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Aberrant expression of sialic acids or altered linkage 
types is closely associated with malignant phenotype 
and metastatic potential, and can have prognostic sig-
nificance in human cancer. The present study was un-
dertaken to evaluate whether expression of sialylated 
derivatives on melanoma cell surface is associated with 
tumour progression. Four cell lines (WM1552C, WM115, 
IGR-39 and WM266-4) were used in the study. Cell sur-
face expression of sialic acids was evaluated by flow 
cytometry with the use of Maackia amurensis and Sam-
bucus nigra lectins. Moreover, adhesion and migration 
potential of melanoma cells and involvement of sialic 
acids in these processes were analysed. We have dem-
onstrated that WM266-4 cells have a significantly higher 
level of α2,3-linked sialic acid residues than other cells, 
whereas IGR-39 cells had lower expression of α2,6-
linked sialic acids. The adhesion efficiencies of WM1552C 
and WM115 cells were significantly lower than that of  
IGR-39 and WM266-4 cells. In contrast, WM266-4 cells 
repaired scratch wounds at least twice as fast as other 
cells. Melanoma cell adhesion to fibronectin in the pres-
ence of Sambucus nigra agglutinin (SNA) was reduced 
only in IGR-39 and WM266-4 cells, whereas the impact of 
Maackia amurensis agglutinin (MAA) on this process was 
much more important. Migration efficiency of melanoma 
cells was reduced more strongly in the presence of MAA 
than SNA. In conclusion, our results show that melano-
ma progression is associated with the increased expres-
sion of α2,3-linked sialic acids on the cell surface and 
these residues could promote melanoma cell interaction 
with fibronectin.
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INTRODUCTION

The incidence of cutaneous malignant melanoma 
is increasing more rapidly than that of any other tu-
mours. Additionally, due to high capability of invasion, 
rapid metastasis and resistance to conventional thera-
pies, melanoma is one of the most lethal malignancies 
among human cancers (Gallagher et al., 2005). Based on 
clinical and histopathological features, five distinct steps 
have been proposed for the progression of human cu-
taneous malignant melanoma: i) common nevi with 
structurally normal melanocytes; ii) dysplastic nevi with 
atypia (precursors of melanoma); iii) radial growth phase 
(RGP) – primary melanoma in which cells have not yet 
metastasized; iv) advance vertical growth phase (VGP) – 

primary melanoma in which cells have invaded the der-
mis and have the potential to metastasize; v) metastatic 
melanoma (Li & Herlyn, 2000). The transition from the 
RGP to VGP is a critical step during tumour progres-
sion. Melanoma cells in VGP have the competence to 
invade the dermis and subsequently metastasize, while in 
RGP they do not (Sturm et al., 2002). During acquisition 
of the invasive phenotype altered cell-cell and cell-ECM 
interactions are critical factors (Ruiter & Muijen, 1998). 
Most of the cancer cell surface adhesion proteins, which 
are the principal regulators of adhesion and migration, 
are glycosylated, and modulation of adhesion receptor 
N-oligosaccharides have been found to significantly alter 
their biological functions including cell spreading, migra-
tion as well as signal transduction (Couldrey & Green, 
2000; Nadanaka et al., 2001; Guo et al., 2002; Pocheć et al., 
2003; Bellis, 2004; Gu & Taniguchi, 2008; Przybyło et al., 
2008; Pocheć et al., 2013; Janik et al., 2014; Pocheć et al., 
2015).

The most frequently observed alterations during tum-
origenesis include extensive expression of β1-6 branched 
complex type N-glycans (Guo et al., 2000; Ochwat et al., 
2004; Zhang et al., 2004; Przybyło et al., 2007; Lityńska et 
al., 2008; Zhao et al., 2008) and the presence of poly-N-
acetyllactosamine residues which can provide additional 
antennae for the terminal capping by sialic acid (SA), re-
sulting in the increase in tumour cell surface glycopro-
teins sialylation (Siddiqui et al., 2005; Laidler et al., 2006). 
In vertebrates, SA are typically linked to the inner sugar 
residue galactose (Gal) via α2,6-or α2,3-linkage, or linked 
to galactosamine, N-acetylgalactosamine (GalNAC) or  
N-acetylglucosamine (GlcNAc) via α2,6-linkage. Moreo-
ver, SA can also be linked to the C8 position of another 
SA residue to form a linear α2,8-homopolymer called 
polysialic acid (Wang, 2005a). To date, more than 20 
different sialyltransferases, have been identified to be 
involved in biosynthesis of sialylated glycoproteins and 
glycolipids. They are Golgi membrane-bound glycosyl-
transferases which differ in their substrate specificity, 
tissue and cell distribution, induction profile and bio-
chemical parameters (Harduin-Lepers et al., 2001; Varki 
& Schauer 2009). The expression of the sialylated glyco-
conjugates at the cell surface is regulated mainly at the 
transcription level and a strong positive correlation be-
tween mRNA expression levels and sialyltransferases ac-
tivity levels has been shown (Kitagawa & Paulson, 1994; 
Harduin-Lepers et al., 2001; Taniguchi et al., 2003). Ad-
ditionally, expression of each sialyltransferase is strictly 
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regulated in a development and cell-type specific manner 
(Kitagawa & Paulson, 1994; Harduin-Lepers et al., 2001). 
The level of sialyltransferase expression is also dramati-
cally changed during cancer transformation (Videira et 
al., 2009; Dall’Olio et al., 2000; Dall’Olio et al., 2004; Xu 
et al., 2003), and this is correlated with overexpression 
of tumour-associated sialylated structures, such as sialo-
gangliosides fucosyl-GM1a, GM2, GM3, GD2 and GD3, 
sialyl-Tn, sialyl-T, sialyl-Lea and sialyl-Lex, α2,8-linked 
polysialic acids and mucins at the surface of cancer cells 
(Wang, 2005a). The overexpression of these tumour-
associated carbohydrate antigens has been reported for 
several epithelial cancers i.e. gastric (Pinho et al., 2007), 
pancreatic (Peracaula et al., 2005), colorectal (Szajda et 
al., 2008), ovarian (Wang et al., 2005b), bladder (Ohy-
ama, 2008) and breast (Nakagoe et al., 2002; Julien et al., 
2006).

The biosynthesis of sialylated molecules may act as a 
coding system, since they are able to interact with high 
specificity and selectivity with carbohydrate-binding pro-
teins including lectins, antibodies, receptors and enzymes 
(Thomas, 1996). These molecules are also involved in 
cell communication such as cell-cell and cell-matrix in-
teractions and molecular recognition during tumour 
development and progression (Varki & Varki, 2007). 
Tumour cells tend to produce increased levels of glyco-
conjugates containing sialic acid that imparts a negative 
charge to the glycan chain (Schauer, 2009; Zhang et al., 
2009), increase resistance to apoptosis (Büll et al., 2014a) 
and modulate the function of different immune cell sub-
sets (Büll et al., 2014b) and the positive correlation be-
tween the cell surface sialylation and metastatic ability of 
various cell lines has been demonstrated (Dimitroff et al., 
1999; Seales et al., 2005; Bartik et al., 2008; Christie et 
al., 2008, Wang et al., 2009). Enhanced sialic acid expres-
sion may alter tumour cell-cell interactions, promoting 
cell detachment from a site of origin. Because sialylated 
glycoconjugates regulate adhesion and promote motil-
ity, they may also be important for the colonization and 
metastatic potential of cancer cells (Julien et al., 2006), 
which correlates with a poor prognosis for patients (Pa-
tani et al., 2008; Shah et al., 2008).

Although a number of studies have shown altered sia-
lylation profiles in various cancers, there is a dearth of 
reports on evaluation of sialic acid α2,6- and α2,3-linkage 
role in human melanoma. Therefore, the purpose of 
the present study was to characterize sialylation pattern 
of four cell lines representing different steps of mela-
noma progression (i.e. WM1552C, WM115, IGR-39 and 
WM266-4 cells), and evaluate the impact of their sialyla-
tion status on these melanoma cell behaviour. Cell adhe-
sion to fibronectin (FN) and cell migration (wound heal-
ing) on FN were selected as the studied cell behaviour 
parameters.

MATERIAL AND METHODS

Materials. Mouse monoclonal anti-α5 integrin anti-
body (clone SAM-1), mouse monoclonal anti-β1 integ-
rin antibody (clone B3B11), rabbit polyclonal antiserum 
against α5 integrin subunits and Immobilon P membrane, 
were purchased from MerckMillipore (Darmstadt, Ger-
many). Mouse IgG1 – negative control and rabbit poly-
clonal anti-mouse F(ab’)2 FITC-conjugated antibody 
were from DAKO (Denmark). Bovine serum albumin 
(BSA), trypsin/EDTA solution, penicillin/streptomycin 
solution, Streptavidin-agarose, Cell Dissociation Solution, 
goat anti-mouse AP-conjugated antibody, ExtrAvidin-

FITC, Maackia amurensis lectin (MAA), high molecular 
mass standards and protease inhibitor cocktail were ob-
tained from Sigma Aldrich Chemical Co. (St. Louis, MO, 
USA). Phosphate buffered saline (PBS), RPMI 1640 me-
dium with Glutamax-I (RPMIG) and foetal calf serum 
were from Life Technologies GibcoBRLTM (Paisley, UK). 
Biotinylated Maackia amurensis lectin (MAL-II), biotinylat-
ed Sambucus nigra lectin (SNA) as well as agarose bound 
SNA and agarose bound Streptavidine were from Vector 
Laboratories U.K. All remaining chemicals were of ana-
lytical grade, commercially available.

Cell lines and culture conditions. Four human 
melanoma cell lines derived from human melanoma le-
sion were used in this study: primary non-metastatic 
WM1552C cell line, which has a RGP-like phenotype 
(Hsu et al., 1998); non-metastatic/locally invading with 
metastatic potential WM115 cell line, which has a RGP/
VGP-like phenotype (Westermark et al., 1986); locally in-
vading with metastatic potential IGR-39 cell line, which 
has a VGP-like phenotype (Aubert et al., 1980); and 
WM266-4 cell line, which is a metastatic cell line ob-
tained from lymph node metastasis (Westermark et al., 
1986). These cells were maintained as monolayer cultures 
in RPMI 1640 medium with Glutamax-I supplemented 
with 10% foetal calf serum and antibiotics (100 units/
ml of penicillin and 100 μg/ml of streptomycin) in 5% 
CO2-enriched atmosphere at 37°C in a humidified in-
cubator. After reaching confluence, the cells were har-
vested for experiments adequately. All cell cultures were 
assayed for mycoplasma with standard tests.

Flow cytometric analysis. Expression of human in-
tegrin subunits was assessed by flow cytometry as previ-
ously described (Laidler et al., 2000). Briefly, cells (1×105) 
were incubated for 45 min on ice with antibodies against 
α5 integrin (50 μl/ml), or normal mouse IgG1 (50 μl/ml) 
as a negative control. Next, cells were washed in PBS 
and incubated with 50 μl/ml fluorescein isothiocyanate 
(FITC)-conjugated anti-mouse IgG (Fab’)2 fragments 
for 45 min on ice. SNA- and MAA-binding to cells was 
performed according to the method of (Przybyło et al., 
2008) with minor modification. Briefly, cells (1×105) were 
incubated with biotinylated SNA, an α2,6-linked sialic ac-
ids detecting lectin (25 μg/ml) or biotinylated MAL-II, 
an α2,3-linked sialic acids detecting lectin (25 μg/ml) in 
PBS containing 2% BSA, for 45 min on ice, followed 
by incubation with FITC-extravidin (50 μl/ml) under the 
same conditions. The assessment for fluorescence was 
done in a FACSCalibur flow cytometer (BD Biosciences, 
San Diego, CA) and a total of 104 cells were analysed for 
each immunofluorescence profile.

Expression of sialyltransferases. RNA isolation, 
cDNA synthesis and PCR amplification of the sam-
ples was performed as previously described (Laidler et 
al., 2006) with minor modifications. Forward (F) and 
reverse (R) oligonucleotide primer sequences for sia-
lyltransferase genes (Tanaka et al., 2000; Seales et al., 
2003), lengths of the amplification products and an-
nealing temperature are given in Table 1. The reaction 
products, obtained after 30 cycles (1 min denaturing 
in 94°C, 1 min of annealing and 2 min of extension), 
were electrophoresed on 2% agarose containing ethid-
ium bromide. The amplification of the GAPDH mRNA 
was used as a housekeeping gene. Glycosyltransferase 
mRNA analysis of each sample was determined in at 
least two independent experiments.

Cell adhesion assay. Cell adhesion assays were 
performed as previously described (Laidler et al., 2006) 
on a 96-well plate pre-coated with human FN (BD 
Biosciences). Before the assay cells were starved in 
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serum-free medium for 60 min, detached with Cell 
Dissociation Solution (Sigma Aldrich), washed and 
re-suspended with serum-free medium. The plate was 
washed with PBS and non-specific binding sites were 
blocked by incubation with 1% BSA for 1 h at 37°C. 
Cells (5×104) were added to the pre-treated wells and 
left for 1 h in CO2 incubator. Afterwards, wells were 
washed three times with PBS and adherent cells were 
fixed with 96% ethanol followed by triple wash with 
PBS and staining with 0.1% crystal violet water so-
lution. Finally, cells were washed with tap water, air-
dried and treated with 0.5% Triton X-100 overnight. 
Absorbance was measured at 600 nm. Non-specific 
cell adhesion was measured on BSA-coated wells and 
the estimation of the reference value for 100% at-
tachment was performed on cells in wells coated with 
poly-L-lysine (0.5 mg/ml). In some experiment cells 
were pre-incubated for 1 h with SNA or MAA (both 
at a concentration of 25 μg/ml). The applied dose of 
SNA or MAA had no effect on the viability or growth 
rate of the tested cells as demonstrated by trypan blue 
exclusion and 3[4,5-dimethyldiazol-2-yl]-2,5-diphe-
nyltetrazolium bromide (MTT) tests (data not shown). 
Changes in adhesion rate after lectin-treatment were 
calculated by comparing adhesion of untreated (set to 
100% adhesion) and treated cells.

Wound healing assay. Wound healing assay was 
made according to (Przybyło et al., 2008) in a 6-well plate 
pre-coated with human FN (BD). In some experiments, 
wound healing in culture medium containing 25 μg/ml 
of SNA or 25 μg/ml of MAA was examined. Migration 
of cells into wounded area was observed in an inverted 
microscope and photographed. The average extent of 
wound closure was quantified by multiple measurements 
of the width of the wound space for each of these cases. 
Values are expressed as mean ± standard deviation of 
three separate experiments.

Cell lysate preparation. After reaching confluence 
cells were washed, harvested and pelleted by centrifuga-
tion. Then cells were homogenised on ice by sonifica-
tion (Bandelin Electronic) in 50 mM Tris/HCl, pH 7.5, 
containing 150 mM NaCl, 1 mM MgCl2, 1 mM MnCl2 
and proteases inhibitor cocktail, followed by extraction 
for 1 h on ice in the same buffer containing additionally 
1% Triton X-100 and 0.3% protamine sulphate. Finally 
cell extracts were cleared by centrifugation at 18 000 × g 
for 1 h. Protein concentration in the supernatants was 
determined (Peterson, 1977).

Precipitation of proteins bearing sialylated N-oli-
gosaccharides. The precipitation was conducted as de-
scribed previously by Pocheć and coworkers (2015) with 
minor modification. Three hundred micrograms of total 
protein from each cell lysate were incubated overnight 

at 4°C on an orbital rotator with SNA-agarose (16 µl) 
or biotinylated MAA (3.4 µl) in precipitation buffer (10 
mM HEPES, 0.15 M NaCl, pH 7.5). Additionally, 34 μl 
of Streptavidin-agarose was added into a sample contain-
ing MAA 2 h before the end of incubation. Afterwards, 
SNA-glycoprotein or MAA-glycoprotein complexes were 
washed and the glycoproteins were released by boiling at 
100°C for 10 min in LSB in the absence of reductant, 
and supernatants were collected.

SDS-PAGE and immunodetection of integrin 
subunits. Cell lysates and the samples after precipitation 
with lectins were separated by 8% SDS-PAGE under 
non-reducing conditions transferred onto PVDF mem-
branes and tested with the use of specific antibodies 
against α5 and β1 integrin subunits (1:2000 working dilu-
tion for α5 subunit, and 1:2000 working dilution for β1 
subunit). The secondary, AP-conjugated sheep anti-rabbit 
IgG (for α5 integrin subunits, 1:250 working dilution,) 
or goat anti-mouse IgG (for β1 integrin subunit, 1:500 
working dilution) were used. Colorimetric visualisation 
of immunoreactive proteins was achieved with the use 
BCIP and NBT substrates for AP (Roche). 

Statistics. The significance of the differences between 
mean values was computed using Duncan’s multiple 
range test and P-values lower than 0.05 were considered 
significant.

RESULTS

Increased α2,3-sialylation is associated with more 
aggressive phenotype in melanoma

In the first part of this study we used flow cytometry to 
compare WM1552C, WM115, IGR-39 and WM266-4 cells 
in terms of their cell surface sialylation applying specific 
lectins: Maackia amurensis (MAA) and Sambucus nigra (SNA) 
that detect sialic acids differently linked to Gal/GalNAc 
residue i.e. by α2,3- or α2,6-linkage, respectively. Although 
the examined cells had very similar, high expression of 
MAA-positive cells (Fig. 1A, B), in WM2664-4 cells the 
relative fluorescence intensity of MAA staining was at 
least three times greater than that of other cell lines (Fig. 
1C). In turn, staining of the cells with SNA revealed that 
three cell lines studied (WM1552C, WM115 and WM266-
4) expressed significantly higher amount of α2,6-linked si-
alic acids on the cell surface than IGR-39 cells, as reflect-
ed in the percentage of positive cells (Fig. 1A, B) and the 
relative fluorescence intensity of SNA staining (Fig. 1C). 
Nevertheless, the reduced SNA-binding in IGR-39 cells 
did not result from differences in sialyltransferase expres-
sion at the mRNA level as revealed by semi-quantitative  
RT-PCR (Fig. 2).

Table 1. Forward (F) and reverse (R) oligonucleotide primer sequences for sialyltransferase genes, their annealing temperature and 
length of their products.

Enzyme (acronym) Oligonucleotide primers Annealing temperature  
[°C]

Product length 
[bp]

Alpha-2,3-silalyltransferase 3
(ST3Gal-III, SIAT3)

F:5’-AACAAGTCTCTGGGGTCACG-3’
R:5’-TGAGGATTCGAATCTCAGGG-3’ 59.8 307

Alpha-2,3-silalyltransferase 4
(ST3Gal-IV, SIAT4C)

F:5’-CTTCTTCATGGAGATTGCAGC-3’
R:5’-CTACAGCTCTTGCCCAGGTC-3’ 59.0 320

Beta-galactoside alpha-2,6-sialyltransferase 1
(ST6Gal1, SIAT1)

F:5’-CATCTTCATTATGATTCACACCAAC-3’
R:5’-ACCTCTACCATGGATACATTCACAT-3’ 57.0 473

glyceraldehyde-3-phosphate dehydrogenase
(GAPDH)

F:5-CCACCCATGGCAAATTCCATGGCA-3’
R:5-TCTAGACGGCAGGTCAGGTCCACC-3 59.0 596
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Adhesion and migration properties of melanoma cells

The ability of cancer cells to adhere to extracellular 
matrix proteins and subsequently to migrate through 
them is an important factor in the metastatic cascade 
(Menon & Beningo, 2011; Polacheck et al., 2013). For 
this reason, we evaluated adhesion and migration (by 
wound healing) abilities of the studied cells in terms of 

their interaction with FN 
and estimated the impact of 
sialic acids on these interac-
tions. Briefly, to investigate 
whether sialic acid content 
affects the adhesive and mi-
gration properties of the 
tested cells, MAA and SNA 
were added during the exe-
cution of the adhesion and 
migration assays. As shown 
at Fig. 3A, the adhesion 
efficiency of WM1552C, 
WM115 cells (representing 
RGP and RGP/VGP, re-
spectively) was significantly 
lower than that of IGR-39 
and WM266-4 cells (repre-
senting VGP and metastat-
ic melanoma, respectively). 
Performing adhesion assays 
in the presence of SNA re-
duced the levels of adhesion 
only in IGR-39 and WM266-
4 cell lines, by 75% and 
100%, respectively (Fig. 3B). 
In contrast, the presence of 
MAA during adhesion assay 
caused a dramatic decline in 
the number of adhering cells 
in all examined cell lines 
within the range from 87% 
to 98% (Fig. 3B). These re-

sults indicated that α2,3-linked sialic acids could be a 
more important factor increasing melanoma cell adhe-
sion than α2,6-linked sialic acids.

As far as migration abilities of the studied melanoma 
cells are concerned, it was found that metastatic mela-
noma cells (WM266-4) repaired scratch wounds at least 
twice as fast as primary melanoma cells (Fig. 4A, B). As 
presented in Fig. 4C, addition of SNA resulted in the 
decrease of melanoma cell migration rate into scratch 
wounds on FN-coated wells only for WM266-4 cells, 
but the effect was relatively weak (by 20%). It was also 
proved as documented in Fig. 4C that the presence of 
MAA during wound healing assays blocked melanoma 
cell motility with different degree. The observed effect 
was more noticeable in two primary melanoma cells 
(WM1552C, and IGR-39 cells by 70% and 50%, respec-
tively) than in two other cell lines (WM115 and WM266-
4 both by 33%). It showed that α2,3-linked sialic acids 
present on the cell surface of melanoma cells could in-
crease their migration potential.

Integrin α5β1 as a carrier of sialic acids in melanoma

Afterwards, we precipitated clarified lysates of 
WM1552C, WM115, IGR-39 and WM266-4 cells with 
MAA and SNA. The glycoproteins recovered after pre-
cipitation were separated by SDS-PAGE under non-re-
ducing conditions, blotted onto PVDF membrane and 
probed with antibodies against α5 and β1 integrin sub-
units. The presence of α2,6-linked SA was confirmed on 
both chains in all cell lines (Fig. 5). Similarly, α2,3-linked 
SAs were detected generally on β1 integrin subunit in 
all melanoma cell lines, but not on α5 integrin subunit 
in IGR-39 cells (Fig. 5). The flow cytometric data sum-
marized in Fig. 6 (A, B), showed that the cell surface 
expression of the main FN receptor, i.e. α5β1 integrin, 

Figure 2. RT-PCR analysis of sialylotransferases gene expression. 
The expression level of target genes was normalized to GAPDH 
expression.

Figure 1. Flow cytometric analysis of SNA and MAA positive oligosaccharides presented on 
melanoma cells. 
(A) Panel shows the histograms for SNA and MAA positive cell lines (coloured line for SNA and 
coloured areas for MAA. Open histograms represent background fluorescence. (B) Diagram shows 
the percentage of SNA and MAA positive melanoma cells. (C) Diagram shows the relative fluo-
rescence intensity for each cell line obtained in flow cytometric analysis. All values are present-
ed as mean ± standard deviation of three independent experiments. Asterisks indicate p≤0.05. 
WM1552C – primary non-metastatic melanoma WM1552C cells; WM115 – non-metastatic/locally 
invading with metastatic potential WM115 melanoma cells; IGR-39 – locally invading with meta-
static potential IGR-39 cells; WM266-4 – metastatic melanoma WM266-4 cells.
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varied between the tested cell lines. In general, high ex-
pression level of this receptor was found in IGR-39 and 
WM266-4 cells (79% and 75%, respectively), but rela-
tively low in WM1552C and WM155 cells (9% and 25%, 
respectively). These results also showed that the level of 
α5β1 integrin expression on melanoma cells was associat-
ed (increased) with the progression of disease, and prob-
ably correlated with the strength of melanoma cell adhe-
sion to FN-coated surfaces.

DISCUSSION

Cancer-related changes in oligosaccharide structures 
are well documented in diverse carcinomas, including 
melanoma (Lityńska et al., 2001; Przybyło et al., 2007; 
Lityńska et al., 2008; Przybyło & Lityńska 2011), and 
they are often correlated with tumour progression, meta-
static spread, reconstruction of the vascular system, and 
poor prognosis. Elevated expression of sialylated glyco-
protein and glycolipids has been proved to closely corre-
late with tumour aggressiveness, tumour cell invasiveness 
and capacity to metastasize, and therefore correlates with 
a poor prognosis (Shah et al., 2008).

In the present study we demonstrated by flow cy-
tometry that melanoma progression is associated with 
significant increase in  α2,3-linked SA on the surface 
of metastatic melanoma cells (WM266-4) compared to 
primary melanoma cells of a different growth phase 
(WM1552C, WM115, and IGR-39). The addition of 
α2,3-lined SA can be catalysed by two Galβ1-3GalNAc 
α2,3-sialyltransferases (ST3Gal I and ST3Gal II), Galβ1-
4GlcNAc α2,3-sialyltransferases (ST3Gal IV) and Galβ1-
3(4)GlcNAc α2,3-sialyltransferases (ST3Gal III) (Chang 
et al., 1995; Harduin-Lepers et al., 2001; Varki & Schauer 
2009). ST3GAL I plays a role in formation of sialyl-T 
antigen, whereas ST3GAL IV in sialyl-LeX epitope for-
mation. Nevertheless, the differences in sialic acid con-

Figure 3. Studies on human non-metastatic (WM1552C, WM115, 
IGR-39) and metastatic (WM266-4) melanoma cells adhesion to 
FN. 
(A) Adhesion properties of melanoma cells. All data are given as 
percentage of adhesion relative to adhesion on poly-L-lysine (tak-
en as 100%). Cell adhesion to BSA-coated wells served as a nega-
tive control. (B) Effect of SNA and MAA on the adhesion of mela-
noma cells to FN. The extent of cell adhesion in the presence of 
the lectins is presented relatively to cell adhesion in their absence 
that was considered as 100%. Each result is the mean of three in-
dependent experiments. Error bars indicate standard deviations. 
Asterisks indicate p≤0.05.

Figure 4. Analysis of migration of non-
metastatic (WM1552C, WM115, IGR-39) 
and metastatic (WM266-4) melanoma 
cells on FN by in vitro scratch assay. 
The wound was scratched with a plas-
tic pipette tip through a confluent mon-
olayer of cells maintained on FN-coated 
surfaces. The scratch-wounded cultures 
were allowed to heal for 24 h and in some 
experiments they were additionally cul-
tured in the presence of SNA or MAA. (A) 
Photographs of wounded area in time 0 h 
and at 24 h. (B) Diagram shows migration 
properties of melanoma cells. (C) Effect of 
treatment with SNA and MAA on repair 
of scratch wounds in monolayers of mela-
noma cells. Changes in migration rate after 
lectin treatment were calculated by com-
paring the migration of untreated (taken as 
100%) and treated cells. Values are means 
± standard deviation of three separate ex-
periments. Asterisks indicate P≤0.05.
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tent observed by us, as detected by MAA lectin bind-
ing, seemed not to be reflected by their mRNA level as 
estimated by semi-quantitative RT-PCR. Interestingly, 
to date, several mechanisms are taken into account as 
a cause of tumour cell hypersialylation: overexpression 
and/or altered activity of sialyltransferases and sialidases, 
hypoxia, high level of androgens, metabolic changes in 
sialic acid biosynthesis in the tumour microenvironment, 
and differential expression of endogenous sialidases (Büll 
et al., 2014a; Vajaria et al., 2014). Therefore further de-
tailed studies are needed to reveal molecular mechanisms 
responsible for hypersialylation in melanoma cells.

In line with our results mentioned above are reports 
showing the association of α2,3-linked SA expression 
with higher invasive and metastatic potential of gastric, 
colon, breast, skin and lung cancer cells (Wang et al., 
2009; Gomes et al., 2013; Cui et al., 2011; Chen et al., 
2011; Shah et al., 2008; Chovanec et al., 2004). Addition-
ally, increased α2,3 sialylation was observed in prostate 
cancer samples, malignant brain tumours and ovarian 

serous carcinoma (Saldova et al., 2011; 
Yamamoto et al., 1997; Wang et al., 
2005b). Interestingly, in breast cancer 
patients the high level of  α2,3-linked 
SA was closely associated with lymph 
node metastasis and the depth of inva-
sion (Cui et al., 2011). Moreover,  α2,3-
linked SAs are involved in the synthesis 
of sialyl-Lewis x antigens (SLex), which 
are known to facilitate tumour cell dis-
semination via mediating interaction 
between tumour and endothelial cells 
(Padler-Karavani, 2014). However, there 
are substantial amounts of data show-
ing as well that in the majority of car-
cinomas studied so far (breast, bladder, 
prostate, stomach, pancreas, colon and 
cervix, acute myeloid leukemia, chlori-
carcinomas, and in some brain tumours), 
elevated expression of α2,6-linked SA 
actually plays an important role in tu-
mour progression (Hedlund et al., 2008; 
Schultz et al., 2012; Lu & Gu, 2015). In 

our experimental model, a very large percentage of all 
tested melanoma cells was a carrier of cell surface α2,6-
sialoglycoconjugates, but IGR-39 cells, which represent 
a VGP-like phenotype, were found to possess a lower 
amount thereof, as shown by relative fluorescence value 
of SNA binding. The molecular mechanisms responsible 
for the observed phenomena are unravelled. However, 
it has been demonstrated that upregulation of particular 
sialyltransferases and subsequent altered expression of 
some sialylated glycoconjugates took place during epithe-
lial-mesenchymal transition (EMT), which is a prerequi-
site for cancer cells to invade surrounding tissue and me-
tastasize, (Maupin et al., 2010; Sakuma et al., 2012). Induc-
tion of EMT in colon cancer cells by epidermal growth 
factor leaded to increased expression of ST3Gal I, III 
and IV, whereas in a model of tumour growth factor 
β-induces ETM upregulation of ST3Gal II, ST6GalNAc 
IV (one of GalNAc α2,6-sialyltransferase) and ST8Sia IV 
(one of α2,8-sialyltransferase) was observed. The ques-

tion is whether decreased level of α2,6-
linked sialylated glycoconjugates in IGR-
39 cells could be a result of elevated 
expression of ST3Gal. To date, there is 
no information on possible competition 
between α3- and α6-sialyltranfserases 
for the common substrates. Moreover, 
although loss of expression or overex-
pression of certain sialystransferases is 
frequently observed in majority of can-
cers, there is no detailed information on 
altered expression of these enzymes in 
melanoma (Lu & Gu, 2015).

Aberrantly high sialic acid level is 
known to play a pivotal role in multiple 
aspects of tumour growth and behav-
iour, among others it facilitates tumour 
cell detachment and increases migration 
and tissue invasion abilities (Ohtsubo & 
Marth, 2006; Dall’Olio et al., 2014; Büll 
et al., 2014a; Lu & Gu, 2015). Here we 
compared melanoma cells derived from 
different growth phases with respect to 
adhesion and migration. The cells which 
represented RGP- and RGP/VGP-like 
phenotype, i.e. WM1552C and WM115 
cells, were characterized by a two-fold 

Figure 5. Immunodetection of α5 and β1 integrin subunits in materials obtained 
after precipitation with SNA and MAA lectins. 
Line H shows reaction for homogenate, and SNA or MAA lines represent the reac-
tion in materials after precipitation. 

Figure 6. Expression of integrin α5β1 in WM1552C, WM115, IGR-39 and WM266-4 
melanoma cell lines analysed. 
(A) Panel shows the histograms for α5β1 positive cell lines (coloured line). Open 
histograms represent background fluorescence. (B) Diagram shows the percentage 
melanoma cells expressing α5β1 integrin. (C) Diagram shows the relative fluores-
cence intensity for each cell line obtained in flow cytometric analysis. All values are 
presented as mean ± standard deviation of three independent experiments. Aster-
isks indicate p≤0.05.
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lower adhesiveness than the cells that represented VGP- 
and metastatic phenotype, i.e. IGR-39 and WM266-4 
cells. Moreover, the motility of metastatic cells was twice 
as high than for other cells tested. Previous studies have 
demonstrated that the elevated level of cell surface α2,6-
linked SA correlated with higher cell adhesion to follow-
ing ECM components: FN, laminin and collagen, while 
higher levels of α2,3-linked SA promoted migration and 
metastasis (Chang et al., 2006; Perez-Garay et al., 2010; 
Cui et al., 2011; Bassaganas et al., 2014). Here we dem-
onstrated that pre-treatment of melanoma cells with 
specific lectins (MAA and SNA) impaired cell binding 
to FN and their migratory capacity in vitro, but the ef-
fect of α2,3-linked SA was much more important than 
α2,6-linked SA. In these studies, increases in α2,3-linked 
SA levels have been correlated with enhanced cell adhe-
sion and motility, thus implying that α2,3-linked SA in 
human melanoma cells could play a pivotal role in cell 
adhesion and migration, through which they are involved 
in the metastatic process. Other studies have also shown 
that inhibition of α2,3-linked SA decreased the migra-
tory ability of B16F10 cells and reduce cell adhesion to 
ECM proteins (Chang et al., 2006). These findings are in 
a striking contrast to the results obtained by Reddy & 
Kalraiya (2006) in the studies on B16F10 mouse mela-
noma cells, in which α2,6-linked SAs were responsible 
for higher motility and adherence to the substrates.

The integrin family represents a particularly important 
adhesion receptors that mediate cell-cell and cell-ECM 
interactions. Integrin α5β1, which is a classical FN recep-
tor, plays an essential role in cancer progression in sev-
eral solid tumours and is regarded as a pertinent thera-
peutic target (Schaffner et al., 2013). Its overexpression is 
particularly demonstrated in the most aggressive tumour 
grades. In line with these observations are our results in 
which we showed a higher expression level of this recep-
tor on IGR-39 and WM266-4 cells than on WM1552C 
and WM115 cells. We also observed the presence of 
α2,3-linked SA generally on β1 integrin subunit on all 
melanoma cell lines, but not on α5 integrin subunit on 
WM1552C cells. α2,6-linked SA were commonly present 
in both subunits of α5β1 integrin in all tested cell lines. 
Glycosylation status of integrins has been reported to af-
fect their binding to ECM and cell motility (Janik et al., 
2010b).

In conclusion, our results suggested that α2,3-
sialylation was associated with more aggressive pheno-
type in melanoma. The role of α2,6-linked sialic acids 
seems to be less significant in melanoma cell behaviour. 
This feature may be useful in seeking novel target for 
therapeutic approach and for the development of new 
strategies for cancer treatment.
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