______________________________________________________________________ 
 
INTRODUCTION 
 
Drug discovery and development is an expensive and 
time consuming process. Many promising drug 
candidates with appreciable activity in vitro fail to 
become marketable products because of lack of 
efficacy in vivo, most often due to inappropriate 
pharmacokinetic behavior. The early prediction of 
ADME (absorption, distribution, metabolism and 
excretion) is of paramount importance for saving 
time and resources and for increasing the success of 
new drug candidates. Thanks to the extensive 
research on the prediction of key ADME parameters 
the percentage of drug development failures due to 
pharmacokinetic and bioavailability problems 
dropped markedly from 40% in 1991 to 10% in 2000 
(1).  

 

 
 
In the last two decades computational (in silico) 

modeling becomes a powerful tool for ADME 
prediction (2 – 6). It enables development of 
quantitative structure – pharmacokinetics 
relationships (QSPkRs) based on molecular structure 
and physicochemical descriptors.  QSPkRs allow 
predictions of ADME even of virtual compounds, 
thus accelerating identification of new drug 
candidates and reducing the cost of drug 
development process. In addition, they give insight 
into the most important structural features governing 
pharmacokinetic behavior. 
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Human plasma clearance (CL) is one of the most 
important ADME parameters. It is a proportionality 
coefficient between the rate of elimination and 
plasma concentration. It determines drug half-life 
(together with the steady state volume of 
distribution, Vss) and bioavailability (together with 
trans-membrane permeability) and consequently is 
the major decisive factor in setting up reliable dosage 
regimen (7). 

Several reports on QSPkR modeling of drug CL 
have been published recently. A wide suite of 
statistical and machine learning methods were used: 
multiple linear and non-linear regression analysis 
(3), partial least squares (4 – 12), artificial neural 
networks (13), k-nearest neighbor (9, 10, 14), 
general regression network and support vector 
regression (10). The models show satisfactory 
predictive ability, but some of them are not well 
validated, and another do not offer sufficient 
interpretability. Therefore, a well-constructed, well-
validated and interpretable QSPkR model would still 
be relevant.  

In silico prediction of drug CL is a difficult task 
because of the complexity of the elimination process 
involving a sequence of diverse processes (renal and 
hepatic uptake, metabolism, glomerular filtration, 
tubular secretion and reabsorption, bile excretion, 
etc.), each with specific structural requirements. 
Knowledge on the elimination mechanisms could 
improve CL prediction, but for the majority of the 
drugs the available information is rather insufficient. 
Successive drug CL modeling is further complicated 
by plasma protein binding (PPB) which is often a 
restrictive factor for drug clearance. Alternatively, 
QSPkR models could be derived for the unbound 
clearance CLu. This is the clearance of the unbound 
drug in plasma, which can be considered as 
independent of PPB and affected solely by the 
chemical structure.  

The published so far QSPkR models for drug CL 
are built either on limited congeneric series, or on 
large datasets involving molecules of all charged 
types. It is well established that acidic and basic 
drugs follow different pharmacokinetic patterns. 
Acids have considerably lower Vss (15). They bind 
preferably to human serum albumin (HSA) in 
plasma, and the ionization at physiological pH 7.4 
hinders their distribution in tissues. In contrast, bases 
are bound mainly to alpha-1-acid glycoprotein, have 
high affinity to membrane phospholipids and can be 
accumulated by ion-trapping into lysosomes (15). 
The CL of acids is also lower than those of bases. 

According to a published analysis of a large dataset 
of 754 compounds, majority of compounds 
belonging to anionic (78%) and zwiter-ionic (80%) 
class have low CL, and only 1-2% – high. On 
contrary, only 29% of the cationic compounds 
showed low CL (11). Acidic drugs seem to be more 
often subjected to renal and biliary excretion, while 
metabolism is the primary clearance mechanism for 
bases. Specific transporters enable drug uptake into 
kidney and bile – organic anion transporters for 
acids, and organic cation transporters – for bases 
(16). Different enzymes are also involved in the 
metabolism. For example, in terms of CytP450 
oxidation, anionic drugs are preferred substrates of 
CYP2C9, while most of the basic drugs are 
metabolized either by CYP2C19 or CYP3A4 (17). 
Therefore, construction of separate QSPkRs 
according to the ionization state of the molecules 
seems to be more reliable.  

Recently we published a series of reports on in 
silico prediction of several ADME parameters of 
acids (18 – 21) and bases (22). The aim of the present 
study is: 1. Development of QSPkRs for total plasma 
CL and CLu of basic drugs; 2. Generation of separate 
QSPkRs for the CL of basic drugs, eliminated 
primarily by renal excretion or by metabolism.  3. 
Identification of the main structural features 
governing plasma CL of basic drugs.  
   
METHODS 
 
Datasets 
The drugs used in the present study were extracted 
from the original work of Obach et al. (23) providing 
data for the major pharmacokinetic parameters of 
659 drugs after iv administration in human. A drug 
was considered as a base in two occasions: 1. If the 
fraction ionized as a base (fB) at pH 7.4 exceeded 3%, 
and 2. If the molecule possessed any acidic group, 
but fB was considerably higher than the fraction 
ionized as an acid (fA). The fA and fB fractions were 
calculated according to equations: 
 

 4.7pKA a101

1
f 


  (1)

 

 apK4.7B 101

1
f 


  (2)

 

 
In the case of more than one ionizable group, the 
strongest one was taken into account. The pKa values 
were calculated with ACD/logD version 9.08 
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software (Advanced Chemistry Development Inc., 
Ontario, Canada).  

266 drugs were eligible to be considered as 
bases. Three of them were excluded from the dataset: 
methylphenidate – because of the highly 
contradicting literature data for its CL, epirubicin – 
epimer of doxorubicin, and dilevalol – R-isomer of 
labetalol. The final dataset consisted of 263 
molecules. On the basis of extensive literature search 
the drugs were classified according to their primary 
elimination path. Drugs were considered as renally 
cleared if the fraction excreted unchanged in urine 
exceeded 60% and no data for significant non-renal 
excretion were found; 40 drugs met this criteria. 
Another 180 drugs with a fraction eliminated by 
metabolism exceeding 70% were assigned as 
metabolically cleared. Only 6 drugs were identified 
as biliary cleared. For 17 compounds no reliable 
information regarding clearance mechanism was 
found. Finally, 20 drug drugs appeared to have 
mixed clearance mechanism – almost 50:50 of any 
two of the classes. More detailed information about 
the dataset is given in the Supplementary file.    

The mol-files of the drugs were taken from 
several public databases: Drug Bank (24), Chemical 
Book (25) or Japan Chemical Compounds 
Dictionary (26). The values for the total clearance 
CL and the unbound fraction in plasma fu were taken 
from Obach’s database. The end-point variable was 
presented as logCL or logCLu in order to achieve 
close to normal distribution. 

Several datasets were generated, including: all 
drugs (n=263), drugs with available data for fu (n= 
220), renally cleared drugs (n=40), drugs cleared 
primarily by metabolism (n=180), drugs cleared by 
CYP3A4 mediated metabolism (n=87), etc. In most 
cases the original datasets were divided into training 
and external test set for model validation. To this end 
the molecules were arranged in an ascending order 
according to their CL or CLu value, and one of the 
every four or five drugs (depending on the number 
of the compounds) was allocated to a different 
subset. One of the subsets was excluded as an 
external test set, and the remaining three (four) 
composed the training set.  
 
Molecular descriptors and variable selection 
The chemical structures of the compounds were 
described by 154 molecular descriptors calculated by 
ACD/logD version 9.08 (Advanced Chemical 
Development, Inc.) and MDL QSAR version 2.2 
(MDL Information Systems Inc., San Leandro, CA). 

The descriptors included electrotopological and 
molecular connectivity indices, descriptive 
properties (number of specific atoms and groups, 
rings, circles, hydrogen bond donors and acceptors), 
whole molecular features (molecular weight, logP, 
logD7.4, dipole moment, volume, surface, etc.). The 
most significant descriptors were selected in a three 
step procedure. First – for each training set, 
descriptors with non-zero values for less than five 
molecules were rejected. The remaining descriptors 
were filtered through genetic algorithm (GA). 
Finally, the selected descriptors entered a forward 
stepwise linear regression (SWR) with Fisher criteria 
F-to-enter 4.00 and F-to-remove 3.99. Both GA and 
SWR were implemented in the MDL QSAR 
package.   
 
Generation and validation of the QSPkR models 
The QSPkR models were generated by multiple 
linear regression (MLR). Drugs, which end-point 
values were predicted with residuals not obeying the 
normal distribution law were considered as outliers. 
They were removed from the training sets and the 
models were rebuilt. The models were assessed by 
the explained variance r2 given by the equation: 

 

 










 n

1i

2

obsobs,i

n

1i

2
calc,iobs,i

2

YlogYlog

YlogYlog
1r

 (3)

 

 
where Yi,obs and Yi,calc are the observed and calculated 
by the model values of CL or CLu for the ith drug in 
the training set, and obsY  – the mean observed value, 

respectively.  
The generated QSPkR models were validated by 

leave-one-out cross validation (LOO-CV) and 
external validation. The model performance was 
evaluated by the cross-validated coefficient for the 

training set 2
CVLOOq  , prediction coefficient for the 

external test set 2
predr  and geometric mean fold error 

of prediction GMFEP, calculated as follows: 
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where Yi,obs and Yi,pred  are the observed and predicted 
by the model values of CL or CLu for the ith drug in 
the training or test set, and obsY  – the mean observed 

value, respectively. Accuracy of prediction was 
assessed as a percentage of drugs in the external test 
set, predicted with less than two- or three-fold error 
of the observed value. The fold error FE is calculated 
by the formula: 

pred,yobs,i YlogYlog
10FE

   (7) 
 

There are not standardized criteria for the 
acceptance of QSPkR models. Taking into account, 
that QSPkR is an extension of QSAR for ADME 
prediction, it is reasonable to use the accepted 
criteria for QSAR models. They are described in 
detail in several articles and summarized recently by 
Roy et al. (27).  

The thresholds values for internal and external 
validation are set as follows: q2 > 0.5 and r2

pred > 0.5. 
However, QSPkR modeling of ADME parameters 
meets much more difficulties compared to the 
classical QSAR mainly due to the complexity of the 
underlying biological processes and the limited 
quality and quantity of experimental data. Frequently 
the derived QSPkR models do not satisfy above 
mentioned statistical criteria, and the authors report 
only the mean fold error of prediction MFEP, mean 
absolute error MAE, or geometric mean fold error of 
prediction GMFEP. Accuracy is usually expressed as 
a fraction of the molecules which PhK parameter is 
predicted within the two fold error of the 
experimental values. A two-fold error limit seems 
reasonable, as the values of the ADME parameters 
may vary considerably due to different reasons, 
primarily to inter-individual differences. Models 
with GFFEP within 2 and accuracy ~ 60% are 
considered as good predictive models 
(11).Therefore, we also accepted the thresholds 
q2

LOO-CV > 0.5, r2
pred > 0.5, GFFEP  2 and accuracy 

~ 60% to evaluate the predictive ability of our 
QSPkR models for CL and CLu of basic drugs. 

RESULTS 
 
The initial attempts to derive QSPkRs for the whole 
dataset of 263 basic drugs failed to find any 
correlation between logCL and the large variety of 
molecular descriptors used. Since drug CL depends 
crucially on both clearance mechanism and PPB, 
further studies were continued in two ways: deriving 
QSPkR models for logCL with respect to the primary 
elimination pathway, and deriving QSPkR models 
for logCLu.  The datasets used for QSPkR models 
development, together with the observed and 
predicted values of CL and CLu are given in the 
Supplementary file.  
 
QSPkR models for the clearance of renally 
excreted drugs.  
After a thorough literature search, 40 drugs were 
considered as eliminated primarily by renal 
excretion. The values of their CL varied between 
0.55 and 3 ml/min/kg. The dataset was divided into 
a training set and external test set as described in 
Methods. Several models were derived using 
different combination of descriptors, and the best one 
in terms of statistics is given as Model 1: - PLEASE 
SEE BELOW for Model 1. 

Two drugs (ethambutol and sotalol) were 
identified as outliers, although their CL values were 
calculated with a FE of 2.36 and 2.11, respectively.  
According to Model 1, the CL of renally cleared 
drugs is determined by three electro-topological 
indices, which explain about 89% of the variance.  
SssO encodes the number of the ether -O-atoms. 
SdsN signifies the presence of N-atoms, connected 
with a simple and a double bond to C-atoms (=N-). 
SsssN-account equals the number of tertiary N-
atoms (>N-) in the molecule. SdsN and SsssN-
account affect positively drug CL, while SssO has a 
negative effect. The effect of PPB on the CL of 
renally excreted drugs was not evaluated because of 
the lack of PPB data for 6 of the 40 drugs. In general, 
only 5 of the drugs showed PPB > 50% (fu < 0.5), 
and no one - high PPB (> 90%, fu < 0.10). Therefore, 
PPB seems not to be a restrictive factor for renally 
cleared drugs. 

Validation with the external test set of 10 
molecules showed predictive correlation coefficient 
r2

pred  0.733. The model was able to predict the CL of 
the drugs in the external test set with GMFEP 1.57 
with accuracy of 80% (at two-fold error level) and 
100% (at 3-fold error level). 
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Model 1. 
626.0accnt_SsssN)063.0(157.0SdsN)022.0(082.0SssO)003.0(026.0CLlog   

n  28  r2  0.890  q2
LOO-CV  0.853  F 64.78 

 
The plot of the predicted by Model 1 versus observed 
values of logCL is presented in Figure 1. 

The slope of the regression line for the training 
set is close to 1, and the intercept is nearly 0. This, 
together with the values of r2 (for the training set) and 
r2

pred (for the test set), confirms the good correlation 
between logCLpred and logCLobs. 
 
QSPkR for drugs cleared primarily by 
metabolism 
180 drugs were identified as cleared primarily by 
metabolism. The derived QSPkR model for logCL 
was unsatisfactory in terms of statistics (r2 0.356, 
q2

LOO-CV 0.289), although GMFEP was 1.78 and the 
accuracy at two-fold error of prediction was 64%.  

Statistically significant QSPkR model was 
generated by including as descriptor pfu – the 
negative logarithm of the unbound fraction of the 
drug in plasma fu. Data for fu were available for 152 
molecules. The CL values varied between 0.14 and  
290 ml/min/kg, and fu values were in the range 0.025 
– 0.98 with low values for highly bound drugs, and 
high values – for low binders. This parameter doesn’t 
have a normal distribution, therefore it should be 
logarithmically transformed. For better evaluation of 

the effect of PPB, it is better to use pfu instead of 
logfu , hence high pfu value means high PPB.  

The dataset was divided into a training set and 
external test set as described in Methods. Six drugs 
were identified as outliers and were removed before 
the generation of the final QSPkR, given as Model 2: 
- PLEASE SEE BELOW for Model 2 

The model was validated with an external test set 
of 30 molecules. The statistics on the test set was:  
r2

pred
 0.357, GMFEP 1.75 and accuracy 63% (at two-

fold error level) and 83% (at 3-fold error level).  
Three drugs were considered as outliers. The plot of 
the predicted versus observed values of logCL for the 
test set is presented in Figure 2. 

In addition to plasma protein binding (pfu), three 
types of molecular descriptors emerged in the model: 
molecular properties (logD7.4), E-state indices (Hmin, 
Hmax, SHssNH, SssO and SsCl) and connectivity 
indices (xch6). logD7.4 represents the distribution 
coefficient at pH 7.4. Hmin and Hmax correspond to the 
minimum and the maximum hydrogen E-state value 
in the molecule. SHssNH accounts for the sum of the 
E-state values of all hydrogen atoms within NH-
groups.  SssO and SsCl represent the sum of the E-
state values of all ether O-atoms and Cl-atoms, 
respectively, and xch6 is the 6-order chain 
connectivity index.  

 

 
Figure 1. Predicted vs. observed logCL values for renally cleared drugs. () – training set; (o) – external test set. The straight 
lines correspond to the regression line for the training set and the two-fold error limits. 
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Model 2.   
   

      368.06xch416.0801.0SsCl011.0051.0SssO005.0026.0SHssNH)020.0(073.0

Dlog022.0074.0H055.0204.0H)217.0(120.0pf)050.0(273.0CLlog 4.7maxminu




 
 n  116  r2  0.619  q2

LOO-CV  0.531  F 17.87 
 

 
 
Figure 2. Predicted vs. observed logCL values in the external test set of drugs, cleared primarily by metabolism. Outliers are 
presented with blank circles. The straight line corresponds to two-fold error limits. 
 
QSPkR  for drugs, substrates of CYP3A4  
A sound QSPkR model was developed on a dataset of compounds, metabolized solely by CYP3A4 (Model 3): 
 
Model 3. 

     
  104.1MaxQ267.0008.1

6xch502.0077.2acnt_SssO029.0126.010xvch85.962.44CLlog

p 


 

n  27  r2 0.668 q2
LOO-CV 0.541   GMFE 1.39 Accuracy(2-fold level): 85%  

 
Xvch10 represents the valence 10-order chain 

connectivity index, MaxQp – the maximum partial 
positive charge in the molecule, xch6 – the 6th order 
chain connectivity index, and SssO_acnt is the sum 
of all -O-atoms in the molecule. pfu was not used as 
a descriptor for the modeling the CL of drugs, 
substrates of CYP3A4 because of the lack of data 
for fu of many drugs. However, the restrictive effect 
of PPB on the CL is discussed in the Discussion 
section.  

The model was tested on 60 molecules – 
substrates of both CYP3A4 and other enzymes. A 
GMFEP value of 2.21 and accuracy 52% (at two-fold 
error level) and 75% (three-fold error level) were 
observed. Eight drugs with a FE > 4 were considered 
as outliers. Their removal led to a decrease of the 
GMFEP to 1.91.  The plot of the predicted by the 
model versus observed values of logCL is presented 
in Figure 3. 
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Figure 3. Predicted vs. observed logCL data for CYP3A4 substrates. (  ) –  training set; ( o ) – drugs predicted with FE < 
4; (  ) – outliers. The straight lines represent the two-fold error limits. 

QSPkR model for CLu  
The dataset of 220 molecules with available data for 
fu was divided into a training set and external test set 
as described in Methods. Seven drugs were 

identified as outliers and were removed before 
construction of the final QSPkR model (Model 4): 

 
Model 4. 

     
  131.110xvch86.1186.51

ncirc004.0019.0acnt_SaaCH014.0059.0Dlog017.0137.0CLlog 4.7u




 

n 169  r2  0.552 q2
LOO-CV 0.522  F 50.45 

 
Beside logD7.4, the value of CLu is determined by 

three structural descriptors: SaaCH_acnt (the 
number of non-substituted aromatic C-atoms in the 
molecule), xvch10 (the 10th order connectivity 
valence index) and ncirc (the number of circles in the 
molecule). The model was validated on the external 

test set (n 44) and showed r2
pred 0.544 and GMFEP 

2.0.  58% and 70% of the drugs were predicted 
within the two- and three-fold error of observed 
values. The plot of the predicted by Model 4 versus 
observed values of logCLu is presented in Figure 4. 

 

 
Figure 4. Predicted vs. observed logCLu data for the training set (o) and test set (). The straight lines correspond to the 
two-fold and three-fold error limits.
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DISCUSSION 
 
The present study presents a number of QSPkR 
models for the total plasma CL of basic drugs. The 
whole dataset involved 263 drugs covering wide  
chemical and biological space. The chemical 
structures were described by 154 molecular 
descriptors. The end-point variable was presented as 
logCL or logCLu in order to achieve close to normal 
distribution. GA, SWR and MLR were used for 
variable selection and QSPkR models development.  

The failure to generate a sound QSPkR on the 
whole data set of basic drugs directed the research in 
two ways: deriving QSPkRs for logCL with respect 
to the primary clearance pathway, and deriving 
QSPkRs for logCLu.  Four significant QSPkRs were 
built: for the CL of drugs, eliminated primarily 
through renal excretion (Model 1), for drugs with 
preponderant metabolism (Model 2), for CYP3A4 
substrates (Model 3), and for CLu of all drugs with 
available data for fu (Model 4). 
 

 
QSPkR model for renally excreted drugs (Model 
1) 
Highly significant and predictive model with r2 0.89 
and q2

LOO-CV 0.85 was developed for the basic drugs, 
eliminated primarily by renal excretion. The model 
was able to predict the CL of drugs from an external 
test set with r2

pred 0.73, GMFEP 1.57 and accuracy 
80% (at two-fold error level) and 100% (at three-fold 
error level). According to the model, the presence of 
ether O-atoms affects negatively drug CL, while the 
presence of three-valence N-atoms (>N- and =N-) 
has a positive impact. 

Analysis of the dataset allowed defining criteria 
for distinguishing between low- and high CL drugs. 
Drugs with CL  1.7 ml/min/kg (the value of GFR, 
120 mL/min) were assigned as low CL drugs, while 
drugs with CL  6 ml/min/kg – as high CL drugs. All 
low CL drugs contained three or four ether O-atoms, 

and no-one involved neither >N-, nor =N-. 
Conversely, from the high CL drugs, no one had 
more than one ether O-atom, while 12 compounds 
contained either >N- or =N-. Therefore, the presence 
of more than two ether O-atoms was defined as a 
negative criterion, and the presence of >N- or =N- 
atom in the molecule – as a positive criterion. Drugs 
with only negative criteria are expected to have low 
CL, drugs with only positive criterion – high CL, and 
drugs with neither positive nor negative criteria – 
moderate CL. This empirical rule allowed 
classifying the studied drugs with accuracy of 100% 
for low CL drugs, 86% – for high CL drugs, and 57% 
– for moderate CL drugs (Table 1). 20% of the high 
clearance drugs were incorrectly identified as 
moderate CL drugs. Respectively, 36% of the 
moderate CL drugs were incorrectly identified as 
high clearance drugs and 7% – as low CL drugs. No 
one low CL drug was classified erroneously. 

 
Table 1. Criteria for discrimination between low and high renal CL drugs. 

Clearance, ml/min 
 

Number of ether O-
atoms 

Number of 
>N- or =N- 

Prediction 
accuracy, % 

Low 
Moderate 

High 

 120 
120 - 420 
 420 

> 2 
< 2 
< 2 

0 
0 

> 1 

100 
57 
86 

 
 

QSPkR model for drugs, cleared primarily by 
metabolism (Model 2) 
The model has fairly good statistics with r2 0.62 and 
q2

LOO-CV 0.53. Although the low value of r2
pred for the 

external test set, Model 2 was able to predict the CL 
values of the drugs with GMFEP 1.75 and accuracy 
of 63% (at two-fold error level) and 83% (at 3-fold 
error level). 

Eight descriptors proved to be important for the 
CL of drugs, eliminated by metabolism. logD7.4, the 
distribution coefficient at pH 7.4, accounts for drug’s 
lipophilicity, and favors drug CL. This is in 

agreement with the generally accepted belief that 
lipophilic drugs are cleared primarily by metabolism 
(28). However, the contribution of lipophilicity is not 
unambiguous since drugs with very different logD7.4 
have similar CL, and vice versa. For example, 
reboxetine (CL 0.82 ml/min/kg) and ibutilide (CL 26 
ml/min/kg) have logD7.4 of about 1.8. Thus, 
lipophilicity is important but not the only 
determinant of drug CL. Hmin and Hmax (the minimum 
and the maximum hydrogen E-state value in the 
molecule) also affect positively drug CL. Hmax 

encodes the most polar H-atom and has maximum 
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values for molecules containing OH-groups.  The 
presence of OH-group is a prerequisite for Phase II 
metabolism. For example, glucuronic acid 
conjugation is the major metabolism pathway for 
many high CL drugs like labetalol (29), morphine 
(30), naloxone (31), etc. Other drugs like fenoterol 
(32) and R-apomorphine (33) are subjected of both 
glucuronidation and sulfation. All  mentioned drugs 
possess at least two OH-groups and indeed have high 
CL values in the range 23 – 40 ml/min/kg. Hmin 

signifies the less polar H-atom in the molecule and 
has maximum values for molecules with aromatic 
rings. The presence of aromatic ring system is a 
prerequisite for aromatic hydroxylation – one of the 
most common Phase I metabolic reactions. The 
highest value of Hmin is observed for triamterene 
which undergoes extensive oxidative metabolism to 
p-OH-triamterene (34) and has extremely high CL of 
63 ml/min/kg. 

PPB is unfavorable for the CL of metabolically 
cleared drugs.  About 55% of the low CL drugs have 
high PPB (fu < 0.1), while 74% of the high CL drugs 
have low or moderate PPB (fu > 0.1). As low CL 
drugs were considered drugs with CL < 6 ml/min/kg 
(30% of the hepatic blood flow QH), and as high CL 
drugs – these with CL > 13 ml/min/kg (70% of QH). 
The descriptors SHssNH, SssO,  SsCl and xch6 
encode the presence, count and electron accessibility 
of NH-groups, ether O-atoms, Cl-atoms and six-
member rings, respectively. The presence of these 
structural features affects negatively drug CL. Ether 
O-atoms and secondary amines are potential 
hydrogen bond acceptors (HBAs). Hydrogen 
binding ability contributes negatively to 
lipophilicity, and it was recently reported that the 
presence of HBAs has a negative effect on drug CL 
(11). 

The presence of Cl-atoms increases metabolic 
stability by preventing aromatic hydroxylation and 
glucuronidation of phenols (35). Almost all 
molecules contain 6-member cycles. In general, the 
presence of phenyl rings is a prerequisite for 
aromatic hydroxylation. However, a large number of 
6-member rings seem to disfavor drug CL.  Most of 
the drugs with more than three 6-member rings are 
either extended molecules with molecular weight 
exceeding 450 g/mol (aripiprazole, doxazosin, 
imatinib, itraconazole), or contain a number of fused 
rings (amsacrine, quinine, dihydroquinidine, 
vincristine). All of them have low CL values 
(between 0.83 and 5.1ml/min/kg), most probably due 

to steric hindrances by the transport in clearing 
organs. 

Six drugs were identified as outliers from Model 
2. Esmolol has extremely high CL of 290 ml/min/kg 
and it was highly under-predicted by the model. This 
may be due to its unique metabolism through rapid 
hydrolysis by red blood cell esterases (36). 
Oxycodone seems to be over-predicted by the model 
(CL 6.1 ml/min/kg, CLpred 19.77 ml/min/kg). 
However our inspection in the literature found CL 
values of 0.78 L/min (11.14 ml/min/kg) (37) and 
0.83L/min (11.86 ml/min/kg) (38) which are closer 
to our prediction. Itraconazole is highly under-
predicted (CL 5.1 ml/min/kg, CLpred 0.34 
ml/min/kg). The drug exists as a mixture of four cis- 
and four trans-stereoisomers, most of them 
substrates and potent inhibitors of CYP3A4, and 
display stereoselective metabolism to different 
products (39). These unusual metabolic patterns may 
be the reason for the inconsistency with the model. 
Amlodipine is also under-predicted (CL 7 
ml/min/kg, CLpred 1.43 ml/min/kg) which may be due 
to its very high PPB (fu 0.005). According to Zhu et 
al. (40) the drug is slowly cleared primarily via 
dehydrogenation of its dihydropyridine moiety to a 
pyridine derivative.  Quinine (CL 1.9 ml/min/kg, 
CLpred 17.09 ml/min/kg) and terodoline (CL 1.1 
ml/min/kg, CLpred 6.20 ml/min/kg) are also over-
predicted. They are low CL drugs, and most probably 
their molecules contain any negative features not 
captured by Model 2.  
 
QSPkR model for drugs, substrates of CYP3A4 
(Model 3) 
According literature data, 117 drugs in the dataset 
were metabolized primarily by CytP450 iso-
enzymes and 24 – by non-CytP450 pathways 
(glucoronide, gluthatione or sulphate conjugation, 
hydrolysis, MAO, non-enzymatic processes, etc.). 
Most of the drugs were substrates of more than one 
CytP450 or non-CytP4500 enzymes. No information 
was available for the metabolic fate of the rest 29 
drugs.  We failed to derive QSPkR models for the CL 
of all CytP-450 substrates (n = 117), CYP3A4 (and 
other enzymes) substrates (n = 87) and CYP2D6 
(and other enzymes) substrates (n = 60). The only 
significant QSPkR model was built on a small 
database of drugs, metabolized solely by CYP3A4. 
The model revealed good statistics on the training set 
(r2 0.67, GMFE 1.39). Because of the limited number 
of compounds, it was assessed only by internal cross-
validation (q2

LOO-CV 0.52). 
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Four descriptors are important for the CL of 
CYP3A4 substrates. Xvch10 and MaxQp contribute 
positively to drug CL.  Xvch10 encodes information 
about the type and substitution patterns in a ring 
system with 10 edges.  It presents in 11 molecules as 
fused hexagonal rings. For the low CL drugs it is 
either missing or has a low value. The value of 
xvch10 is lower for aromatic rings, especially these 
containing O- or N-atoms, and higher for aliphatic 
ring systems. The presence of a large hydrophobic 
center seems to be favorable for the CL which is in 
agreement with the proposed pharmacophore for 
CYP3A4 substrates (41). The maximum partial 
positive charge in the molecule (MaxQp) is usually 
located at alkyl group, connected with strong electro-
negative atom (N- or O-). These moieties are 
susceptible to O- or N-dealkylation, one of the 
commonest CYP3A4 catalyzed reactions. All high 
CL drugs have high MaxQp values, and indeed N-
dealkylation is a major metabolic pathway for 
byprenorphine (42) and propoxiphene (43). A 
negative effect of xch6 on the CL of drugs cleared 
mainly by metabolism (Model 2) has already been 
found and discussed in terms of steric hindrances. 
Similarly, a high number of ether O-atoms (encoded 
by SssO_acnt), which are potential HBAs, may be 
unfavorable for drug intake in the liver. 

It is noteworthy that the analyzed CYP3A4 
substrates have relatively low CL and high PPB. 
There are 18 have low CL drugs (< 6 ml/min/kg), 4 
high CL drugs (>13 ml/min/kg) and 5 with moderate 
CL (6 < CL < 13 ml/min/kg). Of the 22 drugs with 
available fu value, 14 have high PPB (fu < 0.1) and 8 
– moderate PPB (fu < 0.4). Thus, high PPB may be 
typical for CYP3A4 substrates. 62% of the low CL 
drugs have high PPB, which seems to be restrictive 
factor for elimination. In contrast, buprenorphine, 
ergothamine, saquinavir and propoxyphene 
demonstrate rather high CL despite of their high 
PPB. Obviously, their intrinsic clearance is high 
enough to overcome PPB. 

Model 3 was tested on 60 molecules – substrates 
of both CYP3A4 and other enzymes. Fairly good 
predictive ability was observed as proved by 
GMFEP and accuracy. Most of the drugs were 
under-predicted which was not surprising as 
CYP3A4 metabolism represented only a part of the 
total elimination pathway. Four outliers from the 
model (cocaine, gefitinib, telithromycin and 
verapamil) were highly under-predicted with FE > 4. 
The major metabolic pathways for cocaine are 
catalyzed by esterases in plasma and tissues, while 

CYP3A4 mediated demethylation is only a minor 
route (44). Gefitinib is mainly metabolized in the 
liver by cytochrome CYP3A4, CYP3A5 and 
CYP2D6. The main metabolic pathway 
characterized by using human liver microsomes 
include morpholine ring opening, O-demethylation 
of the methoxy-substituent on the quinazoline ring 
structure and oxidative defluorination of the 
halogenated phenyl group (45). Telithromycin is 
eliminated by multiple pathways – biliary and/or 
intestinal excretion (7%), renal excretion (13%) and 
hepatic metabolism via CYP 3A4 and non-CytP-450 
pathways (46). Trazodone undergoes extensive 
hepatic metabolism via hydroxylation, N-
dealkylation, N-oxidation and splitting of the 
pyridine ring, catalyzed by CYP3A4 and CYP2D6 
(47). In contrast, aripiprazole, azimilide, tamsulosin 
and trazodone were highly over-predicted. Although 
these molecules contain favorable structural 
features, their CL seems to be restricted by the high 
PPB (fu 0.01 – 06). 
 
QSPkR model for CLu (Model 4) 
CLu is the clearance of the unbound drug in plasma. 
It is considered as independent of PPB and 
determined solely by the molecular structure. 
However, it is calculated from two experimental 
variables which increases the risk of uncertainty of 
the modeled parameter. In general, the generated 
QSPkR meets the statistical criteria for well 
predictive models, however the GMFEP is at the 
upper allowed limit and accuracy is lower.  
Nevertheless the model reveals structural features 
important for CLu of basic drugs. 

The most significant determinant for CLu is 
logD7.4 which accounts for nearly 40% of the 
explained variance. The positive effect of logD7.4 is 
reasonable as lipophilicity is of paramount 
importance for many processes involved in drug 
elimination (uptake in the elimination organs, 
interaction with the binding site, etc.). For 78% of 
the 50 drugs with the lowest CLu values logD7.4 < 1, 
and almost half of them are eliminated primarily by 
renal excretion. On contrary, 74% of the 50 drugs 
with the highest CLu values have logD7.4 > 2 and all 
of them are subjected to extensive metabolism. The 
presence of non-substituted aromatic C-atoms in the 
molecule, encoded by SaaCH_acnt, also contributes 
positively to CLu. These atoms are potential sites of 
aromatic hydroxylation – one of the most abundant 
paths of oxidative metabolism. 84% of the high CLu 
drugs contain more than 5 aromatic CH- groups, 
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while this number is less than 25% for the low CLu 
compounds. The 10th order connectivity valence 
index xvch10 encodes the number and substitution 
patterns of a ring system with 10 edges (in the current 
database – fused hexagonal rings, or 7- and 5-
member rings). As previously shown, xvch10 affects 
positively the CL of CYP3A4 substrates. This could 
be explained with the requirement for large 
hydrophobic centers in the drug molecule able to fit 
in the enzyme active sites. ncirc accounts for the 
number of circles in the molecule. Most of the drugs 
with large number of circles (> 15) have high 

molecular weight, volume and surface. The negative 
impact of this descriptor could be due to steric 
hindrances for the uptake in the clearance organs. 

Twelve drugs (with residuals >1) were identified 
as outliers from the model: 7 – from the training set, 
and 5 – from the test set. They are presented in Table 
1 together with data for their CL, fu, CLu and logD7.4. 

The first eight drugs are highly under-predicted. 
Most of them have low to moderate CL, but 
extremely high PPB (exceeding 98%), which results 
in enormous and unrealistic high values of CLu.  

 
Table 1. Outliers from the QSPkR model for CLu of basic drugs.  
Drug CL, ml/min/kg fu CLu, ml/min/kg logD7.4 
   observed predicted  
Amiodarone 1.9 0.0002 9,550 228 6.94 
Amlodipine 7 0.005 1,413 49 2.64 
Amsalog 2.6 0.0011 2,344 71 1.33 
Esmolol 290 0.59 488 23 0.06 
Hydralazine 85 0.12 708 31 0.28 
Oxybutynin 5.1 0.0034 1,513 94 4.29 
Tegaserod 18 0.02 891 43 2.39 
Ziprasidone 5.1 0.0012 4,266 59 3.07 
Cetrorelix 1.2 0.14 8.5 226 0.69 
Chlorpheniramine 2.5 0.70 3.6 55 1.29 
Methadone 1.7 0.21 8 108 2.56 
Pyrimethamine 0.052 0.1 0.55 49 2.66 

 
Esmolol and hydralazine are the drugs with the 
highest CL values in the dataset. Their inconsistency 
with the model may be due to their low lipophilicity 
which is, according to Model 4, the most significant 
determinant of CLu. The other four drugs are over-
predicted. They are low CL drugs with moderate or 
low PPB. Most probably they contain any 
unfavorable structural features which are not 
captured by the model. Furthermore, cetrorelix is a 
drug with a very large molecular weight (1431 
g/mol) and low lipophilicity, and the lower observed 
value of CLu may be due to hindered transport in the 
clearing organs.   
 
CONCLUSIONS 
 
The study presents a number of significant, 
predictive and interpretable QSPkR models for the 
CL of basic drugs. Separate models were generated 
for the CL of drugs according to their primary 
elimination pathway – renal excretion, metabolism, 
or CYP3A4 mediated metabolism, as well as for the 
unbound clearance CLu depending on PPB. The 

models allow prediction of 52 – 80% of the drugs 
from external validation sets within the 2-fold error 
of experimental values. The descriptors in the 
models reveal clear structural features determining 
the CL of basic drugs. The major factor disfavoring 
drug CL (particularly for drugs eliminated primarily 
by metabolism) is PPB. The most important (but not 
the only) factor with a positive effect on drug CL is 
lipophilicity, expressed as logD7.4. The clearance of 
metabolically cleared drugs is further favored by the 
presence of OH-groups, aromatic rings, large 
hydrophobic centers, aliphatic groups, bonded to 
electro-negative atoms, and non-substituted aromatic 
C-atoms. The presence of Cl-atoms, large number of 
6-member aromatic rings or fused rings disfavors 
drug CL.  The CL of both renal and metabolism 
cleared drugs are negatively affected by ether O-
atoms, and urine excretion is favored by the presence 
of 3-valence N-atoms (-N= or >N-). These findings 
give insight on the main structural features 
governing the CL of basic drugs and could serve as 
a guide for lead optimization in the drug 
development process. 



J Pharm Pharm Sci (www.cspsCanada.org) 20, 135 - 147, 2017 
 

 
 

146 

REFERENCES 
 
1. Kola I, Landis J. Can the pharmaceutical industry 

reduce attrition rates? Nature Rev/Drug Discov, 
2004; 3:711-715. 

2. Van der Waterbeemd H, Gifford E. ADMET in silico 
modeling: towards prediction paradise? Nature, 2003; 
2:192-204. 

3. Yamashita F, Hashida M. In silico approaches for 
predicting ADME properties of drugs. Drug Metab 
Pharmacokin, 2004; 19(5):327-337. 

4. Mager DE. Quantitative structure – 
pharmacokinetic/pharmacodynamics relationships. 
Adv Drug Deliv, 2006; 58:1326-1356.  

5. Chihan KK, Paine SW, Waters NJ. Advancements in 
predictive in silico models for ADME. Cur Chem 
Biol, 2008; 2:215-228. 

6. Madden JC. Ch. 10. In silico approaches for 
predicting ADME properties, in Pyzyn T; 
Leszczynski J; Cronin MTD (eds), Recent advances 
in QSAR studies, Springer, Dordrecht, Heidelberg, 
London, New York,pp. 283-304, 2010. 

7. Toutain PL, Bousquet-Melou A. Plasma clearance. J 
Vet Pharmacol Therap, 2004; 27:415-425. 

8. Karalis V, Tsantali-Kakoulidou A, Macheras P. 
Quantitative structure – pharmacokinetic 
relationships for disposition parameters of 
cephalosporins. Eur J Pharm Sci 2003; 20:115-123. 

9. Ng C, Xiao Y, Putnam W, Lum B, Tropsha A. 
Quantitative structure – pharmacokinetic parameter 
relationships (QSPkR) analysis of antimicrobial 
agents in human using simulated k-nearest neighbor 
and partial least square analysis methods. J Pharm 
Sci, 2004; 93:2535-2544. 

10. Yap CW, Li ZR, Chen YZ. Quantitative structure – 
pharmacokinetic relationships for drug clearance by 
using statistical learning methods. J MNol Graph 
Model, 2006; 24:383-395.  

11. Berellini G, Waters NJ, Lombardo F. In silico 
prediction of total plasma clearance. J Chem Inf 
Model, 2012; 52:2069-2078.  

12. Lombardo F, Obach RS, Varma MV, Stringer R, 
Berellimmi G. Clearance mechanism assignment and 
total clearance prediction in human based upon in 
silico models. J Med Chem, 2014; 57:4392-4405. 

13. Turner JV, Maddalena DJ, Cutler DJ, Agatonovic – 
Kustrin S. Multiple pharmacokinetic parameter 
prediction for a series of cephalosporines. J Pharm 
Sci, 2003; 92:552-559. 

14. Yu MJ. Predicting total clearance in humans from 
chemical structure. J Chem Inf Model, 2010; 
50:1284-1295. 

15. Smith DA, Allerton C, Kalgutkar AS, Waterbeemd 
H, Walker DK. Distribution, in Smith DA; Allerton 
C; Kalgutkar AS; Waterbeemd H; Walker DK (eds), 
Pharmacokinetics and metabolism in drug design, 3rd 

ed, Weinheim, Wiley – VCH Verlag GmbH&Co. 
KgaA, pp. 61-79, 2012.  

16. Pelis RM, Wright SH. Renal transport of organic 
anions and cations. Compr Physiol, 2011; 1:1795-
1835. 

17. Kusama M, Toshimoto K, Maeda K, Hirai Y, Imai S, 
Chiba K, Akiyama Y, Sugiyama Y. In silico 
classification of major clearance pathways of drugs 
with their physicochemical properties. Drug Metab 
Dispos, 2010; 38(8):1362-1369. 

18. Zhivkova Z, Doytchinova I. Prediction of steady-state 
volume of distribution of acidic drugs by quantitative 
structure-pharmacokinetics relationships. J Pharm 
Sci, 2012; 101(3):1253-1266. 

19. Zhivkova Z, Doytchinova I. Quantitative structure – 
plasma protein binding relationships of acidic drugs. 
J Pharm Sci, 2012; 101(12):4627-4641. 

20. Zhivkova Z, Doytchinova I. Quantitative structure – 
clearance relationships of acidic drugs. Mol Pharmac, 
2013; 10:3758-3768. 

21. Zhivkova Z, Doytchinova I. In silico quantitative 
structure – pharmacokinetic relationship modeling on 
acidic drugs: half-life. Int J Ohrm Pharm Sci, 2014; 
6(9):283-289. 

22. Zhivkova Z, Doytchinova I. Quantitative structure – 
pharmacokinetic relationships analysis of basic 
drugs: Volume of distribution. J Pharm Pharm Sci, 
2015; 18(3):515-527.  

23. Obach RS, Lombardo F, Waters NJ. Trend analysis 
of a database of intravenous pharmacokinetic 
parameters in humans for 670 drug compounds. Drug 
Metab Dispos, 2008; 36(7):1385-1405. 

24. https://www.drugbank.ca/  
25. http://www.chemicalbook.com/  
26. http://www.nikkajiweb.jst.go.jp/  
27. Roy K, Kar S, Das RN, Statistical methods in 

QSAR/QSPR, in Roy K; Kar S; Das RN (eds), A 
primer on QSAR/QSPR modeling. Fundamental 
concepts, Springer Cham, Heidelberg, New York, 
Dordrechs, London, pp 37-59, 2015. 

28. Benet LZ, Broccateli F, Oprea TI. BDDCS applied to 
over 900 drugs. The APPS Journal, 2011; 12(4):511-
547. 

29. McNeil JJ, Louis WJ. Clinical pharmacokinetics of 
labetalol. Clin Pharmacokinet, 1984; 9(2):157-167. 

30. Glare PA, Walsh TD. Clinical pharmacokinetics of 
morphine. Ther Drug Monit, 1991; 13(1):1-23. 

31. Wahlstrom A, Persson K, Rane A. Metabolic 
interaction between morphine and naloxone in human 
liver. A common pathway of glucuronidation? Drug 
Metab Dispos, 1989; 17(2): 218-220.  

32. Hildebrandt R, Wagner B, Preiss – Nowzohour K, 
Gundert – Remy U. Fenoterol metabolism in man: 
sulphation versus glucuronidation. Xenobiotica, 
1994; 24(1):71-77. 

33. Van der Geest R, Kruger P, Gubbens-Stibbe JM, Van 
Laar T, Bodde HE, Danhof M. Assay of R-



J Pharm Pharm Sci (www.cspsCanada.org) 20, 135 - 147, 2017 
 

 
 

147 

apomorphine, S-apomorphine, apocodeine, 
isoapocodeine and their glucuronide and sulphate 
conjugates in plasma and urine of patients with 
Parkinson’s disease. J Chrom B: Biomed Sci Appl, 
1997; 702(1-2): 131-141. 

34. Gilfich HJ, Kremer G, Moerke W, Mutschler E, 
Voelger KD. Pharmacokinetics of triamterene after iv 
administration to man: determination of 
bioavailability. Eur J Clin Pharmacol, 1983; 25(2): 
237-241.  

35. Kerns EH; Di L, Drug-like properties: concepts, 
structure design and methods. 2nd ed., Elsevier, 
Amsterdam, Boston, Heidelberg, etc, pp. 161-197, 
2016. 

36. Reynolds RD, Goczynsky RJ, Quon CY. 
Pharmacology and pharmacokinetics of esmolol. J 
Clin Pharmacol, 1986; 26, Suppl. A: A3-A14. 

37. Pouhia R, Seppala T, Olkkola KT, Kaslo E. The 
pharmacokinetics and metabolism of oxycodone after 
intramuscular and oral administration in healthy 
subjects. Br J Clin Pharmacol, 1992; 33: 617-621. 

38. Takala A, Kaasalainen V, Seppala T, Kaslo E, 
Olkkola KT. Pharmacokinetic comparison of 
intravenous and intranasal administration of 
oxycodone. Acta Anaesthesiol Scand, 1997; 
41(20:309-312. 

39. Peng C-C, Shi W, Lutz JD, Kunze KL, Liu JO, 
Nelson WL, Isoherranen N. Stereoselective 
metabolism of itraconazole by CYP3A4: dioxolane 
ring scission of azole antifungals. Drug Metab 
Dispos, 2012; 40(3): 426-435.  

40. Zhu Y, Wang F, Li Q, Du, A, Tang, W, Chen, W. 
Amlodipine metabolism in human liver microsomes 
and roles of CYP3A4/5 in the dihydropyridine 

dehydrogenation. Drug Metab Dispos, 2014; 42(2): 
245-249.  

41. Ekins S, Bravi G, Wikel JH, Wrighton SA.  Three-
dimentional quantitative structure – activity 
relationship analysis of Cytochrome P-450 3A4 
substrates. J Pharmacol Exp Ther 1999, 29(1): 424-
433. 

42. Elkader A, Sproule B. Buprenirphine: clinical 
pharmacokinetics in the treatment of opioid 
dependence. Clin Pharmacokinet, 2005; 44(7):661-
680. 

43. Due SL, Sullivan HR, McMahon RE. Propoxyphene: 
pathways of metabolism in man and laboratory 
animals. Biomed Mass Spectom, 1976; 3(5):217-225.  

44. Kolbrich EA, Barnes AJ, Gorelick DA, Boyd SJ, 
Cone EJ, Hiesfis MA. Major and minor metabolites 
of cocaine in human plasma following controlled 
subcutaneous cocaine administration. J Anal Toxicol, 
2006; 30:501-510. 

45. Alfieri R, Galetti M, Tramonti S, Andreoli P, et al. 
Metabolism of the EGFR thyrosin kinase inhibitor 
gefitinib by cytochrome P450 1A1 enzyme in EGFR-
wild type non small cell lung cancer cell lines. Mol 
Cancer, 2011; 10:143, http://www.molecular 
cancer.com/10/1/143. 

46. Shi J, Montay G, Bhargava VO. Clinical 
pharmacokinetics of telithromycin, the first ketolide 
antibacterial. Clin Pharmacokinet, 2005; 44(9):915-
934.  

47. Golden RN; Dawkins K; Nichilas L, Trazodone and 
nefazodone, in Scatzberg AF; Nemeroff CB (eds.) 
The American psychiatric publishing textbook of 
psychopharmacology, 4th  ed., American Psychiatric 
Publ Inc, Aelingtun, VA, 2009. 

 
 


