

Regular paper

Femtosecond stimulated Raman spectroscopy of the dark S₁ excited state of carotenoid in photosynthetic light harvesting complex*

Masayuki Yoshizawa^{1,2[©]}, Ryosuke Nakamura^{1,2}, Orihiro Yoshimatsu¹, Kenta Abe¹, Shunsuke Sakai³, Katsunori Nakagawa^{2,3}, Ritsuko Fujii^{2,4}, Mamoru Nango^{2,4} and Hideki Hashimoto^{2,4,5}

¹Department of Physics, Tohoku University, Sendai, Japan; ²JST-CREST, Kawaguchi, Saitama, Japan; ³Department of Life and Materials Engineering, Nagoya Institute of Technology, Nagoya, Japan; 40CARINA, Osaka City University, Osaka, Japan; 5Department of Physics, Osaka City University, Osaka, Japan

Vibrational dynamics of the excited state in the lightharvesting complex (LH1) have been investigated by femtosecond stimulated Raman spectroscopy (FSRS). The native and reconstituted LH1 complexes have same dynamics. The v_1 (C=C stretching) vibrational mode of spirilloxanthin in LH1 shows ultrafast high-frequency shift in the S1 excited state with a time constant of 0.3 ps. It is assigned to the vibrational relaxation of the S₁ state following the internal conversion from the photoexcited S₃ state.

Key words: vibrational dynamics, carotenoid, spirilloxanthin, light-harvesting, femtosecond stimulated Raman spectroscopy, reconstituted LH1

Received: 14 October, 2011; accepted: 01 March, 2012; available on-line: 17 March, 2012

INTRODUCTION

Carotenoids (Cars) play important roles in photosynthesis. In the antenna complexes, they act as lightharvesting and photo-protecting pigments (Frank & Cogdell, 1996; Polívka & Sundström, 2004). Light energy absorbed by carotenoids is transferred to bacteriochlorophyll (BChl) with high efficiency. In the photo-protective function, carotenoids efficiently quench the BChl triplet state to prevent sensitized generation of reactive singlet oxygen. The S₀ ground state of alltrans-carotenoids has A_g^- symmetry assuming that their linear polyene backbone has C2h point group symmetry. The lowest singlet excited state, S_1 (the $2A_g^-$ state), is optically forbidden. The S_2 ($1B_u^+$) state is the low-est optically allowed state. The energy transfer to BChl has been reported to occur from both the S_2 and S_1 states. Recently, the S* state has been reported to have considerable importance in the light-harvesting function (Cong et al., 2008; Nakamura et al., 2011). It is the precursor on the reaction pathway toward triplet formation and plays a critical role in efficient excitation energy deactivation in the LH1 complex.

The vibrational dynamics of the S_1 state in carotenoids have been attracted much interest. The tunable photoexcitation of the S2 state has revealed that the excess vibrational energy induced in the S2 state remains even after the internal conversion to the S₁ state and affects the relaxation kinetics (Kosumi et al., 2005). The efficient energy transfer from the vibrational hot level of the S₁ state to BChl has been reported in the light-harvesting complexes (Wehling & Walla, 2005). Therefore, further

investigations of the vibrational dynamics of the S₁ state are needed.

Femtosecond stimulated Raman spectroscopy (FSRS) has been recognized as a powerful method for studying vibrational dynamics in ultrafast phenomena. Combination of narrowband Raman pump pulse and ultrashort probe pulse has enabled femtosecond temporal resolution and a few tens wavenumber of spectral resolution (Yoshizawa & Kurosawa, 2000; Yoshizawa et al., 2001). The progresses in this decade have achieved the tunable Raman pump pulse which is useful for selective measurement of the transient state (Shim & Mathies, 2008).

In this work, we used native LH1 complex from Rhodospirillum rubrum S1 and reconstituted LH1 with purified spirilloxanthin that is hereafter called LH1(Spx). LH1(Spx) is used to remove the effect of other kinds of carotenoids involved in the native LH1. The vibrational dynamics of the S₁ state of carotenoid in the LH1 complexes have been investigated by the FSRS.

MATERIALS AND METHODS

Sample preparation. The native LH1 complex from wild-type Rhodospirillum rubrum S1 contains spirilloxanthin as a major carotenoid (Evans et al., 1988). In this study, the reconstituted LH1(Spx) was prepared as described elsewhere (Nakagawa et al., 2008). The solution of LH1(Spx) was dispersed in a poly-vinyl alcohol film (PVA, Kuraray Co., Ltd., PVA-217) on a glass plate (Nakamura et al., 2011). The solution of the native LH1 was measured using a 1 mm flow cell. During the measurements, the film sample was translated linearly and the solution was circulated to avoid degradation and the accumulation of any potential photoproducts.

Laser spectroscopy. The femtosecond dispersed time-resolved absorption spectroscopy setup shown in Fig. 1 is based on an amplified mode-locked Ti:Sapphire laser system operating at 1 kHz (Kosumi et al., 2010). A fraction of the amplified pulses was used to drive two independent optical parametric amplifiers (OPA). The excitation pulse resonant to the $S_0 \rightarrow S_2$ transition of

e-mail: m-yoshizawa@m.tohoku.ac.jp *Presented at the 16th International Symposium on Carotenoids, 17-22 July, 2011, Kraków, Poland

Abbreviations: BChl, bacteriochlorophyll; Car, carotenoid; FSRS, femtosecond stimulated Raman spectroscopy; LH1, lightharvesting complex 1; OPA, optical parametric amplifier; PVA, polyvinyl alcohol; Spx, spirilloxanthin.

Figure 1. Schematic diagrams of femtosecond stimulated Raman spectroscopy.

spirilloxanthin (500 nm, 100 fs) and the Raman pump pulse resonant to the $S_1 \rightarrow S_m$ transition (620 nm, 20 cm⁻¹) were obtained. The supercontinuum generated by a sapphire plate was used as a broadband probe pulse. The polarizations of all the beams were set to be parallel to one another. A probe pulse after the sample was dispersed onto a linear image sensor with a spectrometer. The excitation and Raman pump beams were modulated at 250 and 500 Hz, respectively, by a mechanical chopper, which was frequency locked to the laser pulse train.

RESULTS AND DISCUSSION

Stationary absorption and Raman spectra

The stationary absorption spectrum of the LH1(Spx) film is shown in Fig. 2. The characteristic vibronic profile of the $S_0 \rightarrow S_2$ transition of carotenoid (spirilloxanthin) appears in the region of 470–550 nm. The Q_x and Q_y bands of BChl are observed at 590 nm and 880 nm, respectively. The wavelengths of the absorption peaks are identical in the native LH1 solution.

Figure 3 shows the stationary spontaneous Raman spectra of the native LH1 solution and the LH1(Spx) film. The major observed signals are assigned to the Car S₀ ground state, because the Raman pump pulse (532 nm) is resonant to the Car S₀ \rightarrow S₂ transition. The signals in the native LH1 solution and the LH1(Spx)

Figure 3. Stationary Raman spectra of (a) the native LH1 solution and (b) the LH1(Spx) film induced by the 532 nm Raman pump.

film have almost the same structures. This suggests that spirilloxanthin is in the same environment both in the native LH1 and the reconstituted LH1. The three major Raman peaks at 1559 cm⁻¹ (ν_1), 1149 cm⁻¹ (ν_2), and 1001 cm⁻¹ (ν_3) are assigned to the C=C symmetric stretching, the C-C symmetric stretching, and the methyl-in-plane rocking mode, respectively (Saito & Tasumi, 1983).

Transient absorption spectra

The transient absorbance change following the Car S₂ excitation in the LH1(Spx) film is shown in Fig. 4. The native LH1 solution has almost same transient spectra. The observed signals are explained using a previously proposed model (Nakamura et al., 2011). The broad transient absorption due to the Car S2 state is observed at 0.1 ps in the infrared region. The relaxation to the S_1 state and the energy transfer to the BChl Q_x state occur simultaneously with a time constant of 70 fs (Kosumi *et* al., 2011). The well-known Car $S_1 \rightarrow S_m$ absorption (620 nm) and the bleaching of the BChl Q_y absorption (890 nm) are clearly observed at 1.0 ps. The relaxation from the hot S_1 state to the S_1 state is observed as temporal spectral change of the $S_1 {\rightarrow} S_m$ absorption. Then, the S_1 state relaxes to the S_0 ground state with a lifetime of 1.6 ps. At 10 ps, the signal due to the Car S_1 state decreases, but the peak at 580 nm remains. It is assigned to the Car S* state that has a lifetime of 5.7 ps.

Figure 2. Stationary absorption spectrum of the LH1(Spx) film.

Figure 4. Difference absorbance changes of the LH1(spx) film after the 500 nm excitation.

Femtosecond stimulated Raman spectra

The time-resolved stimulated Raman signals on the Stokes side are shown in Fig. 5. The Raman pump pulse was tuned at 620 nm to be resonant to the Car $S_1 \rightarrow S_n$ transition. The signals observed in the native LH1 solution and the LH1(Spx) film show essentially the same spectral pattern. The signals without the 500 nm excitation pulse (top curves) are assigned to the S_0 ground state. The $\dot{\nu}_1$, $\dot{\nu}_2$, and $\dot{\nu}_3$ modes are observed consistently with the stationary Raman measurement. After the excitation, the v_1 and v_2 modes of the S₀ state decrease instantaneously and broad new signals appear around 1750 and 1250 cm⁻¹. They are assigned to the v_1 and v_2 modes in the S₁ state, respectively, as well as the signals observed in β -carotene (Yoshizawa *et al.*, 2001). The high-frequency shift of the S_1 excited state is explained in terms of the vibronic coupling through the vibrational mode with Ag symmetry, because they have same A_a symmetry (Hashimoto & Koyama, 1989; Noguchi et al., 1989). On the other hand, the v_3 mode does not show clear change. Since the v, mode is the methylin-plane rocking mode, it has smaller coupling with the S_1 state than the ν_1 and ν_2 modes. The signals assigned to the S_1 state decrease with the 1.6 ps lifetime of the S_1 state. The broad foot observed at the v_1 mode of the S_0 state decays with a lifetime of 5.4 ps. It is assigned to the hot S₀ state generated by the internal conversion from the S₁ state.

The remarkable feature observed in the FSRS signal is transient peak shift of the v_1 mode of the S₁ state. The v_1 signal just after the excitation has a peak at 1740 cm⁻¹, then it shifts to 1767 cm⁻¹ with a time constant of 0.3 ps. The transient absorption shown in Fig. 4 shows temporal spectral change with the same time constant. The S₁ transient absorption has broad spectrum at 0.1 ps, then the peak shifts to shorter wavelength and the spectrum becomes narrower. These changes are explained in terms of the vibrational relaxation in the S₁ state (Kosumi et al., 2005). The hot S_1 state is generated by the internal conversion from the initially excited S_2 state, then it relaxes to the vibrational ground level of the S_1 state. However, the v_2 mode of the S_1 state does not show the temporal spectral change. This means that the hot S_1 state of the v_1 mode is generated because it is the coupled mode of the internal conversion from the S₂

Figure 5. Time-resolved stimulated Raman spectra of (a) the native LH1 solution and (b) the LH1(Spx) film. Noex: without the 500 nm excitation, 0.1, 0.5, 1.0 ps: delay times after the 500 nm excitation.

state to the S_1 state similar to that from the S_1 state to the S_0 state.

The vibrational features of spirilloxanthin in the native LH1 and the reconstituted LH1(Spx) have been investigated by the stationary and time-resolved Raman spectroscopies. The vibrational modes of the S_0 ground state observed by the ordinary spontaneous Raman spectroscopy have the same frequencies. The environment of the reconstituted spirilloxanthin is identical to that of the native LH1 complex as previously revealed by the Stark spectroscopy (Nakagawa et al., 2008). The dynamics following the excitation of the Car S₂ state are also the same in the native LH1 and LH1(\tilde{Spx}). The S₁ state in the LH1 complex is in the vibrational excited level just after the formation from the S_2 state. The relatively slow vibrational relaxation of the v_1 mode is expected to be a universal feature of carotenoids even when they are bound to the LH complexes. Our findings provide the importance of the vibrational dynamics in the energy transfer mechanisms of the LH complexes.

Acknowledgement

This work was partly supported by Grants-in-Aid from JSPS (No. 22740271 to RN, No. 19340076 to MY, and Nos.17204026 and 17654083 to HH).

REFERENCES

- Cong H, Niedzwiedzki DM, Gibson GN, LaFountain AM, Kelsh RM, Gardiner AT, Cogdell RJ, Frank HA (2008) Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. J Phys Chem B 112: 10689–10703.
- Evans MB, Cogdell RJ, Britton G (1988) Determination of the bacteriochlorophyll:carotenoid ratiosof theB890 antenna complex of *Rhodospirillum rubrum* and the B800-850 complex of *Rhodobacter* spheroids. Biochem Biophys Acta 935: 292–298.
- Frank HA, Cogdell RJ (1996) Carotenoids in photosynsthsis. Photochem Photobiol 63: 257–264.
- Hashimoto H, Koyama Y (1989) Raman spectra of all-trans- β -carotene in the S₁ and T₁ states produced by direct photoexcitation. *Chem Phys Lett* **163**: 251–256.
- Kosumi D, Yanagi K, Nishio T, Hashimoto H, Yoshizawa M (2005) Excitation energy dependence of excited states dynamics in all-transcarotenes determined by femtosecond absorption and fluorescence spectroscopy. Chem Phys Lett 408: 89–95.
- Kosumi D, Abe K, Karasawa H, Fujiwara M, Cogdell RJ, Hashimoto H, Yoshizawa M (2010) Ultrafast relaxation kinetics of the dark S₁

state in all-*trans*-β-carotene explored by one- and two-photon pumpprobe spectroscopy. *Chem Phys* **373**: 33–37. Kosumi D, Maruta S, Horibe T, Fujii R, Sugisaki M, Cogdell RJ,

- Kosumi D, Maruta S, Horibe T, Fujii R, Sugisaki M, Cogdell RJ, Hashimoto H (2011) Ultrafast energy-transfer pathway in a purplebacterial photosynthetic core antenna, as revealed by femtosecond time-resolved spectroscopy. *Angew Chem Int Ed* **50**: 1097–1100.
- Nakagawa K, Suzuki S, Fuji R, Gardiner AT, Cogdell RJ, Nango M, Hashimoto H (2008) Probing the effect of the binding site on the electrostatic behavior of a series of carotenoid reconstituted into the light-harvesting 1 complex from purple photosynthetic bacterium *Rhodospirillum rubrum* detected by Stark spectroscopy. J Phys Chem B 112: 9467–9475.
- Nakamura R, Nakagawa K, Nango M, Hashimoto H, Yoshizawa M (2011) Dark excited states of carotenoid regulated by bacteriochlorophyll in photosynthetic light harvesting. J Phys Chem B 115: 3233– 3239.
- Noguchi T, Kolaczkowski S, Arbour C, Aramaki S, Atkinson GH, Hayashi H, Tasumi M (1989) Resonance Raman spectrum of the excited 2A_o state of β-carotene. *Photochem Photobiol* **50**: 603–609.

- Polívka T, and Sundström V (2004) Ultrafast dynamics of carotenoid excited states from solution to natural and artificial systems. *Chem Rev* **104**: 2021–2071.
- Saito S, Tasumi M (1983), Normal-coordinate analysis of B-carotene isomers and assignments of the Raman and infrared bands. J Raman Spectrosc 14: 310–321.
- Shim S, Mathies RA (2008) Development of a tunable femtosecond stimulated raman apparatus and its application to β-carotene. J Phys Chem B 112: 4826–4832.
- Wehling A, Walla PJ (2005) Time-resolved two-photon spectroscopy of photosystem I determines hidden carotenoid dark-state dynamics. J Phys Chem B 109: 24510–24516.
- Yoshizawa M, Kurosawa M (2000) Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering. *Phys Rev A* 61: 013808/1–6.
- Yoshizawa M, Aoki H, Hashimoto H (2001) Vibrational relaxation of the 2Ag excited state in all-*trans*-β-carotene obtained by femtosecond time-resolved Raman spectroscopy. *Phys Rev B* **63**: 180301/1–4.