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The need of taking into account the change of compartment volume when develop-
ing chemical kinetics analysis inside the living cell is discussed. Literature models of
a single enzymatic Michaelis-Menten process, glycolytic oscillations, and mitotic
cyclin oscillations were tested with appropriate theoretical extension in the direction
of volume modification allowance. Linear and exponential type of volume increase
regimes were compared. Due to the above, in a growing cell damping of the ampli-
tude, phase shift, and time pattern deformation of the metabolic rhythms considered
were detected, depending on the volume change character.
The perfomed computer simulations allow us to conclude that evolution of the cell

volume can be an essential factor of the chemical kinetics in a growing cell. The phe-
nomenon of additional metabolite oscillations caused by the periodic cell growth and
division was theoretically predicted and mathematically described. Also, the hypoth-
esis of the periodized state in the growing cell as the generalization of the
steady-state was formulated.

As it was already shown almost three de-
cades ago, changes in volume, when not negli-
gible compared to the initial volume, cannot
be omitted in chemical kinetics consider-
ations (Gingold, 1974). The growing scientific
interest in quantitative modeling of intra-
cellular chemical phenomena provokes one to
return to this question. Many theoretical con-
cepts, e.g.: metabolic control analysis, MCA,

(Kacser & Burns, 1973; Burns et al., 1985),
dynamic optimal metabolic control, DOMC,
(Giuseppin & van Riel, 2000), flux-oriented
theory (Crabtree et al., 1997) and biochemical
systems theory (Ni & Savageau, 1996), and
software tools, represented by: Stochsim
(Morton-Firth & Bray, 1998; Morton-Firth et
al., 1999), Gepasi (Mendes, 1997; Mendes &
Kell, 1998), E-Cell (Tomita et al., 1999), and
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including internet services like Virtual Cell
(Schaff et al., 1997), are oriented to complex
mathematical models of the intracellular
chemical reality. Based on the ideas of the
classic chemical kinetics in vitro, they do not
pay sufficient attention to the problem of
varying volume compartments, arising when
growing cells are considered. To be more spe-
cific, in the analytical considerations of the ki-
netics, in the differential equation describing
the evolution of concentration A in time t, at
the rate of the process R, and the varying
compartment volume �:

the “diluting” component–
A d

dt�
� is very of-

ten omitted. Such omission, which is cer-
tainly valid in the case of a constant volume,
in other situations, as it is seen in the simple
one-equation example with R = const, can lead
to essential differences in the analytical solu-
tion, and a numeric discrepancy (Fig. 1a, b, c)
in normal conditions exceeding 50%, and in
the extreme ones reaching 100% approxima-
tion error (for details see Appendix 1).
Usually, of course, more sophisticated kinet-

ics models are required than the one pre-
sented above. Below, three such examples are
considered and the question of the potential
significance of the cellular volume change for
the theoretical prediction of the process kinet-
ics is discussed.

EXAMPLE MODELS

The first basic example, and due to broad
practice — a very important one, is Michae-
lis-Menten process (Chaplin, 1990; Lee, 1992)
in a closed system. In a varying volume com-
partment it may be described by the following
set of equations:

where: S, E, {SE}, P are the concentrations of
substrate, enzyme, complex and product, re-
spectively, and k1–, k1+, k2+ are reaction rate
coefficients.
As a second example a two-cell model of syn-

chronization of the glycolytic oscillations in
yeast was considered (Bier et al., 2000). After
incorporation of the “dilution” components,
the equations of the extended model look as
follows:

where: G1, G2, T1, T2 denote the concentra-
tions of glucose and ATP, respectively, Vin,
k1, kp, Km, � are parameters of the model des-
cribing glucose inflow, phosphofructokinase
activity, Michaelis-Menten kinetics of ATP
disintegration, and coupling.

Discussion of additional modifications (due
to the volume change) of partial process
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rates, such as: kpT1/(Km+T1), was omitted,
which does not limit the universal applicabil-
ity of the considerations.
As a third example, a minimal cascade

model for the mitotic oscillator was investi-
gated (Goldbeter, 1991). Supplemented by the
“dilution” components, it my be written as:

with:

where: C is cyclin concentration, M and X, re-
spectively, the fraction of active cdc2 kinase
and cyclin protease, vi, vd, Kd, kd, Kc, K1, K2,
K3, K4, V2, V4, VM1, VM3, are parameters of
the model characterizing cyclin synthesis,
specific and non-specific cyclin degradation,
cyclin activity, and the kinetics of the en-
zymes involved.
Here, additional modification of partial pro-

cess rates was disregarded, too (as in the sec-
ond example).

SIMULATIONS

Numerical simulations of the example mod-
els were done to investigate the role of the
compartment volume change in the theoreti-
cal modeling of the kinetics of chemical pro-
cesses.
The assumed volume change was described

by three different regimes: constant, i.e.

� = ��, linear, i.e. � = �0(1+t��), and expo-
nential, i.e. � = �0 exp(ln2 t/�), with the arbi-
trary value of the initial volume ��, and cho-
sen time of volume doubling �.
In the case of the Michaelis-Menten model,

simulations of Eqns. 2–5 were done in the
range of t = 0–5400 s. For the assumed modes
of the volume growth, characterized by
� = 5400 s, two literature sets of kinetic pa-
rameters were applied describing a slow and
a fast enzymatic processes. The parameters
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Figure 1. Evolution of concentration A of a com-
pound processed by a constant rate chemical pro-
cess in a varying volume compartment, predicted
by Eqns. A.1.3–5, for initial concentration A0 = 1
[a.u.] (typically, [�M] or [mM]) and chosen inflow
R�. a: R� = 0.1 [a.u.], b: R� = 1 [a.u.], c: R� = 10
[a.u.].

Curves were plotted for different volume � change re-
gimes: con — constant, i.e. � = �0, lin — linear, i.e.
� = �0 (1+t/�), exp — exponential, i.e. � = �0 exp(ln2
t/�), with arbitrary values of the initial volume �0, and
characteristic time �.
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used are presented in Table 1. The results are
shown in Fig. 2.

In the case of the synchronization model,
simulations of Eqns. 6–9 were done in the
range of t = 0–5400 a.u. (arbitrary units). For
the assumed modes of volume growth, charac-
terized by � = 5400 a.u., three different values
of inflow rate: Vin = 0.001, 0.01, and 0.36 a.u.
were checked to observe the effects of the
modified frequency of oscillations, and for
the literature value Vin = 0.36 a.u., chosen re-
gions of time: t = 900–970, 1900–1970,
5330–5400 a.u. were analyzed in more detail.
The parameters applied are presented in Ta-
ble 2. In practice, units a.u. mean second,
mM, or their combinations. The results are
shown in Figs. 3–5.
In the case of the mitotic model, simulations

of Eqns. 10–14 were performed in the range
of t = 0–100 min. The assumed volume re-
gimes were characterized by � = 25 min, and
they were cyclically repeated every 25 min.
Two sets of conditions were applied: the liter-
ature standard with vi = 0.025 �M/min and kd
= 0.01 [1/min], or a test set with vi = 0.037
�M/min and kd = 0 [1/min] — almost com-
pletely removing the observed effect of expo-
nential volume variation. The parameters ap-
plied are presented in Table 3. The results are
shown in Fig. 6.
In all simulations the Gepasi 3.21 (Mendes,

1993) software was used.
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Table 1. Parameters of the simulation of the extended Michaelis-Menten model, with varying vol-
ume allowed (based on: Chaplin, 1990; Lee, 1992).
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Figure 2. Time pattern of product P production
by a relatively a: — slow, and b: — fast, Michae-
lis-Menten process in a varying volume compart-
ment (Eqns. 2–5).

Curves were plotted for different volume � change re-
gimes: con — constant, i.e. � = �0, lin — linear, i.e.
� = �0 (1+t/�), exp — exponential, i.e. � = �0 exp(ln2
t/�), with an arbitrary value of the initial volume �0,
and characteristic time � = 5400 s. Other parameters
are presented in Table 1.
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RESULTS

The simple case of a constant rate chemical
process shows that variation of the compart-
ment volume can quantitatively modify the

results of simulations (Fig. 1a, b, c). After the
time in the order of half of that needed for vol-
ume doubling, the observed decrease in the
process production is in the order of tens of
percentage points, independently of the in-
flow magnitude, and the volume growth type.
Moreover, the effect increases with time. The
case presented in Fig. 1b is probably not far
from the cell reality, when the rate of the pro-
cess balances volume growth and the related
effect of dilution, so that the concentration of
the products remains approximately con-
stant.
Also in the case of a single Michaelis-Menten

process a significant discrepancy is seen be-
tween the numeric results obtained for the
simulations with and without volume change.
Such a difference arises both in the case of a
relatively slow process (Fig. 2a), and a fast one
(Fig. 2b). The assumed value of � = 5400 s (90
min) was inspired by the yeast cell volume
growth data (Woldringh et al, 1993). So it is
seen, for example, that an enzymatic processes
lasting half of the cellular lifetime can really
“feel” the cell volume expansion, which will be
manifested as a serious (20%) decrease in the
product concentration. The effect weakly de-
pends on the volume change regime.
The theoretically predicted long term oscil-

lations of glucose and ATP (Fig. 3a, b, c) at

Vol. 51 Biochemical kinetics in changing volumes 235

0

5

10

15

1900 1920 1940 1960

t [arbitrary units]

T
1

[a
rb

it
ra

ry
u

n
it

s
]

con

lin
exp

0

5

10

15

5330 5350 5370 5390

t [arbitrary units]

T
1

[a
rb

it
ra

ry
u

n
it

s
]

con

lin
exp

Figure 3. Fast ATP (T1) oscillations predicted by
the synchronization model in a varying volume
compartment (Eqns. 6–9), for Vin = 0.36 [a.u.],
and different intervals of time — a: t = 900–970
[a.u.], b: t = 1900–1970 [a.u.], c: t = 5330–5400
[a.u.].

Curves were plotted for different volume � change re-
gimes: con — constant, i.e. � = �0, lin — linear, i.e.
� = �0(1+t/�), exp — exponential, i.e. � = �0 exp(ln2
t/�), with an arbitrary value of the initial volume �0,
and characteristic time � = 5400 [a.u.]. In the inset
(Fig. 2a) the range t = 0–1000 [a.u.] is shown. Other pa-
rameters are presented in Table 2.
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Figure 4. Slow ATP (T1) oscillations predicted by
the synchronization model in a varying volume
compartment (Eqns. 6–9), in the range
t = 0–5400 [a.u.], for Vin = 0.01 [a.u.].

Curves were plotted for different volume � change re-
gimes: con — constant, i.e. � = �0, lin — linear, i.e.
� = �0(1+t/�), exp — exponential, i.e. � = �0 exp(ln2
t/�), with an arbitrary value of the initial volume �0,
and characteristic time � = 5400 [a.u.]. Other parame-
ters are presented in Table 2.



the parameters taken from (Bier et al., 2000)
reveal a phase shift between the results of the
simple (con) and extended (lin, or exp) model,
but no significant change in the amplitude.
The effect does not depend on the mode of
volume growth.
Also at decreased Vin (Fig. 4), the deceler-

ated and decreased oscillations predicted by
the simple model require some phase shift to
take into account the effect related to cell vol-
ume change. This effect depends on the type
of volume change.
The lack of ATP at low Vin clearly shows

(Fig. 5) the differences between the prognosis
of creeping glucose accumulation in a
non-growing (con) and growing cell (lin, exp).
For those cases the type of volume change is
not critical.
Another model tested (Fig. 6a, b) shows a

strong influence of the type of volume growth
on mitotic oscillations. Allowance for volume
change, especially of the exponential type
(exp), can influence the results so much that
even damping of the oscillations can be ob-
served, and a modification of the essential pa-
rameters may be needed to return close to the
“literature” pattern (Fig. 6a) of the modeled
processes (Fig. 6c).

DISCUSSION

Summing up, evidence is presented that vol-
ume change can give some quantitative
amendment of the output of chemical kinetics
investigations in a growing cell. Depending
on the process type, damping of the ampli-
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Figure 5. Glucose (G1) creep predicted by the
synchronization model in a varying volume com-
partment (eqns. 6–9), in the range t = 0–5400
[a.u.], for Vin = 0.001 a.u..

Curves were plotted for different volume � change re-
gimes: con — constant, i.e. � = �0, lin — linear, i.e.
� = �0(1+t/�), exp — exponential, i.e. � = �0 exp(ln2
t/�), with an arbitrary value of the initial volume �0,
and characteristic time t = 5400 a.u.. Other parame-
ters are presented in Table 2.

Table 2. Parameters of the simulation of the extended two-cell model of synchronization of the
glycolytic oscillations in yeast, with varying volume allowed (based on: Bier et al., 2000).



tude, phase shift, or time pattern deformation
can be detected. The significance of the vol-
ume change regime is also dependent on the
process class, especially for natural rhythms.
The most important theoretical conse-

quence of incorporation of volume changes
into kinetics considerations seems to be the
phenomenon of volumetrically forced oscilla-
tions. The matter is presented below.
First, let us consider a simple “mathemati-

cal” cell (Fig. 7a), with one molecule of inter-
est in the beginning (initial conditions). From
time t = 0 two analyzed molecules (per life-
time, per initial volume) are synthesized. For
simplicity assume that the lifetime of such a
cell equals two time units. During the first
unit of time our cell produces one new mole-

cule. In the second temporal interval it pro-
duces another molecule, a portion of the “new
volume” equal to the initial one, and yet an-
other molecule, created in the new space. At
the end of its life it has doubled its volume
and contains four molecules. Then, the cell di-
vides into halves, each with equal number of
molecules — two.
If the process continues in the same man-

ner, after the next division each cell should
posses 2.5 “mathematical” molecules. The
next cellular generations will have 2.75, 2.875
... 3 molecules. Here, 3 is the limiting value.
When this virtual experiment is repeated
starting with a different initial number of
molecules, in the appropriately late genera-
tions the cells will always contain three mole-
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Table 3. Parameters of the simulation of the extended minimal cascade model for the mitotic oscil-
lator, with varying volume allowed (based on: Goldbeter, 1991).

*Simulations for standard parameters; **simulation for modified parameters.



cules after division. Of course, 3 is not a new
mathematical constant. Simply this is the as-
sumed number of molecules produced by a
single cell during its life, and depends on the
type of cells.
It is also easy to show that the number of

molecules during the “mathematical cell-cy-

cle” stabilizes too, and tends to 4 in the first
half, and to 6 in the second, so stable oscilla-
tions of concentration, between 3 and 4 mole-
cules per initial volume, should be expected
asymptotically during the cell cycle (Fig. 7b).
Can real cells exhibit any similarities to

such “mathematical” cells? The answer is yes,
and the argument is the dynamical stability of
their composition.
The proposed periodic regime of stabiliza-

tion is in opposition to the well known
“steady-state behavior”, for example of Mi-
chaelis-Menten type processes (Schulz, 1994).
It is very easy to establish “steady-state” con-
ditions in vitro but may be hard to find them
in the interior of growing and dividing cells.
It applies not only when the observation time
is of the order or shorter than one of the char-
acteristic times of reaching the enzymatic
equilibrium, but also when it is of the order of
the lifetime of the single cell. The basic rea-
son is the change of the volume of the reac-
tion compartment with time and the related

virtual time-dependent outflow –
A d

dt�
��

�
�

�
�
� of

chemical components. In such a case the lev-
els of all reactants cannot stabilize simulta-
neously and the idea of the steady-state
should be verified.
Although examples of oscillating biological

or chemical processes, i.e. systems not oper-
ating in the steady-state mode, are already
well known, such as: Belousov-Zhabotinsky
reaction (Cross et al., 1997), or theoretical
models: Lotka-Volterra, Brusselator, and
Oregonator (Pojman, 1999), it is reasonable
to consider the oscillations forced by periodic
volume changes separately. This is because
the driving force of the oscillations in the
above cited classic periodic processes is
autocatalysis, which differs strongly from the
periodicity caused by volume growth and divi-
sion, which is a non-autocatalytic effect.
An analytical introduction to the discussed

concept of periodical stabilization of reagent
concentrations in subsequent generations of
varying volume cells, further called perio-
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Figure 6. Oscillations in the mitotic model (Eqns.
10–14), for different volume change regimes — a:
con — constant, i.e. � = �0, b: lin — linear, i.e.
� = �0(1+t/�), c: exp — exponential, i.e. � = �0
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modification of the above to avoid amplitude decrease.
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dization, may be simply presented in the case
of a Michaelis-Menten process.
By addition of Eqns. 3 and 4, and incorpora-

tion of the external enzyme inflow qE, one ob-
tains:

where:

is the total enzyme concentration.
It is clearly seen from Eqn. 15 that even if

the flux qE of enzyme is zero, the concentra-
tion E* changes in time due to the change in
volume �.
The solution of Eqn. 15 gives

with initial values �(0) and E*(0) of the vol-
ume and the total enzyme concentration; � is
an integration variable.
Let us imagine a cell (single compartment)

with the lifetime �, and the volume (which
contains an enzyme of the total concentration
governed by Eqn. 17) increasing from �(0) to

then dividing into halves. When considering
future generations of such cells, all obeying
Eqns. 17 and 18, we may suppose that daugh-
ter cells inherit from the parent cells the con-
centrations of reactants. In other words, the
final concentration in the parent cell becomes
the initial concentration in the daughter cells.
In agreement with this heritability law and
using the net time t' in the range (0–�) for
each generation, one can write down the re-
currence:

with n = 1,2,3... numbering the cellular gener-
ations.
With the assumption that in each cellular

generation the time pattern of the flux qE(�)
is the same, Eqns. 17, 18 and 19 lead to the
following series of initial and final values:
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Figure 7. “Mathematical cell-cycle”.

a: The cell has one molecule of interest in the begin-
ning, at time t = 0, then switches its metabolism from
an arbitrary preliminary mode to the given regime in
which two analyzed molecules are synthesized per life-
time �� per initial volume. The molecules are synthe-
sized uniformly. Doubling of the volume takes place
during the second half of the cycle. b: Asymptotical re-
petitive behavior.
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which at n � � reach the limit

It means that at an invariant time pattern of
enzyme flux the dependence of the total en-
zyme concentration on time tends in the suc-
cessive generations to the invariant periodic
course from E�

* ( )0 to E E� ��* *( ) ( )� 0 described
by the expression

which is not dependent on the starting value
E1 0*( ). This phenomenon we call perio-
dization. Of course, E*(t') would be periodical
from the beginning (first generation) if it
starts at E E1 0 0* *( ) ( )� � . This predicted behav-
ior is clearly confirmed when one simulates
Eqns. 2–5 with incorporation of substrate
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and enzyme external inflows, a proportional
product outflow, def. 16, and the defined pa-
rameters (Fig. 8a). As it can be seen, similarly
to the total enzyme also the substrate, free en-
zyme, complex and product undergo perio-
dization (Fig. 8b–e).
Some of the oscillations already described

as those of NADH (Pye, 1971) or Ca2+ (Cuth-
bertson & Cobbold, 1985) are more frequent,
and higher in amplitude than the volumetri-
cally forced ones. Some small periodicity can
be seen in a report of individually measured
internal pH along the cell cycle in Schizo-
saccharomyces pombe (Karagiannis & Young,
2001).
A separate question is: are volumetrically

forced oscillations desired in the intracellular
system? If not, how can the cell avoid them?
From the mathematical point of view, the eas-
iest way to reach such a goal is to expand ex-
ponentially. Then the term (d�/dt)/� re-
mains constant, not producing periodic dis-
turbance. So, if a given cell volume growths
exponentially, the cell exhibits no perio-
dization. Despite the above, constant volu-
metric dilution should still be considered.
According to our hypothesis the concept pre-

sented above may be applied, instead of the
idea of the steady-state, for processes occur-
ring in a repetitively varying volume compart-
ment, which are very common in cells. Of
course it needs further development to take
into account more complex processes includ-
ing transport and regulation. Both of them
playing an important physiological role, obvi-
ously moderating the simple picture of
periodization sketched above. Studying these
procesess requires, however, different com-
putational approach (Brownian dynamics and
stochastic simulations, respectively). The
model presented here applies only to cases
which can be treated macroscopically.
A future investigation area related with

periodization and cell volume variations may
concentrate around the mechanisms and sig-
naling of cell volume regulation and the ef-

fects of cell volume changes on cellular func-
tions.
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APPENDIX 1

Let us consider a kinetic equation, describ-
ing the evolution of concentration A of a com-
pound processed by a constant rate chemical
process (R = const) in a varying volume com-
partment (�):

The solution of problem A.1.1 with the ini-
tial concentration A0 can be written as:

where �0 is the initial volume, � is an integra-
tion variable.
For special cases of constant volume, and

linear or exponential growth, at the chosen
characteristic period � for the volume dou-
bling, the above solution can be written in the
distinct forms:
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(A.1.1)

(A.1.2)

(A.1.3)



Defining the relative errors of approxima-
tion of the compound concentration at the
volume change omission, elin and eexp, as:

it is easy to calculate that for t/� = 1, and for
the extreme rate conditions:

and
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(A.1.4)

(A.1.5)

(A.1.6)

(A.1.7)

(A.1.8)

(A.1.9)


