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Bacteria have developed multiple complex mechanisms 
ensuring an adequate response to environmental chang-
es. In this context, bacterial cell division and growth are 
subject to strict control to ensure metabolic balance and 
cell survival. A plethora of studies cast light on toxin-
antitoxin (TA) systems as metabolism regulators acting 
in response to environmental stress conditions. Many of 
those studies suggest direct relations between the TA 
systems and the pathogenic potential or antibiotic resist-
ance of relevant bacteria. Other studies point out that 
TA systems play a significant role in ensuring stability of 
mobile genetic material. The evolutionary origin and re-
lations between various TA systems are still a subject of 
a debate. The impact of toxin-antitoxin systems on bac-
teria physiology prompted their application in molecular 
biology as tools allowing cloning of some hard-to-main-
tain genes, plasmid maintenance and production of re-
combinant proteins. 
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InTROducTIOn

Toxin-antitoxin systems emerged in research in mid 
80’s. A detailed insight into their functions and mecha-
nisms of action has been gained in the last two decades 
and brought several interesting conclusions as to the im-
portance of such systems for bacterial physiology. The 
term “toxin-antitoxin system”, usually abbreviated as 
“TA system”, comprises a functional element consisting, 
in most cases, of a biologically active protein molecule 
and a corresponding inhibitor, whose nature and inhibi-
tory mechanism depend on the system’s class affiliation. 
Components of such systems are encoded within poli-
cistronic operons, often with partially overlapping open 
reading frames. The systems are widespread among Bac-
teria as well as Archaea (Mittenhuber, 1999; Gerdes, 2000; 
Pandey & Gerdes, 2005; Makarova et al., 2009) and 
evolved to carry out diverse functions. However, their 
common feature is an enzymatic activity detrimental for 
the cell metabolism. Such toxic activity has been demon-
strated to switch bacterial cells over to a dormant state, 
leading to cell death during prolonged exposure. In most 
cases various stress stimuli are responsible for TA sys-
tem activation. The signalling pathway in such instances 
is often related to other stress-induced response path-
ways. Moreover, it is well documented that in some cas-
es the activity of TA systems stabilizes mobile genetics 
elements, therefore comprising an important mechanism 

of plasmids maintenance. In the light of the increasing 
multi-drug resistance among virulent strains, reports on 
the potential relation between TA systems and modula-
tion of  pathogen–host interactions seem to be of ut-
most importance.

clAssIfIcATIOn Of TOxIn-AnTITOxIn sysTeMs

The biological activity of a toxin comprising a compo-
nent of a TA systems is usually (but not always) that of 
an endoribonuclease. Bioinformatic analysis of multiple 
available sequences of bacterial genetic elements points 
to multiple novel, putative TA loci and suggests that 
many of known TA systems, bacterial as well as archae-
al, are evolutionarily related (Anantharaman & Aravind, 
2003; Hayes & Sauer, 2003; Gerdes et al., 2005; Sevin 
& Barloy-Hubler, 2007; Makarova et al., 2009; Weaver et 
al., 2009; Arbing et al., 2010). The classification of TA 
systems is based on the mechanism of inhibition of the 
toxin as well as on operon autoregulatory functions. Ini-
tially two classes of TA systems were identified (Gerdes 
& Wagner, 2007), but subsequent discoveries extended 
the classification to three classes (Blower et al., 2009). 
Recent studies suggest the existence of yet another type, 
namely a three-component TA system (Hallez et al., 
2010). As immediately visible from the above discussion 
the field is in a constant and dynamic growth and one 
may expect that many interesting findings are likely to 
emerge in the following years.

Class I includes systems in which the antitoxin is 
an antisense RNA forming duplexes with the toxin 
mRNA. This leads to inhibition of translation in a proc-
ess known as RNA interference. Examples of such sys-
tems are chromosomally located operons found in Es-
cherichia coli, namely tisAB (Vogel et al., 2004) and symER 
(Kawano et al., 2007), as well as plasmid loci parB (Ger-
des et al., 1986) of E. coli and par of Enterococcus faecalis 
(Greenfield et al., 2000; Weaver et al., 2009) and a ho-
mologous plasmid operon of Staphylococcus aureus (Jensen 
et al., 2010). Among the mentioned systems toxins have 
multiple different roles. For example the SymE toxin 
is an mRNA interferase encoded in the symER operon. 
The toxin binds ribosomes to exert its activity (Kawano 
et al., 2007). The TisB toxin, which is encoded in the 
tisAB operon (Vogel et al., 2004) decreases the proton-
motoric force across the bacterial cell membrane and 
cause subsequent drop in ATP production, which leads 
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to metabolic dormancy (Unoson & Wagner, 2008). Hok 
toxin, encoded in the parB operon, irreversibly damages 
the cell membrane (Gerdes et al., 1986). In the latter case 
the regulation of the toxin level is indirect. RNA inter-
ference suppresses expression of the gene mok, which is 
a regulator of hok gene transcription (Thisted & Gerdes, 
1992).

Class II encompasses a wide range of TA systems. 
Antitoxins of this class are proteins. The biological ac-
tivities exhibited by the toxins include transcription inhi-
bition by targeting gyrase function and interference with 
translation through an mRNA interferase activity, which 
may or may not rely on ribosome binding. The endori-
bonucleolytic activity of mRNA interferases is often se-
quence specific. Table 1 gives a short overview of the 
class II TA systems and their characteristics.

Class III comprises a single member only. This system 
is encoded in the toxIN operon of Erwinia carotonovora, 
a plant pathogen. In this case inhibition of ToxN toxin 
activity is driven by RNA molecules directly interacting 
with the toxin molecules (Blower et al., 2009; Fineran et 
al., 2009).

RelATIOns And sTRucTuRAl sIMIlARITIes AMOng 
clAss II TA sysTeMs

The evolutionary relationship among class II TA sys-
tems is a subject of an open debate. Attention is mainly 
focused on toxins since there is a substantial sequence 
and structural variety among  the antitoxins. Ten TA 
families of class II have been described so far (Pandey 
& Gerdes, 2005; Jorgensen et al., 2009; Van Melderen & 
Saavedra De Bast, 2009) and for three of them, relBE, 
parDE and higBA, a phylogenetic relationship based on 
sequence similarities has been proposed (Ananthara-
man & Aravind, 2003; Tsilibaris et al., 2007). Strikingly, 
the toxin of the parDE system is a gyrase inhibitor in 
contrast to the toxins of the relBE and higBA systems, 
which are mRNA interferases. A broader analysis of this 

issue leads to other interesting conclusions. There is no 
evidence for an evolutionary relation between the ccdAB 
and parDE systems (Anantharaman & Aravind, 2003) al-
though the toxin of the ccdAB system is also a gyrase 
inhibitor. However, there is a significant structural simi-
larity between the toxins of the ccdAB and kis/kid (parD) 
systems (Diago-Navarro et al., 2010), which, similarly 
to the parDE and relBE or higBA systems, are a gyrase 
inhibitor and an mRNA interferase, respectively. Other 
reports point to a structural similarity among the toxins 
of the ygiUT (mqsRA), relBE and yefM-yoeB systems as 
well as RNase Sa of Streptomyces aureofaciens (Brown et al., 
2009).

Not only among RelE homologues is a similarity with 
RNase Sa noticeable. Toxins of the ccdAB and kis/kid 
or mazEF (chpAK) systems are also structurally similar. 
This similarity is related to the presence of a β-sheet 
core in these molecules (Fig. 1). However, this β-sheet 
core structure is most likely related to the ability to form 
dimers (Miller, 1989) rather than reflects evolutionary or 
functional relationships. Structural analysis of mRNA in-
terferases and comparative studies allow the deduction 
of the mechanism of their endoribonucleolytic activiy 
(Agarwal et al., 2009; Brown et al., 2009; Diago-Navarro 
et al., 2010). Tracing evolutionary relations among the 
TA systems is difficult because of the fast specialisation 
of TA system components (Arbing et al., 2010). It has 
been reported that the toxin of the phd/doc system is 
similar to a virulence factor toxic to eukaryotic host cells 
(Arbing et al., 2010). Another example is the sequence 
similarity of toxins of the symER and phd/doc systems to 
antitoxins of other TA systems — yefM-yoeB (Arbing et 
al., 2010) and mazEF (Kawano et al., 2007), respectively.

RegulATIOn Of clAss II TA sysTeM AcTIvITy

In operons of class II TA systems an antitoxin gene 
is usually, but not always, located upstream a gene for 
a toxin. The order is reversed for example in the higBA, 

Figure 1. structural similarities among toxins belonging to different families
(A) ccdBA and mazEF (Diago-Navarro et al., 2010); (B) relBE and RNase Sa of Streptomyces aureofaciens (Brown et al., 2009). In fact, 
β-sheet core (red) structure is similar among all these toxins. Models prepared with PyMOL ver. 1.1r2pre (DeLano WL, 2002). Structures’ 
PDB IDs — CcdB: 1VUB; Kid: 1M1F; MazF: 1UB4; RelE: 2KC8; YoeB: 2A6Q; MqsR: 3HI2; RNase Sa: 1RSN.
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hicAB and ygiUT systems. Binding of toxin-antitoxin 
complexes to promoter sites is the most common way 
of direct transcription regulation of TA operons (Fig. 2). 
Single components also bind the promoters but with a 
low affinity (Kedzierska et al., 2007; Li et al., 2008) when 
compared to the toxin-antitoxin oligomers which bind 
to palindromic sequences within the promoters, which 
process is enhanced cooperatively (Tsuchimoto & Oht-
subo, 1993; Black et al., 1994; Magnuson et al., 1996; 
Magnuson & Yarmolinsky, 1998; Marianovsky et al., 
2001; Bailey & Hayes, 2009). Moreover, apart form the 
described primary palindromes, promoter of the mazEF 
operon contains alternate palindromes. 

Binding to the latter by a toxin-antitoxin complex 
manifests in a decrease in the transcription efficiency of 
the operon (Marianovsky et al., 2001). An exception to 
the above rule is the prophage P1 zeta-epsilon system 
(ζε) where the antitoxin serves only as an inhibitor of 
toxin activity and an additional expression regulator ω is 
present (de la Hoz et al., 2000), which is similar to re-
cently reported three-component systems homologous to 
parDE, namely paaR1–paaA1–parE1 and paaR2–paaA2–
parE2 (Hallez et al., 2010). Such a way of controlling the 
cellular levels of TA system components combined with 
high proteolysis susceptibility of the antitoxin provides 
the way of tight and environmentally switchable regula-
tion. The instability of the antitoxin in a TA system is a 
crucial step in the system activation. It is suggested that 
disordered C-terminal regions of the antitoxin are tar-
get for ATP-dependent serine proteases (Kamada et al., 
2003). These members of chaperone family are respon-
sible for degradation of misfolded proteins as well as 
components of signalling pathways (Gottesman, 1996). 
However, the antitoxin YgiT (MqsA) of the ygiUT (mqs-
RA) system is structured throughout its entire sequence, 
both free and toxin-bound state (Brown et al., 2009). 
The activity of ATP-dependent proteases stays in a spe-
cific relation with the activity of TA systems. In all doc-
umented cases only a single protease is responsible for 
degradation of a particular antitoxin (although the pro-
teases of interest comprise a family of related enzymes) 
(Van Melderen et al., 1994; Lehnherr & Yarmolinsky, 
1995; Aizenman et al., 1996; Christensen et al., 2001; 
2004; Kawano et al., 2007; Christensen-Dalsgaard et al., 
2010; Donegan et al., 2010). Degradation of the antitoxin 
component leads to subsequent toxin activation and in-
crease in operon transcription in response to a toxin and 
antitoxin level imbalance. However, a halt of translation, 
induced for example by antibiotics, acts as another way 
of toxin activation by causing a drop in the production 
of labile antitoxin. 

The significant influence of the TA systems on bac-
terial metabolism implies multiple ways of their activity 

regulation. A well documented mechanism is the rela-
tion between the mazEF system of E. coli and locus relA, 
which codes for ATP:GTP 3′-diphosphotransferase im-
plicated in the synthesis of 3′,5′-guanosine bisphosphate 
(Justesen et al., 1986; Metzger et al., 1988). The ppGpp 
molecule is a signal of amino-acid starvation (Cashel, 
1975; Gallant et al., 1976). The mazEF locus is located 
downstream the relA locus (Masuda et al., 1993) and is 
cotranscribed when relA expression is activated (Ai-
zenman et al., 1996; Christensen et al., 2003; Hazan & 
Engelberg-Kulka, 2004). A similar neighbourhood pat-
tern of the mazEF and parDE systems is found in ge-
nomes of other enteric bacteria such as Shigella and Sal-
monella (Pandey & Gerdes, 2005). Another example is the 
SOS system and its relations with various TA systems of 
E. coli. In this case the activation of SOS system leads to 
switching on the activity of  TA systems including hokE 
(Fernandez De Henestrosa et al., 2000), yafNO (McKen-
zie et al., 2003; Christensen-Dalsgaard et al., 2010), tisAB 
(Vogel et al., 2004; Unoson & Wagner, 2008), symER 
(Kawano et al., 2007), and yefQ (Motiejunaite et al., 2007). 
A similar situation was recently reported for another E. 
coli TA system — yafNO (Singletary et al., 2009).

The activity of TA systems can also be induced by 
systems responsible for quorum sensing. Such a mecha-
nism has been reported for the mazEF system of E. coli 
(Kolodkin-Gal et al., 2007). Another noteworthy fact is 
the possibility of cascade activation of TA systems (Haz-
an et al., 2001) since the bacteria often carry more than 
a single TA system within their genome. Activation of 
a single system which leads to protein synthesis inhibi-
tion and subsequent activation of another TA system is 
plausible. An even more complex relation has been de-
scribed for the ygiUT (MqsRA) system of E. coli. In this 
case activation of the TA system is necessary for activa-
tion of toxin CspD, whose gene promoter is controlled 
by the ygiU/ygiT (MqsR/MqsA) complex (Brown et al., 
2009; Kim et al., 2010). Furthermore, a cross-regulation 
has been observed for homologous systems present in 
the genome (Yang et al., 2010), where toxin-antitoxin 
complexes of one system bind to regulatory sequences 
of another TA system operon.

funcTIOns Of clAss II TA sysTeMs

A plasmid maintenance function was initially assigned 
to several newly discovered plasmid-borne TA systems 
(Gerdes & Molin, 1986; Saurugger, 1986; Bravo et al., 
1988; Tsuchimoto et al., 1988; Gerlitz et al., 1990; So-
becky et al., 1996). Cells that do not inherit a copy of a 
plasmid upon division do not survive the effect of a sta-
ble toxin after degradation of a labile antitoxin. Moreo-
ver, a role of multiple TA loci in stabilization of a mega-
integron of Vibrio cholerae has been suggested (Pandey & 
Gerdes, 2005). There is no doubt that TA systems play 
a role in the phenomenon of mobile genetic element sta-
bilization but operons of many TA systems are also lo-
cated in the bacterial chromosome. Recent studies report 
that TA systems are mainly concerned with the regula-
tion of bacterial metabolism rather than simple plasmid 
maintenance functions.

Toxin activity leads primarily to bacterial metabolic 
dormancy that can be abolished at initial stages (Nys-
trom, 1999; Pedersen et al., 2002; Keren et al., 2004; 
Gerdes et al., 2005; Suzuki et al., 2005; Buts et al., 2005; 
Lewis, 2005; Inouye, 2006; Schumacher et al., 2009; Fu 
et al., 2009; Kasari et al., 2010), which contrasts with ear-

figure 2. Binding of toxin-antitoxin complex to regulatory se-
quences leads to autorepression of TA operon expression



vol. 58       5Prokaryotic toxin-antitoxin systems

lier suggestions that this activity leads to immediate cell 
death (Aizenman et al., 1996; Hazan & Engelberg-Kulka, 
2004; Engelberg-Kulka et al., 2005). There are examples 
of such systems whose major role is to kill the cells, but 
this is only true in some specialized situations. A good 
example are formation of fruiting bodies of Myxococ-
cus xanthus (Nariya & Inouye, 2008) or defence against 
phage infection in lactic acidic bacteria (Forde & Fit-
zgerald, 1999). The question whether TA system activity 
leading  to death of selected cells in a colony is a mani-
festation of an altruistic or other mechanism is currently 
a topic of  discussion (Aizenman et al., 1996; Forde & 
Fitzgerald, 1999; Nystrom, 1999; Lioy et al., 2006).

A flexible response of a bacterial cell to stress condi-
tions seems to be the major function of most TA sys-
tems. A reversible metabolic dormancy caused by their 
activation allows a bacterial cell to survive detrimental 
conditions. This phenomenon  provides clear advan-
tages in the case of starvation (Christensen et al., 2001; 
Jorgensen et al., 2009) as well as heat, osmotic and free-
radicals-induced stress (Pedersen et al., 2002; Senn et al., 
2005). Moreover, TA systems can contribute to the for-
mation of persistent cells during an exposure to antibiot-
ics (Falla & Chopra, 1998; Keren et al., 2004; Dorr et al., 
2010; Kasari et al., 2010). The mechanism of described 
phenomenon is straightforward in the case of drugs act-
ing as transcription (eg. rifampicin) or translation (eg. 
chloramphenicol, doxycyclin, spectinomycin, eritromycin) 
inhibitors when the decay of the labile antitoxin causes 
the toxin activation. Paradoxically, antibiotics that are gy-
rase inhibitors (quinolone antibiotics) can act in a way 
similar to the ccdAB TA system, in which the toxin is a 
gyrase inhibitor. In this case binding of the inhibitor to 
an open gyrase–DNA complex induces DNA nicks (Dr-
lica & Zhao, 1997; Jiang et al., 2002), which is followed 
by SOS-system activation (Little & Mount, 1982; Karoui 
et al., 1983; Bailone et al., 1985). The same mechanism 
is proposed for homologues of parDE system (Hallez 
et al., 2010). The described sequence of events leads to 
increased genetic diversity of a colony and may contrib-
ute to persisters formation (Couturier et al., 1998) in the 
same way as do quinolone antibiotics (Drlica & Zhao, 
1997).

The activity of TA systems can also modulate the be-
haviour of a bacterial colony. An increase in the expres-
sion of genes related to cell motility and structural genes 
of flagella has been reported for the ygiUT  (MqsRA) sys-
tem (Gonzalez Barrios, 2006). In turn the hipAB system 
is implicated in biofilm formation providing multi drug 
resistance (Lewis, 2007; 2008). TA systems can modulate 
formation of a biofilm over time (Kim et al., 2009). In 
line with that, a recent report indicates elevated expres-
sion of TA systems in bacterial cells building a biofilm 
(Mitchell et al., 2010).

A precise control over pathogenesis progression has 
been demonstrated for mRNA interferases exhibiting 
sequence specificity. This specificity allows for molecu-
lar evolution of target gene sequences. The mRNA in-
terferases of the mazEF-mt3 and mazEF-mt7 systems are 
able to specifically recognize pentanucleotide sequences. 
In both cases a statistically significant representation 
of genes implicated in pathogenesis was found among 
genes containing underrepresented number of the recog-
nized sequences (Zhu et al., 2008). Such genes are resist-
ant to the interferase activity and thereby are expected 
to be expressed even when the TA system is activated. 
A similar relation was found for the sraP gene of S. au-
reus. This gene, coding for a protein responsible for ad-

hesion to platelets (Siboo et al., 2005), is characterized 
by a statistically significant overrepresentation of the se-
quence recognized by the mRNA interferase of the maz-
EFSa TA system (Zhu et al., 2009), hence its expression 
is suggested to be primarily turned off upon TA system 
activation. Additionally, the mentioned TA system may 
potentially be implicated in pathogenesis progression in 
yet another way. Downstream of the mazEFSa locus a 
sigB locus is located (Kullik et al., 1998; Gertz et al., 1999; 
Ferreira et al., 2004). The sigB-encoded alternative subu-
nit σB of the RNA polymerase is responsible for global 
transcription regulation of virulence factors, comprising 
one of the most important staphylococcal systems of 
gene regulation responsible for pathogenesis (Wu et al., 
1996). In stress conditions the sigB locus is coexpressed 
with mazEFSa (Senn et al., 2005; Fu et al., 2007; Don-
egan & Cheung, 2009). However, any potential func-
tional relation demands further investigation since the 
elevated expression of sigB locus does not necessarily 
lead to a direct increase in the level of σB subunit (Senn 
et al., 2005). Among other pathogenic strains also Bacil-
lus anthracis possesses a TA system of the mazEF fam-
ily, namely a pemIK module (Agarwal et al., 2007; 2009). 
Recently a pemIK homologue located in a plasmid of an 
avian strains of S. aureus has been documented (Lowder 
et al., 2009; Bukowski et al., 2010). In this system the 
toxin is a sequence-specific endoribonuclease which tar-
gets a tetranucleotide sequence. Bioinformatic analysis of 
the occurrence of the recognized sequence in the coding 
sequences of the S. aureus genome elucidated a potential 
relation of the system with virulence factor regulation 
(Bukowski et al., 2010). 

clAss II TA sysTeMs As BIOTechnOlOgIcAl TOOls

Two of the best-described TA systems have found ap-
plication in molecular biology, namely ccdAB and mazEF. 
The former is used as a factor for positive selection of 
transformants, primarily in E. coli strains (Bernard et al., 
1994). Such systems, which are commercially available 
(e.g. StabyCloningTM and StabyExpressTM, Delphi Genet-
ics SA), are based on CcdB toxicity against gyrase and 
allow one-step selection of transformants ensuring sta-
ble vector plasmid maintenance (Fig. 3). This idea was 
originally developed by Szpirer and Milinkovitch (2005) 
followed by other efforts to develop a more complex 
system allowing increased production of recombinant 
protein (Stieber et al., 2008).

figure 3. ccdAB system components as tools for positive selec-
tion during cloning
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The mazEF system has been adapted for single pro-
tein production (SPP) systems. The initial idea uses 
MazF toxin to trigger bacteriostasis and bacterial protein 
shutdown. The recombinant gene lacks the ACA se-
quences, recognized by the MazF interferase, therefore 
upon induction of MazF expression production of the 
recombinant protein of interest is continued almost ex-
clusively. Moreover, bacteriostasis allows for culturing of 
the transformed strains in lower medium volumes than 
in traditional methods (Suzuki et al., 2005; 2007). This 
idea has been successfully applied for protein produc-
tion for NMR studies in 150-fold concentrated cultures, 
which allowed significant cost saving on isotopes (Mao et 
al., 2009; Schneider et al., 2009). Recently the SPP system 
based on MazF activity was extended with the capabil-
ity for induction of protein production using particular 
amino acids. MazF mutants with histidine or tryptophan 
substitution were used in histidine or tryptophan auxo-
trophs, respectively. After transferring cells to the medi-
um enriched in isotopes but lacking one of these amino 
acids the production of MazF is still provided. Subse-
quent addition of the amino acid induces exclusive pro-
duction of the recombinant protein, since production of 
host proteins is blocked by the toxic action of MazF. 
Therefore, this approach allows not only single protein 
production but also high-efficiency isotope-labelling of 
the target protein (Vaiphei et al., 2010). 

TA systems are successfully used also in studies on 
eukaryotic cells. Recently a report concerning the usage 
of mazEF system in studies on HIV virus was published 
(Chono et al., 2010). Further possible applications have 
already been suggested, such as TA-based contamination 
control in fermentation processes (Kristoffersen et al., 
2000), antibacterial drug development (Engelberg-Kulka 
et al., 2004; Moritz & Hergenrother, 2007; Lioy et al., 
2010), selectable elimination of cells in cell cultures, tis-
sue cultures and whole organisms (de la Cueva-Mendez 
et al., 2003) or stable plasmid maintenance without anti-
biotic pressure (Wladyka et al., 2010).

cOncludIng ReMARKs

Results collected so far give a complex but concise 
image of the role of TA systems in bacterial physiol-
ogy. Their functions range far beyond stabilization of 
mobile genetic elements. Metabolic dormancy induced 
by the systems seems a general but adequate response 
to various stress stimuli coming from the environment. 
Endoribonucleases, also termed mRNA interferases, are 
the most common group among the toxic components 
of various TA systems. Their activity leads to bacterios-
tasis through the inhibition of translation, which enables 
survival during starvation or antibiotic exposition. Fur-
ther specialisation of interferases in selective sequence 
recognition allowed some genes to escape from expres-
sion suppression or, conversely, become exceptionally 
sensitive to a particular TA system. These phenomena 
are suggested to play a significant role in pathogen–host 
interaction and pathogenesis progression by modulation 
of biofilm formation and interactions with host proteins 
or coupling with other pathogen invasion-facilitating sys-
tems.

The relations among the ten families of class II TA 
systems are difficult to untangle. These TA systems are 
spread throughout the two huge domains of Archaea and 
Bacteria. Beside clear relationships, it seems that the simi-
lar way of acting and regulation of various groups of TA 

systems are due to convergence. Components of such 
systems could have evolved divergently from unrelated 
groups of genes to create autoregulated operons coding 
for pairs of toxic protein and its inhibitor.

The physiological functions of the TA systems became 
a base for their successful applications as molecular biol-
ogy tools, both in industry and research. Primarily they 
facilitate maintenance of plasmid vectors and transform-
ant selection, but also effective overexpression of recom-
binant proteins. The potential application of TA systems 
in antibiotic therapy cannot be omitted as it is known 
that TA systems induce bacteriostasis, whose prolon-
gation results in bacterial cell death. With the growing 
knowledge of TA systems new useful applications are 
expected to be developed.
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