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Protein modeling could be done on various levels of structural details, from simpli-
fied lattice or continuous representations, through high resolution reduced models,
employing the united atom representation, to all-atom models of the molecular me-
chanics. Here I describe a new high resolution reduced model, its force field and ap-
plications in the structural proteomics. The model uses a lattice representation with
800 possible orientations of the virtual alpha carbon-alpha carbon bonds. The sam-
pling scheme of the conformational space employs the Replica Exchange Monte
Carlo method. Knowledge-based potentials of the force field include: generic pro-
tein-like conformational biases, statistical potentials for the short-range confor-
mational propensities, a model of the main chain hydrogen bonds and context-de-
pendent statistical potentials describing the side group interactions. The model is
more accurate than the previously designed lattice models and in many applications
it is complementary and competitive in respect to the all-atom techniques. The test
applications include: the ab initio structure prediction, multitemplate comparative
modeling and structure prediction based on sparse experimental data. Especially,
the new approach to comparative modeling could be a valuable tool of the structural
proteomics. It is shown that the new approach goes beyond the range of applicability
of the traditional methods of the protein comparative modeling.
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Under proper conditions of solvent and tem-
perature a majority of globular proteins fold
to a unique three-dimensional structure
(Anfinsen, 1973; Anfinsen & Scheraga, 1975).
Usually, the process is reversible and takes
milliseconds to minutes, depending on the
protein size and structural complexity
(Brooks et al., 1998). In spite of the rapid
progress in the computing technology (com-
puting speed increases approximately two
times every 1.5 year) a brute force approach
to computational modeling of protein folding,
that treats all degrees of freedom (and the
surrounding solvent) in an explicit fashion,
remains impractical (Hansmann & Okamoto,
1999). This is due to the enormous size of the
protein conformational space (Jernigan,
1992; Wolynes et al., 1995; Hardin et al.,
2002), complex interactions and topological
obstacles involved (Alm et al., 2002). Only lo-
cal relaxation processes and folding of small
polypeptides is accessible by the traditional
all-atom molecular mechanics (Ding et al.,
2002). Knowledge of a protein three-dimen-
sional structure is a key to understanding the
protein biological function, to the rational
drug design, protein engineering, etc.
(Skolnick et al., 2000; Simons et al., 2001;
Chance et al., 2002). Experimentally, protein
structures could be determined via the X-ray
crystallography or protein NMR (Montelione
et al., 2000; Chance et al., 2002). Other experi-
mental techniques are presently of a lesser
practical importance. Due to the time-con-
suming techniques, large cost, and other fac-
tors we know now about 30 thousands of pro-
tein structures. This is only a small fraction
(about 0.001) of the number of known protein
sequences, resulting from the systematic se-
quencing of numerous genomes (Klose, 1989;
Arnold & Hilton, 2003) of living organisms of
various complexity, from viruses to humans
(Lander et al., 2001; Harrison & Gerstein,
2002; Cherkasov & Jones, 2004). The above
explains a need for new molecular modeling
tools that can facilitate study of the protein
dynamics (Kolinski et al., 2003a) and thermo-

dynamics and extend the possibility of the in
silico protein structure prediction (Mirny et
al., 2000; Baker & Sali, 2001; Vajda et al.,
2002; Zacharias, 2003; Cherkasov & Jones,
2004; Kihara & Skolnick, 2004).
Protein modeling could be made more trac-

table by reducing the number of explicitly
treated degrees of freedom and by simplifica-
tion of computations of the intramolecular
and intermolecular interactions (Miyazawa &
Jernigan, 1985; Shakhnovich, 1997; Kolinski
et al., 2001). A number of reduced models of
proteins were proposed in the past (Levitt,
1976; Sun, 1993; Monge et al., 1995; Kolinski
et al., 2000; Betancourt, 2003). Some of them
employed a continuous space representation
of the protein conformational space, other
confined the protein to a discrete grid, or lat-
tices (Hinds & Levitt, 1992; Godzik et al.,
1993a; Hinds & Levitt, 1994; Kolinski &
Skolnick, 1996; Sun et al., 1999; Kolinski et
al., 2000; Kolinski & Skolnick, 2004). A typi-
cal example of the first approach is the classi-
cal model proposed almost 30 years ago by
Levitt and Warshel (1975). This approach as-
suming a reduced C� representation of the
main chain and a single united atom repre-
senting the side groups was followed (with
various modifications) by others (Levitt,
1976; Hagler & Honig, 1978). Some continu-
ous space reduced models assumed an all
atom representation of the main chain back-
bone and a single united atom for the side
group (Sun, 1993). Probably, one of the most
advanced (or the most advanced) continuous
reduced model has been proposed by
Scheraga, Liwo and coworkers (Lee et al.,
1999; 2001; Pilardy et al., 2001; Liwo et al.,
2002). This UNRES (UNited RESidues)
model incorporates more realistic intra-
protein interactions, including cooperative
hydrogen bonds and flexible ellipsoidal side
chains. Predictive power of these simplified
continuous models varies from a possibility to
find an overall correct topology (with gener-
ally wrong structural details) within a
number of low energy structures to a low and
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moderate resolution correct structures of
small and simple proteins.
Interestingly, the early lattice models of real

proteins (we defray here from discussion of
protein-like simple lattice models and Go-type
models (Go et al., 1980)) exhibited a similar
level of the structure prediction ability to that
of the simple off-lattice, continuous models
(Covell & Jernigan, 1990; Crippen, 1991;
Covell, 1992). Designed in early 90’ higher
resolution models were capable to predict
moderate and low resolution models of small
globular proteins (Kolinski et al., 1993;
Kolinski & Skolnick, 1994a; 1994b; 1996;
1997b). The interaction schemes of these
models (Godzik et al., 1995) based solely on
the knowledge-based potentials derived from
a statistical analysis of various structural reg-
ularities (Godzik et al., 1993) seen in the
known three-dimensional structures of globu-
lar proteins (Kolinski & Skolnick, 1998b;
Miyazawa & Jernigan, 1999; 1999a; 1999b). It
is worth to mention that a properly designed
Monte Carlo dynamics scheme for lattice
models mimics surprisingly well Molecular
Dynamics (or Brownian Dynamics) of the oth-
erwise equivalent continuous reduced models
(Rey & Skolnick, 1993; 1994). However, the
lattice models facilitate significantly faster
simulations (Kolinski & Skolnick, 2004). Lat-
tice moves could be designed in such a way
that the local conformational transitions oc-
cur between local minima of the model’s en-
ergy landscape — the local energy barriers
could be easily surmounted. Moreover, due to
the finite number of the local conformations
various energy terms for the lattice models
could be calculated “in front”, once for all sim-
ulations, and revoked by simple look-up pro-
cedures during the proper simulations. For
instance, (just to mention a simplest possibil-
ity) all possible coordinates of the �-carbons
could be stored as a function of identities (in-
dices) of two successive virtual C�–C� bonds,
provided the C� positions are restricted to a
lattice. As a result, simulations of the lattice
models are usually a couple of orders of mag-

nitude faster than simulations employing
equivalent continuous models. Thus longer
relaxation processes or/and bigger systems
are computationally accessible (Kolinski &
Skolnick, 1997a; 1997b; 1998; Kolinski et al.,
2001; Kolinski et al., 2003a).
In this work I describe a version of recently

developed high resolution lattice model and
its applications. The model assumes a lat-
tice-confined C� representation of the main
chain backbone, with 800 possible orienta-
tions of the C�–C� vectors. The lattice spac-
ing of the underlying simple cubic lattice (sc)
is assumed to be eual to 0.61 �. Conse-
quently, the �-carbon trace of a PDB (Protein
Data Bank (Bernstein et al., 1977)) structure
of a globular protein could be projected onto
this lattice with the average accuracy range of
0.35 �. This is better than accuracy of the
high resolution crystallographic structures.
Actual accuracy of the model is lower due to
inaccuracies in the model interactions. The
model assumes four united atoms (interac-
tion centers) per residue: �-carbon, center of
the virtual C�–C� bond (serving as a center
of interactions for the peptide bonds), C� and
the center of mass of the side-group (where
applicable). While the coordinates of the
�-carbons are restricted to the underlying sc
lattice, the coordinates of the remaining
united atoms are off-lattice and are defined by
the C�-coordinates and the amino acid identi-
ties. The force-field of the CABS model (an ac-
ronym for C�-B and Side group) consists of
several potentials that mimic averaged inter-
actions in globular proteins. The solvent is
treated in an implicit fashion. The new model
can be used in studies of the protein dynam-
ics and thermodynamics (Kolinski &
Skolnick, 2004), including in silico protein
folding leading to the ab initio prediction of
protein structures (Skolnick et al., 2003) and
protein–protein interactions. In this paper I
describe a test application to the loop-model-
ing, a typical task of the comparative model-
ing (Sali, 1995) of protein structures in the
range of significant sequence similarity,
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where a high fidelity of a modeling protocol is
strongly required (Schonbrun et al., 2002).

DESIGN OF THE MODEL AND ITS
FORCE FIELD

Representation of the protein conforma-
tional space of the present model is relatively
simple and could be easily reproduced basing
on the description given in the next section
and in an earlier published work (Boniecki et
al., 2003). Significantly more complex is the
design of the force field, which needs to cor-
rect for the reduced representation and an
implicit treatment of the solvent. The deriva-
tion of all components of the new interaction
scheme is outlined in detail. Due to large size
of the files containing numerical data for the
histogram-type potentials only some exam-
ples are provided here. The full set of the
force field parameters could be viewed and
downloaded from our homepage: www.
biocomp.chem.uw.edu.pl

Protein representation

The framework for the protein representa-
tion and the conformational updating during
the Monte Carlo simulations consist of a
pseudochain of the �-carbons confined to the
underlying sc lattice with the lattice spacing
equal to 0.61 � (see Fig. 1). This particular
value of the lattice spacing has been selected
taking into consideration the assumed resolu-
tion of the model (the average accuracy of the
C� trace representation is equal to about
0.35 �) and some other factors related to the
range of interactions, the protein geometry
and the computational efficiency and feasibil-
ity. Nevertheless, the choice of the lattice
spacing is to some extent arbitrary — a related
earlier model (Li et al., 2003; Skolnick et al.,
2003) assumed the lattice spacing equal to
0.87 �. The virtual bonds connecting the C�s
have a form of vectors with integer coordi-
nates v = [±i, ±j, ± k]. The length of these vec-

tors |v| is restricted to the following range:
29 � |v|2 � 49 (in the lattice units). This im-
plies that the number of possible C�–C� vec-
tors is equal to 800 and the length of the vec-
tors varies between 3.28 � and 4.27 �, with
the average value very close to the C�–C� dis-
tance seen in the real proteins, which is equal
to 3.78 �. The fluctuating bond length of the
model ensures efficient chain dynamics and

prevents effects of various lattice artifacts.
For instance, the lattice anisotropy, charac-
teristic for the low resolution lattice protein
models (Godzik et al., 1993a; Reva et al.,
1996), is undetectable in the present repre-
sentation.
Positions of three consecutive �-carbons de-

fine rather precisely position of the �-carbon
for the central residue. The �-carbons are lo-
cated off-lattice. The position of the center of
the remaining portion of the side group corre-
sponds to the most probable (over the data-
base of protein structures) rotamer, given the
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Figure 1. Short fragments of alpha-carbon traces
representing a �-sheet and an �-helix confined to
the underlying simple cubic lattice with lattice
spacing equivalent to 0.61 � in real proteins.



type of the main chain conformation, which is
assigned as expanded (presumably �-strand
or expanded loop) or compact (a helix or a
turn), depending on the value of the planar
angle of the C�-trace. Similarly, to the design
of the earlier cited UNRES model (Lee et al.,
1999), here it is also introduced an additional
“united atom” located in the center of C�–C�
virtual bond. It supports the definition of the
main chain hydrogen bonds. The idea of the
reduced representation employed in this
work is illustrated in Fig. 2.

Sampling scheme

Monte Carlo conformational updating of the
model chain employs several types of local
micromodifications of the �-carbon trace as-
sociated with proper displacements of the
side chain united atoms. Various micro-
modifications occur in randomly selected lo-
cations and the resulting changes of the local
geometry are selected in a random fashion. A
single step of the simulation algorithm

(a time unit of the Monte Carlo dynamics)
consists of 2 attempts to the end moves,
10(N-2) attempts to the two-bond moves, N-3
attempts to the three-bond moves, N-24 at-
tempts to the small distance “rigid-body” type
modifications (where the size of the effected
portion of the chain is a random variable) and
N-24 “reptation” type moves, where a “bub-
ble” on the �-carbon trace is annihilated in
one spot and randomly created somewhere
else along the chain (the residues between the
“bubbles” move down the chain contour with-
out a change of the local geometry of the
�-carbon trace). The larger scale moves (the
“rigid body” and “reptation”) extend over por-
tions of the model chain consisting of 4 to 22
residues. Figure 3 shows examples of the all

types of the local micromodifications em-
ployed in the simulation algorithm of our
model. Obviously, due to the excluded volume
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Figure 2. Schematic drawing of the reduced rep-
resentation of a fragment of a protein chain.

The large open spheres illustrate approximate range of
interactions between non-bonded united atoms, except
for the centers of the peptide bonds. See the text for
more details.

Figure 3. Examples of random micromodification
of the model chain conformation.

The positions of the side chain united atoms are de-
fined by the conformation of the main chain, and
therefore their changes are not shown for the sake of
clarity.



clashes the larger scale moves are less fre-
quently successful. The most local moves
(two-bond) are attempted more frequently to
allow for an equilibration after the larger
scale updates. All moves are subject to vari-
ous conformational restrictions described in
the next section.
The asymmetric Metropolis Monte Carlo

scheme controls the simulation process (Me-
tropolis et al., 1953). Depending on a purpose,
the simulations are carried out in the isother-
mal conditions, are subject to a simulated an-
nealing procedure or are controlled by the
Replica Exchange Monte Carlo (REMC)
scheme (Swendsen & Wang, 1986). The
REMC technique is significantly more effi-
cient in finding the global energy minima in
systems (Hansmann & Okamoto, 1999; Gront
et al., 2000) with extremely complex confor-
mational energy landscape (which is exactly
the case for the present model). Thus, REMC
(and its variants) is a method of choice in the
ab initio folding (Skolnick et al., 2003), fold-
ing with experimental restraints (Li et al.,
2003), comparative modeling (Bujnicki et al.,
2001; Kihara et al., 2001; Kolinski et al.,
2001; Rotkiewicz et al., 2001) and similar ap-
plications (Boniecki et al., 2003), where the
main goal is to find the global minimum of the
conformational energy (Kolinski et al.,
2003b), regardless of a rather nonphysical
dynamics or distorted the folding pathway.

Generic, sequence independent short range
interactions

The lattice-confined chain of the CABS rep-
resentation is very flexible. Its average distri-
butions of the local conformational character-
istics generated in a MC run are far from that
seen in real proteins. This is mostly due to the
lack of atomic details, resulting in inaccurate
excluded volume effects and lack of the spe-
cific rotational restrictions of the polypeptide
chains. Thus, our first goal is to design a set
of sequence independent potentials which
correct for a majority of the deficiencies of

the reduced representation. These confor-
mational biases are outlined below and a rea-
son for the line of design is provided for each
of them. The guideline for these generic inter-
actions comes from the distribution of confor-
mations seen in the real proteins, taken from
a statistical analysis of the solved PDB struc-
tures. An implicit underlying assumption is
that the local conformational characteristics
seen in folded structures are not far from the
related characteristics of the polypeptide
chains in their denatured state. While it is
just an assumption, there are numerous rea-
sons that this is a legitimate working hypothe-
sis (Godzik, 1996; Rooman & Gilis, 1998;
Mohanty et al., 1999; Shimada et al., 2000;
Kuznetsov & Rackovsky, 2002; Evers et al.,
2003).
Planar angle restrictions. Figure 4 shows

a short fragment of the C�-trace of the CABS
model and provides an explanation of the no-
tation used in this section. In a protein the
planar angle for the C�-trace is restricted due

to various short-range (between atoms close
along the chain) interactions. Due to the fluc-
tuating length of the virtual backbone vectors
v, it is better to translate the angular restric-
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Figure 4. Illustration of the abbreviations used in
the definitions of short range conformational bi-
ases described in the text, where ri stands for the
Cartesian coordinate of the i-th C� and vi is the
corresponding vector of the virtual C� chain.

The open arrows indicate “normalized” bisector vec-
tors b of the planar angles.



tions onto a restriction on the distances be-
tween i-th and i+2nd C�s. The resulting condi-
tion is:

4.1 � � | ri+2 – ri | � 7.4 � (1)

where ri denotes the Cartesian coordinates of
the i-th bead (C�) of the chain. This roughly
translates onto 70o–150o range for the planar
angles in the peptides. The symbol ”| r |” in
the above formula means the length of the
vector r.
Biases towards protein-like chain stiff-

ness. The distribution of the end-to-end dis-
tances for a short four-bond generic CABS
chain is close to the Gaussian-type distribu-
tion. In proteins the corresponding distribu-
tion is bimodal, with the short distance peak
corresponding to the compact (mostly helical)
conformations and the long distance, a more
diffused peak corresponding to the expanded
conformations. Such distribution can be en-
forced by the following simple potentials:

BB = 0.5×f×�g (2)

when: (vi–1 � vi+3)<0 and
| ri+4 –ri |< 7.2 �,

or when: (vi–1 � vi+3)<0 and
| ri+4 –ri |>11.0 �

where: symbol “�” denotes the dot product of
two vectors, �g is the scaling factor common
for the all “soft” short-range energetic biases
B and f is a scaling factor applied to the single
domain globular proteins, and reflecting a dif-
ferent flexibility of a polypeptide chain in the
protein core and in the surface loops. It scales
with the radius of gyration of a globular pro-
tein in the following way:

f = min(1,  (S/s)2 ) (3)

where: S is the radius of gyration of the
folded protein (assuming a close to spherical

shape of the single domain proteins the value
of S can be computed from the number of res-
idues in the chain (Kolinski et al., 1993) and s
is the mean square distance of the center of
mass of a chain fragment from the center of
mass of the polypeptide chain in its actual
conformation. For the multidomain proteins
it is assumed that f = 1 for all residues. In the
cases of a comparative modeling or a re-
strained folding it is also convenient to set f =
0. However, this position dependent scaling
of the conformational biases plays some role
in the ab initio folding simulations, accelerat-
ing the chain collapse.
Let us define a normalized “bisector” vec-

tors bi of the planar angles:

bi = (vi–1 – vi)/| (vi–1 – vi) | (4)

and a “normalized” sum of four consecutive
vectors b:

S4 = max{ |(bi+1 + bi+2 + bi+3 +

bi+4 )|, 0.5} –0.5 (5)

In protein structures the i-th and i+2nd b
vectors are either almost parallel (expanded
conformations) or almost antiparallel (com-
pact, mostly helical conformations). The
neighboring vectors are non-parallel. The
sum S4 has a “small” value for the majority of
protein fragments. Exceptionally, it assumes
a larger value in some loops. Therefore, the
largest values of the sum were cut to the value
of 2.0. These regularities can be encoded in
the following potential, which propagates the
local protein-like stiffness for a somewhat
larger distance down the chain:

BS = min {2.0, S4} × 0.5 × f × �g (6)

when:  (bi+1� bi+2 ) + (bi+2�bi+3 ) < 0.25

BS = 0     otherwise.
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Bias towards regular secondary struc-
ture. Helices in proteins are usually right
handed, with a characteristic value of the dis-
tance between the residues along a helix.
�-Strands have usually an up-and-down geom-
etry. These conformational properties are for-
malized in the following potentials:

BH = –0.5 × f × �g – �g (7)

for: | ri+4 – ri | < 7.2 �,
and: 4.0 � < | ri+3 – ri | < 7.0 �,
and 4.0 � < | ri+4 – ri+1| < 7.0 �,

and both above fragments are right-handed,
and residues i+1, i+2, i+3 are not assigned as
�-type,

and (vi+1 � vi+3) < 0   and (vi � vi+3) > 0

BE = –0.5 × f × �g – �g (8)

for: | ri+4 – ri | >11.0 �,

and residues i+1, i+2, i+3 are not assigned as
�-type,
and (bi+1 � bi+2) < 0,
and (bi+2 � bi+3) < 0

The scaling factor f has the same meaning
as it had in the previously defined potentials,
reflecting a higher propensity towards a regu-
lar secondary structure in a protein core.
When the secondary structure is depend-

ably assigned (predicted, or taken from a tem-
plate) a longer fragment could be biased to-
wards a proper geometry, provided that the
entire stretch has the same helical or ex-
panded secondary structure assignment:

BHH = � × (0.25 × d × �g + 0.5 × �g ) (9)

for residues i-th to i+7 assigned as helical
where:  d =  abs(|ri+7 – ri|–10.75 �),
and � = 0 for d < 0.61 and � = 1 elsewhere,

BEE = � × (0.25 × d × �g + 0.5 × �g ) (10)

for residues i-th to i=6 assigned as expanded
where: d = abs(|ri+6 – ri|–19.1 � ) –1.0 �,
and � = 0 for d < 1.22� and � = 1 elsewhere.

In the above definitions, 10.75 � is the aver-
age distance between the i-th and the i+7th

residues in helices, while 19.1 � is the aver-
age distance between the i-th and the i+6th

residues in �-strands. The different cut-off
values for BHH and BEE are related to the dif-
ferent variability of the geometry of helices
and sheets, respectively.
Bias against “crumpled” structures. An

another structural property could be used to
regularize the chain conformation and to
speed-up the folding simulations by avoiding
a non physical local geometry. Namely, highly
folded “crumpled” conformations, where the
U-turns changing the direction of the chain
propagation are very close to each other along
the chain, are extremely rare in the protein
structures. This is encoded in the following
potential, where the minimal length of a frag-
ment between turns (including a turn length)
is assumed to be larger than 5 residues:

BC = 4.0 × �g (11)

for: (ri+5 – ri) � (ri+10 – ri+5) < 0
and (ri+15 – r10) � (ri+5 – ri) > 0

The value of the scaling factor 4.0 is an arbi-
trary one.
The total energy of the sequence independ-

ent (generic) short-range interactions is equal
to the sum of the all components:

Eg = � (BB + BS + BH + BE + BHH +

+ BEE + BC) (12)

where � denotes summation along the model
chain.
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The energy parameter �g has the same value
for all contributions and its value has to be op-
timized for a proper balance between the
short-range and the long-range interactions in
the model. In Monte Carlo simulations con-
trolled just by the above described generic
protein-like conformational propensities the
model chains (when cooled to a low tempera-
ture) adopt conformations with short helical
and expanded fragments of a fluctuating
length. The design of such protein-like poten-
tials provides a good background of the en-
ergy landscape. As a result, the sequence spe-
cific potentials are capable to trigger forma-
tion of native-like local and global structures.
In other words, the generic potentials reduce
the conformational entropy, and restrict the
conformational space to be searched in the
simulations. Moreover, such potentials form
a scaffold of a funnel in the energy landscape
enabling for a lesser specificity of the se-
quence-dependent interactions. This seems
be a very important feature, since a high spec-
ificity of the sequence dependent force field is
very difficult to achieve due to the enormous
number of various, often competing, interac-
tions in proteins. The idea of such struc-
ture-regularizing potentials is typical for our
previous work, however recently it became
more and more explored by others in various
contexts of the protein modeling and struc-
ture prediction.

Sequence dependent short range
interactions

The sequence dependent short-range poten-
tials were derived basing on a statistics of a
non redundant database of the three-dimen-
sional protein structures. These statistical po-
tentials of the mean force reflect a relative
frequency of observation of a given local ge-
ometry for given pairs of amino acids, in re-
spect to the random amino-acid composition
and the random distribution of distances.
Three types of potentials contribute to the
sequence specific interactions:

E13 = E13(|r3 – r1 |, A3, A1) (13)

E14 = E14(|r4 – r1 |*, A3, A2) (14)

E15 = E15(|r5 – r1 |, A4, A2) (15)

where Ai is the identity of the amino acid at
the i-th position along the chain.
These potentials have the form of histo-

grams, separate for the all possible pairs of
amino acids. The E13 potentials have 8 bins of
r13, from 0 to 8 � (conformations correspond-
ing to the first four bins are not observed in
the database, and an arbitrary high value of
the energy is assigned to them), the E14 po-
tentials have 24 bins of r*14, from –12 to
12�, where the sign of the “distance” denotes
the chirality (left handed conformations are
assigned to the negative part of the histogram
and the right-handed to the positive part) and
the E15 potentials have 16 bins of r15, from 0
to 16 � (again the four first bins are prohibi-
tive). In principle, these potentials should be
three amino acid dependent, four and five
amino acid dependent, for the E13, E14 and
E15, respectively. However, the statistics
would be too weak for a larger number of
amino acids and the resulting data files would
be too large. Thus two locations along the rel-
evant fragments were selected, aiming on the
highest specificity of the resulting potentials.
The full data set for these potentials could be
viewed and downloaded from our homepage:
www.biocomp.chem.uw.edu.pl and two illus-
trative examples of the E14 potential are
given in Fig. 5. The total short-range se-
quence dependent conformational energy is
the weighted sum of the all components along
the chain:

Es = � (0.5×E13 + E14 + E15) (16)

The lower weighting of the E13 components
is assumed due to their low specificity — the
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distances between i-th and i+2 residues do not
differ too much for various amino acids. Be-
sides the potentials averaged over the entire
database three additional sets of potentials
were derived: one for the only helical frag-
ments, one for the sheets and one for the
coils. In the cases when the predicted or
known secondary structure is available the
secondary structure specific potentials can be
used for the entire chain or for its fragments.
In the case of predicted secondary structure it
proven to be productive to use a 50/50 aver-
age of the secondary structure specific and
the averaged potentials to allow for a correc-
tion of the secondary structure prediction
errors during the simulations.

Hydrogen bonds

Main chain hydrogen bonds imply a specific
geometry of the C� trace. Due to the reduced

representation assumed in the CABS model
the H-bonds are defined as directional inter-
actions between the alpha carbons. This ap-
proach requires a “renumbering” of the inter-
acting residues. For example, the hydrogen
bond between the i-th and i+4th residues in
helices is replaced by the C�–C� interactions
between the i-th and the i+3th C�s. Figure 6
illustrates such an ersatz of the hydrogen
bonds used in the force field of the CABS
model. The vectors h are orthogonal to the
planes formed by the two consecutive C�–C�
vectors, and their length is equal to 4.6 �.
Residues i and j are considered to be “hydro-
gen bonded” when the following set of geo-
metrical conditions are fulfilled:

|ri –rj| < 6.1 �

abs(hi � hj) >16  (in �
2)

(vi–1 � vj–1) > 0  and  (vi+1 � vj+1) > 0
or (vi–1 � vj+1) < 0  and  (vi+1 � vj–1) < 0
|ri – rj| – | hi | < 1.83 � (17)

The first line defines the cut-off distance for
the “hydrogen bonded” residues measured by
the corresponding C�–C� distance. The sec-
ond line defines a directional cut-off for the
vectors h. The angle between two vectors has
to be smaller than 40o or greater than 140o,
i.e. these vectors have to be almost parallel or
almost antiparallel, respectively. The third
line says that the interacting two bond frag-
ments of the backbone have to be in a roughly
parallel (as in helices and parallel �-sheets) or
roughly antiparallel mutual orientation (as in
antiparallel sheets). The last condition means
that the vector hi needs to coincide approxi-
mately with the relevant C�–C� vector. The
definition (see Fig. 6) allows for up to two “hy-
drogen bonds” per one C� (as in real pro-
teins). The hydrogen bond interactions be-
tween the i-th and i+4th C�s are forbidden in
this model. Such a restriction leads to a better
geometry of the helices and the tight turns.
The strength of the model hydrogen bonds is
distance (the first component) and angle de-
pendent (the second component):
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Figure 5. Examples of the E14 short range poten-
tials.

The upper panel shows a case of a helical sequence
where the helix-forming Ala residue appears on the
second and the third position of the four residue (three
virtual bonds) fragments. The lowest energy is ob-
served for the range of 5–6 �, characteristic for heli-
ces. The value +2 of the energy corresponds to an arbi-
trary cut-off for very high or infinite values. The lower
panel shows an example of �-sheet forming residues
(Thr and Val). A large low energy basin for negative
(left handed conformations) values of r14 correspond
to the most typical �-sheet conformations.



Eh =
�h × �h × (1.0 + (4.25/max{4.25,min{6.01,
rpp}})

4 –0.25 + (4.25/max{4.25,min{6.01,
rqq}})

4 –0.25) + �� × ��×( 2.0 – max{(bi � (ri –
rj)/6.1)

2, 0.125} – max{(bj � (ri – rj)/6.1)
2,

0.125}) (18)

where: rpp and rqq denote the proper distance
between the centers of the peptide bonds con-
nected with the C�s of interest (see Fig. 6),

and 4.25� is the value of this distance in the
hydrogen-bonded elements of a regular sec-
ondary structure. �h = 1 when all the above
listed geometrical condition are satisfied and
�h = 0 otherwise. �� = 1 when the first three
conditions are satisfied and �� = 0 otherwise.
The scaling factors were optimized and their
values are: �h = –1.25 and �� = –0.25. The cri-
terion of the optimization was as good as pos-
sible correlation of the model H-bonds with
H-bonds assignments in PDB structures by
Kabsch and Sander (1983) method DSSP. For
well folded model structures about 90% of the
model hydrogen bonds coincide with the na-
tive H-bonds. The total energy of the hydro-
gen bonds reads as:

EH = �� (gij × Eh� (19)

Where gij is the factor that increases the
strength of the hydrogen bonds in elements of
regular elements secondary structure (pre-

dicted or assigned) and is equal to 1.5 for the
intrahelical hydrogen bonds and the �-sheet
assigned residues; otherwise, gij = 1.0. Such a
scaling increases the success ratio of a correct
topology assembly in an ab initio folding. It is
known, that strongly predicted �-strands are
usually buried inside a globule, while the
edges of �-sheets are frequently less regular
and more difficult to predict. The stronger hy-
drogen bonds tend to be saturated first. Con-
sequently, proper strands tend to be buried
inside a protein structure. The intrahelical hy-
drogen bonds propagate helices, and the
weaker bonds at the ends of helices can break
the pattern leading to formation of a turn or
loop.

Long range interactions

The long range interactions between the
united atoms of the model consist of the hard
core repulsions (infinite energy) between C�
and C� units, with the cut-off distances given
in Table 1, and pairwise interactions of a fi-

nite strength. The simulation algorithm de-
tects potential overlaps before all the remain-
ing energy computations to be done. Other in-
teractions are of a finite magnitude.
Generic repulsive interactions. Besides

the hard-core repulsions there is a soft-core
tail as defined below (for the pairs of united
atoms that are not the nearest neighbors
along the sequence):

EC�–C� = 	 for dC�–C� � 3.05 �

= �r × ((3.05/dC�–C� )2 –0.5)
for 3.05� < dC�–C� < 4.31� (20)
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Figure 6. Explanation of the geometry of the
model hydrogen bonds.

Interaction Cut-off (�)

C� – C� 3.05

C� – C� 3.66

C� – C� 3.05

Table 1. Cut-off distances for the hard-core re-
pulsive interactions



Similar soft repulsive interactions are ap-
plied between the C�s and centers of peptide
bonds:
EC�–pb = �r × ((4.23/max{4.23,dC�–pb})

2 –0.75)
for dC�–pb � 4.88 � (21)

and between C�s and the side-groups:

EC�–SG = �r × ((3.66/max{4.48,dC�–SG })2 –2/3)

for dC�–pb � 4.48 � (22)

Sequence dependent long range interac-
tions. The only sequence dependent long-
range interactions are these between the side
groups, where the center of interactions coin-
cides with the center of gravity of a side chain
that includes the alpha carbon (and the all
heavy atoms are treated as identical). A very
important difference between the CABS force
field and other approaches is the context de-
pendent definition of the pairwise
interactions.

Ei,j = �r for   di,j � Dmin(Ai, Aj, �i, �j,

�i,j) = �(Ai, Aj, �i, �j, �i,j)  for  Dmin(Ai,

Aj, �i, �j, �i,j) < di,j � Dmax(Ai, Aj, �i, �j,

�i,j) = �(Ai, Aj, �i, �j, �i,j) ×(Dmax(Ai, Aj,

�i, �j, �i,j)/ di,j)
2

if  Ai, Aj are charged (23)

All pairwise interactions depend on:
�the identity of both involved amino acids

Ai and Aj,
�conformations of the interacting seg-

ments of the main chain, measured by the
values of the planar angles of the C�-trace,
�i and �j (indices �i and �j assume only
two values: open and compact, and the
threshold is equal to 6.0 � for the ri–1,i+1
distance.

�and the mutual orientation of the contact-
ing side groups, measured by the value of
the product bb = (bi � bj). Three types of
contacts are taken into account: parallel

(bb > 0.5), antiparalle (bb < –0.5) and in-
termediate (–0.5 � bb � 0.5).

The values of the interaction parameters (let
us use a short-hand notation) � (i,j) and the
values of the cut-off distances Dmin(i,j) and
Dmax(i,j) depend on these attributes. The
width of the square-well potentials was ad-
justed as Dmin(i,j) = Dav(i,j) – 2.0 � and
Dmax(i,j) = Dav(i,j) +0.5 �, where the average
contact distances of Dav(i,j) were extracted
from a statistical analysis of the protein data-
base. In this statistical analysis two side
groups were assumed to be “in contact” when
any pair of their heavy atoms were closer to
each other than 4.5 �. The numerical values
of these potentials can be found in our
homepage.
Taking into account the mutual orientation

of the side groups and the conformation of
the main chain fragments involved is ex-
tremely important for the specificity of the re-
sulting potentials (Buchete et al., 2004;
Kolinski & Skolnick, 2004). For instance, for
a pair of two oppositely charged amino acids
the averaged potential (as it can be seen in
many interaction scales) has a small, close to
zero, value. Statistical potentials that take
into consideration mutual orientation of the
interacting groups have large negative values
for the parallel contacts and positive values
for the antiparallel contacts. Indeed, in the
globular proteins the charged residues inter-
act on the surface of a protein and thereby are
almost always parallel. In order to interact in
an antiparallel fashion the side groups have
to be buried inside the globule. A numerical
example for the Lys–Glu interaction parame-
ters is given in Table 2. It shows clearly a ra-
tionale for the approach presented in this
work. For the purpose of a faster collapse of
the model chain the long range pairwise po-
tentials � (i,j) were shifted by –0.5.
In cases where it is obvious that a protein

consist of a single globule the above defined
force field could be supplemented with a weak
one-body centrosymmetric potential that fa-
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cilitates faster collapse of a globule and conse-
quently a faster folding.

Total energy

The total conformational energy of the
CABS protein is a weighted sum of the all
components. An optimization of the weights
of particular contributions leds to the follow-
ing results:
�short range sequence-independent interac-

tions (�g = 0.75)
�short range sequence-dependent interac-

tion: scaling factor 0.375 (for the sum given
in Eqn. 16 )

�hydrogen bonds: scaling factor 1 (for the
sum given in Eqn. 19)

�repulsive interactions: �r = 5.0
�long range pairwise interactions, scaling

factor 2.0 (after summation of all pairwise
interactions)
The force field outlined above may appear a

bit complex. This is a result of a necessity to
correct for the reduced representation. A
number of the cut-off parameters had to be
carefully derived from the statistical analysis
of the known protein structures. The neces-
sity of the weighting of particular compo-
nents of the force field is a result of the par-
tial over-counting of the real physical interac-
tions. In particular, the effect of a solvent is

partially accounted for in several potentials
(mostly in the interactions of the side chains)
in an implicit way. A priori scaling of the all
interaction parameters in such reduced mod-
els is extremely difficult, if at all possible. Af-
ter all, a physical behavior of the model
provides a justification for the design of its
force field.

PREVIOUS APPLICATIONS IN
STRUCTURE MODELING

The force field of the CABS model has been
recently updated, using a larger and carefully
filtered database of protein structures. Some
minor details of the hydrogen bond model
and the generic short range interactions were
also changed. Nevertheless, the basic con-
cepts of the present model are similar to the
assumptions of the models used in several
earlier applications (Kolinski et al., 1995;
1998a; 1998b; 1999; 2000; 2001; 2003a;
Kolinski & Skolnick, 2004). During the
CASP5 (Critical Assessment of the protein
Structure Prediction) two different clones of
the CABS model were used to predict the
structures of all the targets of various degree
of difficulty, from the comparative modeling,
throughout the fold recognition to the new
fold category (Skolnick et al., 2003). Interest-
ingly, the reduced representation CABS algo-
rithm performed very well in the comparative
modeling category, in many cases providing
better molecular models than the models re-
fined by the detailed all-atom algorithms.
Moreover, frequently the resulting models
were better (closer to the native structure)
than any of the templates used.
Recently, we performed a well-controlled ex-

periment of a computational reconstruction
of missing fragments of protein structures
(Boniecki et al., 2003). Three reduced models
(moderate resolution SICHO model, CABS,
and REFINER — a model similar in design to
the CABS model, however with a continuous
space representation of the protein geometry)
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P M A

CC –0.9 –0.4 0.9

EE –1.1 –0.4 0.6

CE –0.2 0.1 0.8

EC –0.2 0.0 0.8

Table 2.  Contact potential for Lys–Glu interac-
tions

P, parallel orientation, M, intermediate, A, antiparallel;
CC, residues i and j have compact conformations (see the
text); EE, residues i and j have open (expanded) conforma-
tions; CE, residue i is in a compact conformation, j in an
expanded conformation; EC, residue j is in a compact con-
formation, i in an expanded conformation.



were compared with the classical methods of
comparative modeling (Sali, 1995) (MODEL-
LER and SwissModel). The reduced models
performed much better. The largest gain in
accuracy was observed in the cases where rel-
atively large fragments (20 residues or more)
were reconstructed, assuming knowledge of
the remaining portion of protein structures.
Thus it appears that the reduced models, due
to their ability to handle a larger scale struc-
tural rearrangements in proteins, are comple-
mentary (when compared to the more classi-
cal approaches) tools of the protein structure
modeling and the structure prediction. In this
contribution I illustrate an application of the
CABS model to several test cases of an “easy”
loop modeling, where a high geometrical
accuracy is required.

LOOP MODELING: A TEST OF THE
APPLICABILITY OF THE REDUCED
MODEL IN THE COMPARATIVE
MODELING

Comparative modeling is now the most com-
monly used approach to the theoretical pre-
diction of protein structure (Holm & Sander,
1996; Sali, 1998; 2001; Clark, 1999). Since a
protein structure (and function) is evolution-
ary more conserved than the protein se-
quence (Clark, 1999), a sequence similarity of
a new protein to a protein (or proteins) of
known structure implies their structural simi-
larity. A template protein could be identified
by a sequence comparison method (Altschul
et al., 1997) or a threading algorithm (Godzik
et al., 1992; Rost et al., 1997; Jones, 1999;
Skolnick et al., 2000; Schonbrun et al., 2002;
Ginalski & Rychlewski, 2003; Kihara &
Skolnick, 2004). The most conservative ap-
proach to the comparative modeling (some-
times called homology modeling, albeit
strictly speaking homology is not required for
the sequence and structure similarity) as-
sumes that the most conserved is the hydro-
phobic core of a protein and that the align-

ment of the query sequence to the template is
the most dependable in these regions of a se-
quence that corresponds to the core of a pro-
tein. It is frequently assumed that within the
core region a model resulting from the com-
putational modeling can not be better than its
template. This is not always true — methods
exist that are capable of building models that
are closer in the conformational space to the
real structure of a query protein than to its
template (Kolinski et al., 2001; Kolinski &
Skolnick, 2004). Nevertheless, in order to de-
velop such methods one needs first to make
sure that a new methodology works well in
these more classical examples where the core
is well defined and only the loops need to be
added to the model (Fiser et al., 2000). This is
the purpose of the test computations pre-
sented in this work. The procedure is very
similar to that used recently by Fiser and Sali
(2003) for evaluation of their new algorithm
for the loop modeling. Following the main
line of this work I selected PDB structures of
few representative globular proteins and as-
sumed that the alignments of their sequences
to hypothetical templates are the perfect ones
within the protein cores, and correspond to
the regions of the regular secondary structure
elements. Then all the loops were treated as
unknown and were rebuild using the CABS
model.
The modeling procedure applied here may

be outlined as follows:
�Make the DSSP assignment of the second-

ary structure of a test protein using its
PDB coordinates. The data are given in
Table 3.

�Assume that all residues assigned to heli-
ces (H) or sheets (E) constitute the model-
ing template and their coordinates are
known. The remaining “loops” are treated
as unknown.

�Generate a set of the distance restraints
for the template. For each C� within the
core five distances to the residues uni-
formly distributed along the template part
of the chain were stored and applied as a
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soft restraints keeping this part of molecule
within about 0.5 � from their original posi-
tions (a value typical for average accuracy
of very good structural alignments), except

the residues flanking the loops where the
accuracy was range of 1.0–1.5 �.

�Generate random conformations of the
loops.

�Rebuild the loops and relax the protein core
using the CABS model and the REMC opti-
mization technique for the conformational
search.

�Select the lowest energy structures (from
the lowest temperature replica) for the sta-

tistical analysis (involving a comparison to
the original PDB structures).
Actually, the last step could be modified to

improve the prediction accuracy. Namely, one
can perform a clustering of the all structures
from the folding trajectory (Betancourt &
Skolnick, 2001), next rebuild the atomic de-
tails (Feig et al., 2000) of the cluster’s cen-
teroids, and then select the best structure us-
ing various bioinformatics tools for evalua-
tion of the structure quality. Here, however
the simplest possible energy-based criterion
is used. Therefore the presented results pro-
vide rather an upper bond for the prediction
errors.
Simulations were done for five small pro-

teins selected from various structural
classes. These proteins contain significant
fraction of the loop residues — up to 46% (41
residues) in the case of the 1ten structure.
All loops in a protein were modeled simulta-
neously. Thus, the present method goes sig-
nificantly beyond the range of applicability
of the recently proposed all-atom proce-
dures. At the same time the accuracy (see
Table 4) of the reduced approach is high and
similar to the limits of performance of the
best existing algorithms. Table 4 provides
the cRMSD values of the alpha carbons
only. The average accuracy of the all back-
bone atoms is very similar, usually slightly
better, although somewhat dependent on a
method of the full backbone reconstruction.
Figures 7 and 8, and the left side panel of
Fig. 9 show five examples of the obtained
models optimally superimposed onto the
corresponding crystallographic structures.
Clearly, most structural details of the loops
have been reproduced with a good accuracy.
When only a single loop is modeled (assum-
ing known coordinates of the remaining
portion of the structure) the accuracy is al-
ways (usually significantly) higher. Simula-
tions for the longest loop of 2gb1 fold is a
good example (see the right side panel of
Fig. 8).
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Table 3. Sequences and secondary structures
of the test proteins
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Figure 7. Models (thick lines) of 1ten and 2fxd in the alpha carbon representation superimposed onto
crystallographic structures (thin lines).

The colored portions of the chains correspond to the proteins’ cores. The yellow fragments represent the loop re-
gions.

Name type N NL Nmax cRMSD (�)

all core loops

1ten � �	 41 7 1.67 0.54 2.28

256B � 106 22 7 1.28 0.42 2.32

2fdx �
� 138 50 6 1.58 0.49 2.17

2gb1 ��� 56 21 6 1.21 0.57 1.69

2gb1 (single loop modeling) 6 0.81 0.47 1.23

4mba � 146 34 8 1.34 0.60 2.45

Table 4. Statistics for the loop modeling

N, protein length (number of residues); NL, total number of the modeled loop residues; Nmax, the longest loop in a model;
cRMSD, coordinate root mean square deviation from the native structure after the best superimposition; all, cRMSD for entire
model after the best superimposition with the crystallographic structure; core, cRMSD for the core part of the model after best
superimposition of the core; loops, cRMSD for the all loop residues of the model after best superimposition of the core structure.



CONCLUSION

This work describes a model of protein
structure and dynamics. Protein representa-
tion has been reduced to up to four united at-
oms per residue: C�, C�, center of mass of the
remaining portion of a side chain and the cen-
ter of the virtual C�–C� bond. The force field
of the model employs knowledge based poten-
tials derived from the statistical analysis of
the structural regularities seen in the solved
protein structures. The general assumptions
of the model of interactions are similar to
those of our earlier high coordination lattice
models, however the details of the refined
force field differ significantly and enable a
more accurate modeling.

The examples of the loop modeling in pro-
teins described in this work show that the re-
duced model described here is an efficient
tool of the comparative modeling. Its accu-
racy is similar to the accuracy of the more tra-
ditional methods (Fiser et al., 2000; Fiser &
Sali, 2003), however due to the high sampling
efficiency the range of applicability of the
present approach is significantly broader.
Much larger systems (in the present case a
larger number of loop residues modeled si-
multaneously) could be efficiently treated. Re-
cently, we demonstrated that using the CABS
model it is possible to predict, with the accept-
able accuracy, loops containing up to 20–30
residues each (Boniecki et al., 2003). Applica-
tions of the CABS model are not limited to
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Figure 8. Models (thick lines) of 256B and 4mba in the alpha carbon representation superimposed onto
crystallographic structures (thin lines).

The colored portions of the chains correspond to the proteins’ cores. The yellow fragments represent the loop re-
gions.



various problems of comparative modeling.
For instance, the model is now being tested
within an algorithm for flexible docking of lig-
ands (compare Evers et al., 2003) to both: ex-
perimentally determined and theoretically
predicted protein structures. Near-future rec-
tifications of the model’s force-field include
improvements of the selectivity of the short-
and – the long-range interactions by statisti-
cal analysis accounting for the local-sequence
similarity (measured by the similarity of the
sequence profiles) of fragments of a protein
sequence to the proteins of known struc-
tures.

Helpful assistance of Drs. Piotr Rotkiewicz
and Dominik Gront during preparation of
this manuscript is gratefully acknowledged.
The color figures were prepared with the help
of Dr. Rotkiewicz program Biodesigner for se-

quence and structure analysis and visualiza-
tion of biomolecules. Biodesigner is freely
available for non-commercial users and could
be downloaded onto a PC platform via either
of the following homepages:
www.biocomp.chem.uw.edu.pl or
http://www.pirx.com/biodesigne/

or onto Mac platform (this clone is named
iMol) from
http://www.pirx.com/iMol/
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