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ABSTRACT: Purpose. Binding of drugs to plasma proteins is a common physiological occurrence which may 
have a profound effect on both pharmacokinetics and pharmacodynamics. The early prediction of plasma protein 
binding (PPB) of new drug candidates is an important step in drug development process. The present study is 
focused on the development of quantitative structure – pharmacokinetics relationship (QSPkR) for the negative 
logarithm of the free fraction of the drug in plasma (pfu) of basic drugs. Methods. A dataset includes 220 basic 
drugs, which chemical structures are encoded by 176 descriptors.  Genetic algorithm, stepwise regression and 
multiple linear regression are used for variable selection and model development. Predictive ability of the model 
is assessed by internal and external validation.  Results. A simple, significant, interpretable and predictive QSPkR 
model is constructed for pfu of basic drugs. It is able to predict 59% of the drugs from an external validation set 
within the 2-fold error of the experimental values with squared correlation coefficient of prediction 0.532, 
geometric mean fold error (GMFE) 1.94 and mean absolute error (MAE) 0.17. Conclusions. PPB of basic drugs 
is favored by the lipophilicity, the presence of aromatic C-atoms (either non-substituted, or involved in bridged 
aromatic systems) and molecular volume.  The fraction ionized as a base fB and the presence of quaternary C-
atoms contribute negatively to PPB. A short checklist of criteria for high PPB is defined, and an empirical rule for 
distinguishing between low, high and very high plasma protein binders is proposed based. This rule allows correct 
classification of 69% of the very high binders, 71% of the high binders and 91% of the low binders in plasma. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
__________________________________________________________________________________________ 
 
INTRODUCTION 
  
Most of the drugs bind reversibly to various plasma 
proteins: human serum albumin (HSA), alpha-1-acid 
glycoprotein (AGP), lipoproteins, etc. Plasma 
protein binding (PPB) is a major determinant of both 
pharmacodynamics (PD) and pharmacokinetics 
(PK). Only the free fraction of the drug is able to pass 
across biological membranes and to reach the target, 
therefore only the free fraction is pharmacologically 
active (1).  Highly bound drugs may require higher 
doses to achieve effective concentration in vivo. PPB 
may affect considerably key PK parameters such as 
the apparent volume of distribution (Vd), clearance 
(CL) and half-life (t1/2).  Vd is related to the unbound 
fraction of the drug in plasma fu and in tissues fu,t as 
follows:  

t,u

u
td f

f
VVV    (1) 

where V and Vt are the volumes of plasma and tissue 
fluids, respectively (2). The effect of PPB on Vd 
depends on the relative affinity of the drug for  
 

 
 
plasma proteins and tissue components. For drugs 
with high PPB Vd is close to V and is independent of 
PPB. For drugs with high affinity to tissues Vd 
increases almost linearly with the increase in fu. PPB 
may have either restrictive or permissive effect on 
drug CL depending on drug’s extraction ratio E, 
which accounts for the fraction of the drug, cleared 
by given organ. According to the “well-stirred 
model”, the hepatic clearance CLH is given by the 
equation: 

intuH

intuH
H CLfQ

CLfQ
CL


   (2) 

where QH is the liver blood flow, and CLint – the 
intrinsic clearance of the free drug (2). Drugs with 
high E (> 0.7) are eliminated with high CLH, close to 
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QH and independent of PPB. In contrast, drugs with 
low E (< 0.3) have low CLH, proportional to fu and 
restricted by PPB. The same applies to the renal 
excretion. Drugs that are excreted solely by 
glomerular filtration have low CL, restricted by PPB, 
while drugs, substrates of active secretion 
transporters, are eliminated with high CL, 
independent of PPB.  Consequently, PPB may affect 
considerably t1/2, as it is related with Vd and CL 
according to the equation: 
 

CL

V693.0
t d

2/1   (3) 

 
The complex effects of PPB on PK and PD are 

discussed in several reviews and books (3-9).  
 

The recent advances of combinatorial chemistry 
and high throughput technologies have led to 
growing number of structures with drug-like 
activities.  However, the majority of drug candidates 
fail to become marketable products due to poor PK 
properties (10). This inspired an intense research 
focused on the prediction of the PKs of drug 
candidates at very early stages of discovery process. 
In the last two decades in silico modeling became a 
powerful strategy for the modeling and prediction of 
human PK properties. It enables construction of 
quantitative structure – pharmacokinetics 
relationships (QSPkRs) based on molecular 
descriptors. QSPkRs allow prediction of PK 
properties at early stages of drug discovery, even on 
virtual compounds, thus reducing time and expense 
and preventing costly late-stage failures. We have 
previously reported QSPkR models for Vd (11), pfu 
(12), CL (13) and t1/2 (14) of acidic drugs, as well as 
for Vd of basic drugs (15). 

Given the importance of PPB for overall drug 
behavior, a good number of studies on in silico 
modeling and prediction of PPB have been recently 
published. A few studies concerned congeneric 
series of drugs – -lactam antibiotics (16, 17), COX-
2 inhibitors (18), etc. In general, QSPkRs derived on 
congeneric series have higher predictive power 
because a binding to common binding sites can be 
expected. However, these QSPkRs are often only 
valid within the studied series. A good number of 
studies were focused on the binding of diverse drugs 
to HSA – the most abundant plasma protein, 
accounting for 50 – 60% of all proteins in plasma. 
Most of them were performed on one and the same 
dataset compiled by Colmenarejo (19), comprising 

data for the chromatographic capacity factor on HSA 
immobilized column for 94 diverse drugs and drug 
like compounds. A wide array of statistical methods 
was used to derive the models: multiple linear 
regression (MLR) (19 – 23), artificial neural 
networks (ANN) (24), support vector machine 
(CVM) (22, 23), etc. A few QSPkR models have 
been proposed based on topological sub-structural 
molecular descriptors (25, 26). This approach is 
beneficial as it provides information about the 
contribution of different groups and fragments to 
drug binding to HSA. Several QSPR models are 
based on pharmacophoric similarity principle. It is 
expected that molecules with similar distribution of 
the pharmacophoric units (hydrogen bond 
donors/acceptors or hydrophobic regions) interact in 
similar manner with HSA and manifest comparable 
affinity (27 – 29). Only few studies considered PPB 
to all proteins in plasma and proposed QSPkRs for 
the %PPB (30 – 32).  

Most of the published QSPkRs regarding PPB 
are developed on diverse datasets, involving 
molecules of all charged types. There are several 
clues that acidic and basic drugs follow different PK 
patterns. With respect to PPB, it is believed that 
acidic drugs bind primarily, with high affinity and 
capacity to HSA, while basic drugs complex with 
high affinity to AGP. Bases are also able to bind with 
low affinity and high capacity to HSA (33), and a 
presence of a binding site for acidic ligands in AGP 
molecule is supposed (34).  The binding of drugs to 
various proteins is governed by different driving 
forces. Both hydrophobic and electrostatic forces are 
involved in the complexation of acidic drugs with 
HSA (35), while binding to AGP and lipoproteins is 
considered as primarily hydrophobic (28, 36, 37). 
Although in most cases lipophilicity was identified 
as the main factor favoring PPB, there are also 
conflicting findings. Kratochwil didn’t find sound 
correlation between lipophilicity and PPB in a 
dataset of diverse drugs and stated that bases and 
acids should be treated separately because the 
influence of lipophilicity on HSA binding is larger 
for acids than for bases (27). Yamazaki developed 
statistically significant non-linear relationship 
between %PPB and logD7.4 for a dataset of 90 basic 
and neutral drugs, but not for acidic drugs and for 
diverse dataset (28).  Obviously, both lipophilicity 
and ionization state are important for the mode of 
drug binding to various plasma proteins and 
contribute to the different behavior of acidic and 
basic drugs. Therefore, construction of separate 
QSPkRs with respect to the ionization type seems 
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reasonable. A QSPkR model for prediction of PPB 
of acidic drugs was published recently revealing that 
the lipophilicity, the presence of aromatic rings, 
cyano groups and H-bond donor-acceptor pairs 
increase PPB, whereas the presence of a quaternary 
C-atoms, four-member ring or iodine atoms are 
unfavorable for complexation (12). 

The present study is focused on the development 
of QSPkR models for PPB of basic drugs. Presented 
QSPkR models can be used for predicting PPB of 
potential drug candidates as well as for searching 
chemical libraries for drug candidates with desired 
PPB. Identification of the main molecular features 
affecting PPB allows structural modifications 
towards molecules with optimal PK properties. The 
most relevant descriptors are translated into a simple, 
easy to use checklist of criteria which enables 
distinguishing between low, high and very high 
plasma protein binders.  

 
METHODS 
 
Dataset 
The dataset used in the study comprises 220 basic 
drugs extracted from the database of Obach et al. 
(38) which resumes the major pharmacokinetic 
parameters of 669 drugs after iv administration in 
human.  A drug was considered as a base if the 
fraction ionized as a base (fB) at pH 7.4 exceeded 
0.03 and was considerably higher than the fraction 
ionized as an acid (fA).  The values of fA and fB were 
calculated according to the equations: 
 

)4.7pK(A a101

1
f 

     (4) 

)pK4.7(B a101

1
f 


 
(5) 

 
The pKa values of the drugs were calculated by 
ACD/LogD version 9.08 (Advanced Chemistry 
Development Inc., Ontario, Canada). In the case of 
more than one acidic or basic center in the molecule, 
the pKa of the strongest one was taken into account. 

The mol files of the drugs were retrieved from 
public databases – DrugBank (39) and Chemical 
Book (40). The fraction of unbound drug in plasma 
(fu) was used as a quantitative measure for plasma 
protein binding. It was transformed to pfu = - logfu in 
order to approach nearly normal distribution, and for 
better interpretability. Consequently, higher pfu 
values implied higher extent of PPB.  

The whole dataset was divided into training set 
and test set. To this end the drugs were ranked in an 
ascending order of their pfu values and one of every 
five drugs was allocated to a different subset of 44 
molecules. The fifth subset was set as external test 
set, while the other four subsets comprised the 
training set. The training set was employed for 
development and cross-validation of the QSPkR 
models, and the test set was used for external 
validation.  
 
Molecular descriptors and variable selection 
Total of 176 molecular descriptors were computed 
for description of the chemical structures of the drugs 
using ACD/LogD version 9.08 (Advanced 
Chemistry Development Inc., Ontario, Canada) and 
MDL QSAR version 2.2 (MDL Information Systems 
Inc., San Leandro, CA). Descriptors encoded various 
molecular features – constitutional (number of 
particular atoms and groups, rings, circles, hydrogen 
bond donors and acceptors), physicochemical (logP, 
logD7.4, PSA, dipole moment, polarizability, etc.), 
geometrical (volume, surface), electrotopological 
state and connectivity indices, etc. A three step 
variable selection procedure was applied to identify 
the most significant predictors of PPB. Initially, all 
descriptors with non-zero value for less than five 
molecules were excluded. The remaining 152 
descriptors were subjected to genetic algorithm 
(GA). Finally, selected descriptors entered a forward 
stepwise linear regression (SWR) with Fisher’s 
criteria thresholds F-to-enter 4.00 and F-to-remove 
3.99. Both GA and SWR algorithms were part of the 
MDL QSAR package. 
 
Development of QSPkR models 
A number of QPkR models for pfu were constructed 
by MLR on a training set of 176 molecules using 
different combinations of descriptor. Drugs which 
pfu values were predicted with residuals not obeying 
normal distribution law were considered as outliers. 
They were excluded from the training set and the 
models were rebuilt. The models were assessed by 
the explained variance r2, given by the equation: 

 

 










 n

1i

2
mean,obs,ui,obs,u

n

1i

2
i,calc,ui,obs,u

2

pfpf

pfpf
1r  (6) 

 
where pfu,obs,i and pfu,calc,i are the observed and 
calculated by the model values of pfu for the i-th  drug, 
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pfu,obs,mean – the mean pfu value for the training set. 
Fisher’s statistics of the models was also calculated.  
 
Validation of QSPkR models  
QSPkR models were validated by leave-one-out 
cross validation (LOO-CV) and leave-group-out 
cross-validation (LGO-CV) in the training set, as 
well as by external test set. In LOO-CV each drug 
was excluded successively from the training set, a 
model was derived on the remaining (n-1) drugs, and 
was used for prediction of pfu value of the i-th drug.  
In LGO-CV one subset of 44 molecules (25%) was 
excluded successively from the training set, a model 
was derived on the remaining three subsets, and was 
used for prediction of pfu values of excluded drugs. 
Finally, the predictive ability of the models was 
proved by the external test set, which had not been 
involved in any step of model development. The 
content of the training and test sets is summarized in 
Table 1. 

The model performance was assessed by cross-
validated coefficient for the training set (q2

LOO-CV), 
prediction coefficient for the test set (r2

pred), 
geometric mean fold error of prediction (GMFEP) 
and mean absolute error of prediction (MAEP), 
calculated as follows: 

 

 











 n

1i

2
mean,obs,ui,obs,u

n

1i

2
i,pred,ui,obs,u

2
CVLOO

pfpf
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1q  (7) 
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
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n

1i

2
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
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n

1010
MAEP

n

1i

pfpf i,pred,ui,obs,u


 
  (10) 

where pfu,obs,i and pfu,pred,i are the observed and 
calculated by the model values of pfu for the i-th  drug 
and pfu,obs,mean – the mean pfu value for the training set 
or in the test set. The accuracy of prediction was 
evaluated as a percentage of drugs in the test set, 
predicted with less than two-fold error of the 
observed value. The fold error was calculated as 
follows: 
 

i,pred,ui,obs,u pfpf
10FE

   (11) 

 

The QSPkR models were considered as well 
predicting if they met the accepted recently statistical 
criteria: q2

LOO-CV > 0.5 and r2
pred > 0.5 (41). 

 
RESULTS   

Dataset analysis 

The dataset of basic drugs used in the present study 
comprised 220 basic drugs with diverse chemical 
structure and therapeutic action. The molecular 
weight varied between 129 and 1431 (mean 366.55) 
g/mol. Three drugs – caspofungin, cetrorelix and 
leuprolide, had molecular weight higher than 1000 
g/mol. The values of the lipophilicity parameters 
also varied significantly. logP ranged between -5.05 
(caspofungin) and 8.89 (amiodarone), and the same 
drugs had extreme values of logD7.4. The fraction 
ionized as a base at pH 7.4 ranged between 0.03 and 
1.00 with 60% of the drugs almost completely 
ionized (fB > 0.95). The values of fu ranged between 
0.0002 (amiodarone) and 1 (gentamicin, metformin, 
netilmicin and tobramycin) with an average value of 
0.37.  According to the binding affinity, drugs in the 
dataset were classified as very high binders (fu  
0.01) – 13 drugs, high binders (0.01 < fu  0.1) – 55 
drugs, moderate binders (0.1 < fu < 0.5) – 70 drugs, 
and low binders (0.5 fu  1) – 82 drugs. 
 
 
 
 

 
Table 1. Training set, LGO-CV and external validation test sets. 
 Subsets included 
Training set for model development 1 + 2 + 3 + 4  
LGO-CV Training set A 
LGO-CV Training set B 
LGO-CV Training set C 
LGO-CV Training set D 

2+3+4 
1+3+4 
1+2+4 
1+2+3 

Test set: 1 
Test set: 2 
Test set: 3 
Test set: 4 

External validation test set 5  
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QSPkR models for pfu 
Numerous significant models were generated on the training set of 176 basic drugs using different combinations 
of descriptors. The best model in terms of statistics is given below: 
 

     
   
  1454.0acnt_SaaaC028.00765.0

acnt_SssssC04.0117.0acnt_SaaCH013.0053.0

Vol0004.00022.0f102.0428.0Plog021.0109.0pf Bu






 

n 170  r2 0.601  F 33.33  
 

 
Six drugs were identified as outliers:  amlodipine 

(fu 0.005), amsalog (fu 0.0011), caspofungin (fu 
0.035),  tamsulosin (fu 0.01), ziprasidone (fu 0.0012) 
and leuprolide (fu 0.54).  They were removed from 
the training set before building the final model.  

The QSPkR model involved six descriptors: log 
P – lipophilicity parameter, fB  – fraction ionized as 
a base at physiological pH 7.4, Volume – molecular 
volume, SaaCH_accnt – number of C-atoms of the 
type aaCH (aromatic non-substituted C-atoms), 
SaaaC_acnt – number of C-atoms of the type aaaC 
(aromatic C-atoms in bridged rings) and SssssC_acnt 
– number of C-atoms of the type ssssC (quaternary 
C-atoms). Descriptors with positive coefficients in 
QSPkR contribute positively to PPB, while 
descriptors with negative coefficients disfavor PPB.  

 
Validation of QSPkR model 
The final QSPkR model was validated by internal 
LOO-CV and LGO-CV on the training set as it was 
described in Methods. The statistics of LOO-CV 
(q2

LOO-CV 0.551, GMFEP 2.04 and MAEP 0.21) 
suggested reasonably goof predictive ability. For 
54% of the drugs predicted pfu value is within the 2-
fold error of the observed value, with higher 
accuracy for moderate and low binders (64%) as 
compared with high and very high binders (39%).  

The results from LGO-CV are presented in Table 
2. Four models were built on training sets A, B, C 
and D – each one containing 132 molecules, or 75% 
of the whole training set.  Each model was tested on 
the respective test set, involving the rest 44 
molecules, as shown in Table 1. Although built on 
training sets, which content differed by 25%, the 
generated QSPkRs are extraordinarily similar in 
terms of selected variables, statistics and outliers. 
This is a good prove for the robustness of the 
generated QSPkR model. The explained variance r2 

varied between 0.565 and 0.657 (mean 0.598).The 
values of q2

LOO-CV in the training sets (mean 0.528), 
r2

pred in the respective external test sets (mean 0.519) 
and GMFE of about 2 were indicative for fairly good 
predictive ability. 

The predictive ability of the proposed QSPkR 
model for pfu of basic drugs was evaluated using 
external test set of 44 molecules, not involved in any 
step of model development. Four drugs were 
identified as outliers: amiodarone (fu 0.0002), 
buprenorphine (fu 0.04), oxybutinine (fu 0.0004), and 
cetrorelix (fu 0.14). The values of r2

pred = 0.532, 
GMFEP = 1.94 and MAEP = 0.17 suggested good 
predictive ability of the model. It was able to predict 
the pfu values of 59% of the drugs in the two-fold 
error of the experimental value. The plot of predicted 
versus observed values of pfu for the external test set 
is presented in in Figure 1.  

 

 
 
Figure 1. Predicted vs. observed pfu values for the 
external test set. The four outliers are shown as blank 
circles. The straight lines represent the twofold error 
limits.  
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Table 2. QSPkR models developed in LGO_CV procedure. 
Training 
set 

Model r2 q2
LOO-

CV

r2
pred GMFEP Accu-racy, % 

A 

0357.0acnt_SssO100.0

acnt_SssssC*171.0acnt_SssCH089.0

Vol0012.0f428.0Plog059.0pf Bu





 

0.567 0.507 0.547 2.00 57 

Outliers: amlodipine, amsalog, caspofungin, leuprolide, mibefradil, tubocurarine, ziprasidone 
Test set: hydroxytaurosporine, clindamycin 

B 
334.0acnt_SaaaC116.0acnt_SaaCH032.0

Vol0028.0f399.0Plog132.0pf Bu


  0.602 0.544 0.395 2.02 57 

Outliers: amlodipine, amsalog, atomoxetine, caspofungin, hydroxychloroquine, reboxetin, telithromycin, ziprasidone 
Test set: bevantolol, irinotecan, itraconazole, leuprolide, solifenacin, tamsulosin 

C 
 

067.0acnt_SssO099.0

acnt_SssssC163.0acnt_SaaCH066.0

Vol0015.0f618.0Plog109.0pf Bu





 

0.657 0.606 0.520 2.01 57 

Outliers: amsalog, caspofungin, clindamycin, hydroxytaurosporine, leuprolide, mibefradil, tamsulosin  
Test set: amlodipine, drotaverine, tegaserod, telithromycin, ziprasidone 

D 

2816.0acnt_SaaaC097.0

acnt_SssssC135.0acnt_SssO108.0

acnt_SaaCH063.0f493.0Plog155.0pf Bu





 

0.565 0.454 0.615 2.04 59 

Outliers: amlodipine, clindamycin, drotaverine, tamsulosin, ziprasidone 
Test set: amsalog, caspofungin, sisomicin  

                                         Mean 0.598 0.528 0.519 2.02 58 

 
Criteria for pfu prediction of basic drugs 
The descriptors in the generated QSPkR model 
revealed the main molecular features responsible for 
PPB of basic drugs. Lipophilicity (expressed as 
logP), presence of aromatic non-substituted C- atoms 
(aaCH and aaaC) and molar volume affected 
positively pfu (hence, PPB), while basicity (encoded 
by fB) and presence of quaternary C-atom (ssssC) 
disfavored PPB. Analysis of the dataset enabled 
defining some criteria for high PPB, which were 
summarized in a short checklist (Table 3). Although 
in general fB affected negatively PPB, this descriptor 
was not involved in the checklist because drugs from 
all PPB affinity groups had relatively high value of 
fB > 0.95.     
 

Table 3. Checklist of criteria for PPB of basic drugs 
No Predictor Increased 

PPB 
Reduced 

PPB 
1 Log P  3   
2 Number of aaCH  6   
3 Presence of aaaC   
4 Molar volume > 300 cm3   
5 Presence of ssssC  

 
The group of low-PPB drugs involved 82 

molecules with very few fulfilled positive criteria. 
Most of them had low logP values – negative for 

15% of the drugs, and exceeding the threshold of 3 
for only 10%. The molar volume was less than 300 
cm3 for 75%; only 10% contained six or more aaC-
atoms, and 17% involved aaaC atoms. In contrast, 
29% possessed one or more ssssC atoms (a negative 
feature). The group of moderate binders encompased 
70 molecules with well-balanced positive and 
negative features. For 52% logP > 3, 44% contained 
six or more aaCH atoms, 27% involved aaaC atoms 
and 24% had molecular volume larger than 300 cm3. 
Unfavorable ssssC-atoms presented in 35% of drugs.  
The high-binders group involved 55 molecules with 
predominantly positive features. logP > 3 for 64% of 
the drugs; also 64% involved six or more aaCH-
atoms, and 25 % contained aaaC-atoms. The molar 
volume exceeded 300 cm3 for 56% of the molecules. 
Only 25% possessed unfavorable ssssC-atom. 
Thirteen drugs were classified as very high binders. 
92% had molar volume exceeding the threshold of 
300 cm3. For 85% log P > 3, and also 85% contained 
six or more aaCH groups. 38 % of the drugs 
contained aaaC-atoms, and only 31% – unfavorable 
ssssC-atoms. 

The difference between the number of positive 
and the number of negative criteria for high PPB can 
be used for distinguishing between drugs with 
different extent of PPB. Based to the analysis of the 
drugs in the dataset, a simple empiric rule was 
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proposed. For very high binders the difference 
between the number of positive and negative criteria 
should be at least 3, and for high binders – at least 2. 
In the other extreme, a difference between positive 
and negative criteria  1 was considered as an 
indication for low PPB. The distribution of the drugs 
according to the difference between the number of 
positive and negative criteria is shown in Figure 2. 
Applying the empiric rule, 69% of the very high 
binders, 71% of the high binders and 91% of the low 
binders were classified correctly. Seven of the low-
binding drugs (8.5%) were incorrectly identified as 
high-binders (among them – the outlier leuprolide). 
One of the very high binders and 16 (28%) of the 
high-binders were incorrectly classified as low-
binders (including the outliers buprenorphine, 
caspofungin and oxybutinine).  

 

 
Figure 2. Distribution of drugs with different extent of 
PPB (given in % on Y-axis) according to the difference 
between the number of positive and negative criteria (X-
axis).  
 
DISCUSSION 
 
The present study is focused on the development of 
QSPkR for PPB of basic drugs. The extent of PPB is 
presented as pfu – the negative logarithm of the free 
drug fraction in plasma fu. GA, SWR and MLR are 
used for model generation on a training set of 176 
molecules. The model is validated by LOO-CV and 
LGO-CV on the training set, and its predictability is 
evaluated with an external test set of 44 drugs, not 
involved in any step of model development and 
validation. The statistics reveals satisfactory 
performance of the model within the accepted limits: 
q2

LOO-CV 0.551, mean LGO-CV r2
pred 0.519, external 

test set r2
pred 0.532, GMFEP 1.94, MAEP 0.17 and 

accuracy at two-fold level 59%. 
Most of the published QSPkRs on PPB refer to 

the binding of drugs exclusively to HSA. There are 
very few studies concerning drug binding to all 

proteins in plasma, generally expressed as % PPB.  
Votano et al. (30) explored the largest so far dataset 
of 1008 molecules. Four modeling techniques were 
used and highly predictive models with external test 
set r2

pred ranging between 0.59 (MLR, kNN and 
SVM) and 0.70 (ANN) were developed. However, 
the large number of descriptors involved in the 
models (29 – 61) confounded model interpretability. 
High lipophilicity was identified as the major 
determinant of PPB. In addition, the importance of 
the ionization state was suggested as descriptors, 
encoding acidic function, contributed positively to 
PPB, while these, signifying bases, had a negative 
effect.  A highly predictive hologram QSPkR was 
derived on a dataset of 312 molecules with r2

pred 0.86, 
however no information was gained for the 
molecular features governing PPB (31). Recently, 
794 compounds from Votano’s dataset were 
modeled by linear and non-linear techniques (32). 
The models with r2

pred between 0.491 and 0.646 
confirmed the positive effect of lipophilicity, and the 
decisive role of the ionization state. Therefore, 
development of separate QSPkRs for drugs 
according their ionization type seemed reasonable 
for gaining more knowledge on the major 
determinants of PPB of acidic and basic drugs. 

In general QSPkR modeling is based on the 
assumption that all molecules in the dataset have one 
and the same target and similar mechanism of action. 
This is not valid for our study focused on PPB to all 
proteins in plasma, without explicit consideration of 
any particular protein. The modeling is complicated 
by the possibility of drug binding to various plasma 
proteins, to various binding sites – selective or non-
selective, reversible or irreversibly, as well as by the 
occurrence of allosteric interaction and competition 
with endogenous substances.  It is believed that basic 
drugs bind preferably to AGP. However, given the 
high concentration of HSA in plasma, it may 
contribute considerably to the overall binding of 
basic drugs (33). Also, many lipophilic drugs bind 
nonspecifically to lipoproteins (42).  

The structure of HSA is well characterized, and 
the architecture of the binding sites for acidic drugs 
is cleared (35, 43 – 45). There are at least six binding 
sites primarily inherent for fatty acids, two of which 
(denoted as Site 1 and Site 2) are specified for 
binding of acidic drugs. These sites are topologically 
similar consisting of by predominantly hydrophobic 
cavities with distinct polar regions. Hydrophobic and 
electrostatic interactions are considered as 
responsible for the binding of acidic drugs. 
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In contrast, the knowledge on the binding sites 
and mechanisms for basic drugs is rather insufficient. 
The only crystallographic analysis of HSA 
complexed with a basic drug, lidocaine, revealed a 
superficially placed binding site in subdomain IB, 
different than fatty acids and acidic drugs binding 
sites. Lidocaine binding is due mainly to cation- 
interactions between the phenyl ring and Arg 114, 
stabilized by electrostatic interactions (46). The 
presence of a large number of positively charged 
residuals in the binding site and the lack of 
hydrophobic interactions is considered as the main 
reason for the low binding affinity of lidocaine.  

Also, little is known about the binding modes of 
drugs to AGP. Human AGP exists as a mixture of 
two genetic variants, F1*S and A, which bind drugs 
with different selectivity (47). The two variants have 
similar, but not identical topology, which may be a 
factor for the different substrate selectivity. The 
F1*S variant possesses a deep and wide branched 
drug binding pocket consisting of three lobes. The 
central lobe I is the largest appears to serve as the 
main hydrophobic drugs binding chamber. Lobes II 
and III are smaller and negatively charged. Docking 
studies have shown that the neutral diazepam binds 
to lobe I, while progesterone – to lobe II. (48). The 
A variant has the same overall folding as the F1*S 
variant, but differs in the amino acid sequence and 
binding site topology. The binding region of A 
variant is narrower, and involves only lobe I and lobe 
II, but not lobe III (49). The crystal structures of 
complexes of a mutant of A variant (with 
undistinguishable binding affinity from the native 
type), and three AGP substrates give inside into the 
binding mode to variant A (49). Disopyramide 
(DSP) and amitriptyline (AMT), known to be highly 
selective to variant A, bind in essentially the same 
manner to the central cavity (lobe I). Both molecules 
contain two aromatic rings, which are in direct 
contact with Phe49 and Phe112, resulting in CH- 
interactions (edge to face). In addition, van der 
Waals interactions with Glu64 and Arg90 (DSP) and 
Leu62 and Arg90 (AMT) are observed. The complex 
of DSP is further stabilized by hydrogen bonds and 
van der Waals interactions of the alkyl chain of DSP 
while the alkyl chain of AMT makes van der Waals 
contacts with Tyr37 and Val41. Quite different 
binding mode shows chlorpromazine (CPZ), known 
to be a nonselective binder to AGP. Its bridged 
aromatic ring system is involved in - stacking 
interactions with Phe112, and in CH- interactions 
with Phe49 and Ala99. Further van der Waals 
contacts are made with Phe51, Val88, and Arg90. 

Obviously, Phe49 and Phe112 are important 
residuals for the selective binding of drugs to the A 
variant and the presence of Leu112 in F1*S instead 
of Phe appear to contribute to the reduced binding 
affinity of DSP, AMT and other A-variant selective 
drugs with two aromatic rings and similar structure. 

The QSPkR model derived in the present study 
is well interpretable with respect to the structure of 
plasma proteins and their binding sites. PPB is 
favored by lipophilicity, the presence of aromatic C-
atoms – both non-substituted and involved in bridged 
aromatic systems, and molecular volume. Negative 
impact on PPB the fraction ionized as a base fB and 
the presence of quaternary C-atoms. Undoubtedly, 
lipophilicity is important factor favoring PPB as it is 
a prerequisite to both selective hydrophobic 
interactions at the binding sites and non-selective 
“dissolution” in various plasma proteins. The 
requirement for six or more aromatic C-atoms means 
a presence of at least two aromatic rings. The 
presence of aromatic rings – both separated and 
bridged, is a prerequisite for the occurrence of 
specific CH-, - stacking and van der Waals 
interactions in the binding sites on AGP variants. 
The large molecular volume ensures a tight fit of the 
molecule in the binding cavity and closer contact to 
the suitable hydrophobic amino acid residuals. The 
negative effect of basicity (encoded by fB) on PPB is 
well known. It could be related to the higher 
tendency of cationic drugs to cross membranes and 
to distribute into tissues rather than to reside in 
plasma (50). However, considering basic drugs 
separately, the negative effect of fB is not absolute as 
drugs both with low and very high PPB have fB > 
0.95. The negative effect of the presence of 
quaternary C-atoms may be due to steric hindrances. 

The clear physical meaning of the descriptors in 
the QSPkR model for PPB of basic drugs enabled 
defining a number of criteria for high PPB. LogP 3, 
number of aromatic non-substituted C-atoms  6, 
presence of aromatic bridged ring and molecular 
volume > 300 L/mol were assigned as positive 
criteria, and the presence of a quaternary C-atoms – 
as a negative criterion. The difference between the 
number of positive and the number of negative 
criteria allowed distinguishing between drugs with 
different binding affinity. Applying these criteria, 
69% of the very high binders, 71% of the high 
binders and 91% of the low binders were correctly 
classified.  

Ten drugs (six from the training set and four 
from the test set) were identified as outliers from the 
model. PPB was highly underpredicted for the very 
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high binders amiodarone, amlodipine, amsalog, 
caspofungin, oxybutinine, tamsulosin and 
ziprasidone (fu in the range 0.0002 – 0.01, or 99 – 
99.8% PPB) and for buprenorphine (fu 0.04, 96% 
PPB). It is generally difficult to estimate correctly 
the %PPB of the high binders. These drugs usually 
have very low free plasma levels and require high 
sensitive assay techniques. In addition, PPB is an 
equilibrium process, and the free fraction depends 
crucially on the conditions during the analysis. The 
deviation of these highly bound drugs may be due to 
errors in the quantification of the unbound fraction. 
Alternatively, these drugs may have any structural 
features favoring PPB, which are not captured in the 
generated QSPR model.   Buprenorphine seems to be 
a structural outlier from the model as it possesses 
only one positive feature (logP), and 5 unfavorable 
quaternery C-atoms.  For two drugs – leuprolide (fu 
0.54, 46% PPB) and cetrorelix (fu 0.14, 86% PPB) 
PPB was overpredicted. They also could be 
considered as structural outliers with three positive 
structural features and no one negative. In addition, 
the high molecular weight exceeding 1200 g/mol and 
the low lipophilicity could be restrictive factors for 
PPB. 

 
CONCLUSIONS 
 
The study presents a significant, predictive and 
interpretable QSPkR model for PPB of basic drugs. 
It allows prediction of 59% of the drugs from 
external validation sets within the 2-fold error of 
experimental values. The descriptors in the models 
reveal clear structural features determining PPB of 
basic drugs. Lipophilicity, the presence of aromatic 
C-atoms – both non-substituted and involved in 
bridged aromatic systems, and molecular volume 
contribute positively to PPB.  The fraction ionized as 
base fB and the presence of quaternary C-atoms 
affect negatively PPB. A short checklist of criteria 
for high PPB is defined, and an empirical rule for 
distinguishing between low, high and very high 
plasma protein binders is proposed based on the 
difference between the number of positive and 
negative criteria.  
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