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Description of the recognition specificity between proteins and nucleic acids at the

level of molecular interactions is one of the most challenging tasks in biophysics. It is

key to understanding the course and control of gene expression and to the application

of the thus acquired knowledge in chemotherapy. This review presents experimental

results of thermodynamic studies and a discussion of the role of thermodynamics in

formation and stability of functional protein–RNA complexes, with a special attention

to the interactions involving mRNA 5� cap and cap-binding proteins in the initiation of

protein biosynthesis in the eukaryotic cell. A theoretical framework for analysis of the

thermodynamic parameters of protein–nucleic acid association is also briefly sur-

veyed. Overshadowed by more spectacular achievements in structural studies, the

thermodynamic investigations are of equal importance for full comprehension of

biopolymers’ activity in a quantitative way. In this regard, thermodynamics gives a di-

rect insight into the energetic and entropic characteristics of complex macro-

molecular systems in their natural environment, aqueous solution, and thus comple-

ments the structural view derived from X-ray crystallography and multidimensional

NMR. Further development of the thermodynamic approach toward interpretation of

recognition and binding specificity in terms of molecular biophysics requires more

profound contribution from statistical mechanics.
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After the sequencing of the human genome

and the genomes of other organisms, a key

task of molecular biology is characterization

of the proteome, i.e. all proteins encoded by

the genomes. Structural proteomics (geno-

mics) aims at high-throughput determination

of three-dimensional protein structures by

means of X-ray diffraction (crystallography),

nuclear magnetic resonance and computer

structure prediction based on sequence

homology with proteins of known 3D fold

(Chance et al., 2002; Yee et al., 2002). The

main goal is to construct molecular models for

the whole protein families that cooperate in

metabolic processes by forming functional

complexes with one another, with ribo- and de-

oxyribonucleic acids, and with various drugs.

As a result, pharmacological agents (antibac-

terial, antiviral and anticancer) are being to

designed for precisely chosen and well charac-

terized protein receptors. Structural proteo-

mics requires cooperation of many well

equipped and financially supported laborato-

ries organized in LSF (Large Scale Facility)

centres.

Knowledge of 3D structures of proteins and

protein complexes with other metabolites by

no means constitutes the full information

about their biological activity. First, large

biomolecules in solution are not rigid

(Karplus & McCammon, 1981; Robinson &

Drobny, 1995). During formation of a func-

tional complex, conformational changes of the

constituents (induced fit) occur in addition to

changes of interaction with the surrounding

water and ions inside the molecular solvation

shell, referred to as preferential hydration

and osmotic stress (Parsegian et al., 1995). Ki-

netic and dynamic studies of proteins and nu-

cleic acid fragments are performed by means

of experimental spectroscopic methods,

stopped-flow fluorescence (Blachut-Okrasin-

ska et al., 2000; Johnson, 1992; Wallis et al.,

1995), time resolved fluorescence (Brauns et

al., 1999; Millar, 2000), nuclear magnetic res-

onance (NMR) relaxation (Fischer et al., 1997;

Robinson & Drobny, 1995), and computer mo-

lecular dynamics (MD) simulations (Karplus

& Petsko, 1990; van Gunsteren & Berendsen,

1990). Second, formation of molecular associ-

ates is ruled by electrostatic interactions be-

tween the charges distributed in the interact-

ing molecules and between the molecules and

the surrounding water. The analysis of the

physical foundations of these interactions is

necessary to understand the stabilization en-

ergy of the complex. The energies of individ-

ual stabilization contacts are close to the ther-

mal fluctuation energy RT about 2.5 kJ/mol at

room temperature. Easily formed and broken,

it is formation of several such specific con-

tacts that stabilize the functional complex in

solution and enables its disruption on chang-

ing environmental parameters and/or bind-

ing regulatory molecules. The overall stability

of a complex is dictated by standard Gibbs

free energy change �G� that involves both

enthalpic and entropic contributions, and

thus requires a thermodynamic approach.

Biochemical processes can be enthalpy

and/or entropy driven in different tempera-

ture ranges. In spite of the rapid development

of single molecule spectroscopy (Weiss, 1999)

and manipulation techniques, i.e. atomic

force microscopy AFM (Stolz et al., 2000), and

optical (Simmons et al., 1996) and magnetic

tweezers (Gosse & Croquette, 2002), most

worked out research methods and models con-

cern macroscopic sets of molecules (statistical

ensembles), where thermodynamic parame-

ters are of primary importance.

In this review some thermodynamic aspects

of specific recognition and binding of proteins

and nucleic acids will be summarized with a

detailed analysis of the association between

mRNA 5� termini (cap) and various cap-bin-

ding proteins, i.e. eIF4E that is engaged in the

processes of translation initiation in the euka-

ryotic cell. Structural studies are reported

only to complete the necessary information

about the interactions in the cap-binding cen-

tres. It will be shown that thermodynamic

analysis of the interactions inside protein

complexes, and between the complexes and
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surrounding aqueous medium, although lag-

ging behind the structural achievements

(Patikoglou & Burley, 1997), is prerequisite to

understanding and describing quantitatively,

in physical terms, the biological functioning

of large molecular systems. Together with 3D

molecular structures and dynamics of confor-

mational rearrangements, thermodynamics

significantly contributes to building molecu-

lar models of the gene expression processes.

METHODOLOGY OF THE

THERMODYNAMIC APPROACH

Formation of molecular complexes involving

proteins and nucleic acids is crucial for biolog-

ical activity of these biopolymers. According

to a fundamental paradigm in molecular biol-

ogy structure determines molecular activity in

vivo (see, e.g., Cho et al., 1994). Due to the

complexity of multicomponent molecular

complexes most studies have concentrated on

some “half-model” systems, composed of two

or a small number of protein fragments and

synthetic nucleic acid oligomers, directly en-

gaged in the intermolecular binding. Up to

date, the structures of more than 250

DNA–protein complexes (Garvie & Wolber-

ger, 2001; Jones et al., 1999) and 20

RNA–protein (Arnez & Cavarelli, 1997;

Draper, 1995; 1999) complexes are known at

atomic resolution. Significant development of

the leading method in the field, X-ray diffrac-

tion on molecular crystals (X-ray crystallogra-

phy), led to the determination of supramolecu-

lar structures of bacterial ribosome compo-

nents at about 3 Å resolution: the 30S small ri-

bosomal subunit from Thermus thermophilius

(Carter et al., 2000; Schluenzen et al., 2000;

Wimberly et al., 2000), and 50S large ribo-

somal subunit from Haloarcula marismortui

(Ban et al., 2000). The crystal structure of the

complete Thermus thermophilius 70S ribo-

some was also reported (Yusupov et al., 2001),

although at a lower resolution of 5.5 Å. The

crystallographic data can now be combined

with single-particle electron microscopy imag-

ing to reconstruct cellular structures, like U1

snRNP (Stark et al., 2001). Numerous struc-

tural investigations of large biomolecules

have been also performed using multidimen-

sional NMR (Riek et al., 2002), after inventing

new pulse sequences, TROSY (transverse re-

laxation-optimized spectroscopy) (Pervushin

et al., 1997) and CRINEPT (cross-correlated

relaxation-enhanced polarization transfer)

(Riek et al., 1999), and application of new tech-

nical achievements like 900 MHz spectrome-

ters equipped with cryoprobes for signal de-

tection.

Resolution of the 3D molecular structures

reveals the stabilizing patterns inside the

macromolecules and their complexes, which

include hydrogen bonding, salt bridges be-

tween positively and negatively charged

groups, �-� and cation-� stacking, van der

Waals contacts, and hydrophobic interactions

of aliphatic molecular parts (Jayaram et al.,

1999; Reyes & Kollman, 2000; Meyer et al.,

2003). Total Gibbs free energy (�G�),
enthalpy (�H�), entropy (�S�), and heat ca-

pacity (�Cp
o
) can be derived from spectro-

scopic and/or calorimetric measurements

(see below). Theoretical assessments of bind-

ing free energies of biopolymers (and associa-

tion equilibrium constants) are also feasible,

usually within the force field approximation

(Gilson et al., 1997; Hermans & Wang, 1997;

Karplus & Petsko, 1990; Lesyng & McCam-

mon, 1993; Luo & Sharp, 2002). Various ap-

proaches have been applied for entropy calcu-

lations in protein folding and binding (Amzel,

1997; Karplus et al., 1987; Lee et al., 1994;

Schafer et al., 2002). However, at issue is the

widely utilized parsing of �G� into contribu-

tions from individual, specific interactions

(Chaires et al., 1996; Chaires, 1997a; Jayaram

et al., 1999; Schneider, 1991), i.e. hydrogen

bonding, van der Waals contacts etc., from

deeming it meaningful (Boresch et al., 1994)

to proving its unreliability (Mark & van

Gunsteren, 1994). The reasoning of Mark and

van Gunsteren is based on the fact that even if
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the energy of a macroscopic system can be ap-

proximated as a linear combination of particu-

lar terms, it is in general not possible to ex-

press similarly the total free energy due to the

entropic term. Nevertheless, the free energy

parsing gives meaningful physical insight into

macromolecular processes as long as the theo-

retically or experimentally data thus obtained

are interpreted with care (Boresch et al.,

1994).

The stability of specific and non-specific

complexes (AB...X) of reactants (A, B,..., X) is

defined by standard free energy change (�G�)
referred to the one molar concentrations. The

�G� value is evaluated from the equilibrium

association constant (Kas) expressed in terms

of the concentrations of the interacting mole-

cules and the absolute temperature (T):

�G� = –RT ln Kas (1)

Kas =
[AB...X]

[A] [B] ... [X]� � � (2)

The observed equilibrium constant thus de-

fined differs from the thermodynamic equilib-

rium constant that depends only on pressure

and temperature. Participation of ions (poly-

electrolyte effect), water (preferential hydra-

tion) and other buffer components, which can

associate with the complex and with the reac-

tants, as well as neglecting of the activity coef-

ficients describing nonideality of the solution,

result in additional dependence of the ob-

served Kas on pH, ionic strength, osmotic

stress and other solution variables (Record, et

al., 1991). Due to the weak van der Waals

forces, proteins and nucleic acid oligomers at-

tract one another nonspecifically with Kas of

the order of 104 M–1 or less for binary associ-

ates. Highly specific complexes, e.g. lac re-

pressor–operator, attain Kas of 1011 M–1 (Ha

et al., 1989) that corresponds to �G� of over

60 kJ/mol at room temperature. Such a value

was also postulated from a wide survey of ex-

perimental data (Kuntz et al., 1999) for the

tightest, noncovalent binding of ligands to

macromolecular targets, although designing

of femtomolar inhibitors was reported re-

cently for isoleucyl tRNA synthetase (Brown

et al., 2000). Measurements of Kas as a func-

tion of temperature yield the standard en-

tropy (�S�) and the standard van’t Hoff

enthalpy (�HVH
o

) of the association from the

van’t Hoff dependence of ln Kas on 1/T. In the

case of a non-linear van’t Hoff plot complex

formation and other processes like protein

folding are characterized by a nonzero value

of the standard molar heat capacity change

under constant pressure �Cp
o

(Spolar & Re-

cord, 1994; Sturtevant, 1977).

The Kas values are routinely determined us-

ing various titration methods. Detection of

characteristic changes of the measured pa-

rameters upon formation of a complex involv-

ing proteins and nucleic acids entails protein

intrinsic fluorescence quenching (Eftink,

1997; Laws & Contino, 1992; Niedzwiecka et

al., 2002a), fluorescence anisotropy changes

of a probe attached to an oligonucleotide

(Fidalgo et al., 2002), changes of NMR chemi-

cal shifts (Cameron & Fielding, 2001; Fiel-

ding, 2000; Niedzwiecka-Kornas et al., 1999)

or translational diffusion coefficients (Der-

rick et al., 2002) of the interacting molecules,

equilibrium dialysis with radioactively la-

belled ligand (Ha et al., 1989), competitive dis-

placement of bound chromophoric or radio-

labelled ligand (Wang, 1995), and isothermal

calorimetry titration (ITC) (Forstner et al.,

1999; Wiseman et al., 1989; Oberfelder & Lee,

1985). Other methods include surface

plasmon resonance (SPR) (Fivash et al., 1998;

Szabo et al., 1995; von der Haar et al., 2000)

and gel electrophoresis (Talbot & Altman,

1994a; Werner, 1991). When a surface-based

SPR experiment is performed with care, the

equilibrium and kinetic constants match

those acquired in solution, e.g. by calorimetry

or fluorescence titration (Day et al., 2002). In

addition to Kas the ITC technique provides di-

rectly the enthalpy of association, �Hcal
o
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(Fisher & Singh, 1995; Haun et al., 1995;

Niedzwiecka et al., 2002b). Values and tem-

perature dependence of the heat capacity

change �Cp
o
are directly obtained by means of

differential scanning calorimetry (DSC)

(Krupakar et al., 1999; Rosgen & Hinz, 2002).

Differences between calorimetric (�Hcal
o

)

and van’t Hoff (�H vH
o

) enthalpy is a

well-known phenomenon in the case of depar-

ture from the all-or-none (cooperative) model

in a phase transition of macromolecules, like

protein folding/unfolding or the helix-to-coil

transition of nucleic acids (see, e.g., Chaires &

Sturtevant, 1986; Wu & Sugimoto, 2000). For

intermolecular association the observed dif-

ferences in the enthalpy estimates have given

rise to numerous empirical and theoretical

analyses. The discrepancies were ascribed to

the contributions of usually unknown molecu-

lar transitions or coupled processes other

than the net complex formation (Liu &

Sturtevant, 1995; Liu & Sturtevant, 1997;

Naghibi et al., 1995), and/or erroneous appar-

ent values of �H vH
o

and �Cp
o

arising from the

experimental noise (Chaires, 1997b; Rouzina

& Bloomfield, 1999). An explanation ascrib-

ing the effect to experimental flaws rather

than to going beyond simple one-to-one bind-

ing model (“linked equilibrium”) was recently

proposed on the basis of ITC measurements

for the Ba2+/18-crown-6 ether and 2�CMP/

RNaseA association (Horn et al., 2001). How-

ever, such discrepancies can arise in an

“open” binding system linked with proton ion-

ization equilibrium (Horn et al., 2002;

Niedzwiecka et al., 2002b).

Molar heat capacity under constant pressure

is defined by the variance of the internal en-

ergy E distribution as:

C
H

T
p

P
2

(E– E

kT
�

�

�

�
�

�

�

	
	

�






)
2

(3)

where ��� means the ensemble average of the

quantity A. The heat capacity occupies a cen-

tral role in the determination of stabilization

of molecular complexes (Ha et al., 1989;

Spolar & Record, 1994; Sturtevant, 1977) or

protein folding (Gomez et al., 1995; Murphy et

al., 1990; Murphy et al., 1992; Spolar et al.,

1992). Most of such processes are character-

ized by negative values of �Cp
o
. For pro-

tein–DNA interactions large, negative �Cp
o

was proposed to be a distinctive feature of

site-specific recognition (Spolar & Record,

1994). However, some observations showed

the existence of negative �Cp
o

even in nonspe-

cific binding (Kozlov & Lohman, 1999; Oda &

Nakamura, 2000). Consequently, the stan-

dard enthalpy (�H�) and entropy (T�S�) of as-

sociation are strongly temperature dependent

(steep linear functions) passing through zero

at the characteristic temperatures TH and TS,

respectively. The former corresponds to the

maximum in Kas from the nonlinear van’t

Hoff plot. The nearly parallel variation of �H�
and T�S� with temperature results in com-

pensation of one by another to yield the stan-

dard free energy of association (�G�) which is

relatively temperature invariant:

�G
o

= �Cp
o
[T – TH – T ln(T/TS)]

(4)

�H
o

= �Cp
o
[T – TH)

(5)

�S��	 �Cp
o

ln(T/TS) (6)

The enthalpy-entropy compensation results in

an essential change in the nature of the thermo-

dynamic driving force of association, from en-

tropy-driven and enthalpy-opposed below TH,

through enthalpy- and entropy-driven between

TH and TS, to enthalpy-driven and en-

tropy-opposed above TS. �Cp
o

is nearly tempera-

ture independent in the physiological range and

contains contributions from several sources

(Murphy & Freire, 1992; Murphy, 1999; Spolar

& Record, 1994; Sturtevant, 1977).

For processes with large, negative �Cp
o

the

hydrophobic contribution to �G� can be esti-
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mated by means of the “hydrocarbon model”

(Baldwin, 1986). The thermodynamic charac-

teristics of transfer of hydrocarbons from wa-

ter to pure liquids are similar to those of pro-

tein–DNA interaction or protein folding (Ha

et al., 1989). In the case of each hydrocarbon

the observed entropy �S
o

converges to zero

at 386 K, on the assumption that �Cp
o

is tem-

perature-independent. Hence, at temperature

TS the entropy of the intermolecular associa-

tion obeys the relation (Patikoglou & Burley,

1997; Spolar & Record, 1994):

�S
o

= 0 = �SHE
o

(TS) +

+ �Srt
o

+ �SPE
o

+ �Sother
o

(7)

where �SHE
o

, �SPE
o

, and �Sother
o

denote the

entropic terms that result from hydrophobic

effect, reduction in the rotational and trans-

lational degrees of freedom, polyelectrolyte ef-

fect and other processes accompanying the as-

sociation, respectively. A body of evidence has

been compiled that large, negative �Cp
o

is

dominated by the hydrophobic effect, i.e. burial

of water-accessible nonpolar surface (�Anp)

associated with conformational rearrange-

ments of the interacting molecules, protein

and nucleic acid, as well as water exchange.

Additionally, burial of polar (�Ap) surface

area contributes to �Cp
o

with the positive

sign. Both effects result in:

�Cp
o

= 
��Anp – ���Ap (8)

Different proportionality coefficients 
 and

� are used by various research groups: 
 =

0.32 kcal � mol–1 � K–1 � Å
–2, � = 0.14 kcal �

mol–1 � K–1 � Å
–2 (Livingstone et al., 1991;

Spolar & Recordr, 1994), or 
 = 0.45 kcal �
mol–1 � K–1 � Å

–2, � = 0.26 kcal � mol–1 �
K–1� Å

–2 (Murphy & Freire, 1992; Murphy,

1999). However, the area-based models do not

fully account for the �Cp
o

values, e.g. poor

agreement was found between the experimen-

tally observed �Cp
o

and that calculated from

X-ray crystal structure for the binding of the

DNA operator to the tryptophan repressor of

Escherichia coli (Jin et al., 1993). Additional

contributions that do not scale with the sur-

face area are long-range electrostatic interac-

tions (Gallagher & Sharp, 1998) and tighten-

ing of soft internal modes at the polar inter-

face of the complex (Ladbury et al., 1994).

Macromolecular equilibrium without intrinsic

heat capacity changes, e.g. conformational re-

arrangements and ionic and hydration equi-

llibria can give rise to non-zero (positive or

negative) �Cp
o

of ligand binding to the macro-

molecule (Baker & Murphy, 1996; Eftink et al.,

1983). Nonzero �Cp
o
, and the resulting

enthalpy-entropy compensation, have been

also proposed to arise from other sources:

quantum confinement effects, multiple weak

interactions in cooperative order-disorder

transition or simply as a consequence of the

limited Gibbs “free energy window” afforded

by the experimental techniques (Cooper et al.,

2001). The problem will be further discussed

regarding the positive heat capacity change in

the case of the eIF4E–mRNA 5� cap interac-

tion, below.

THERMODYNAMIC DESCRIPTION OF

PROTEIN–RNA ASSOCIATION

Numerous papers report studies of interac-

tions between small ligands and biopolymers,

i.e. between nucleotides and proteins, and

amino acids or peptides and RNA aptamers.

The latter reports deal mainly with structural

aspects that reveal key molecular interactions

conferring high specificity on the aptamer-

ligand association (for a review see Hermann

& Patel, 2000). Large amount of structural

data on molecular complexes involving pro-

teins and nucleotides has been supplemented

for the last ten years by papers containing

thermodynamic analyses. The majority of

them is devoted to enzyme–ligand interac-
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tions, e.g. binding of ADP and ATPS to

preprotein translocase subunit SecA (den

Blaauwen et al., 1999), binding of ATP to

dimeric muscle creatine kinase (Forstner et

al., 1999), interaction of Mg-ATP and Mg-ADP

with nitrogenase iron protein (Lanzilotta et

al., 1999), guanosine mono-, di- and triphos-

phate binding to hGBP1 GTPase (Praefcke et

al., 1999), association of dCMP with thymi-

dylate synthase of Lactobacillus casei and its

Asn229Asp mutant (Tellez-Sanz et al., 1997),

interaction between AMP and two liver glyco-

gen phosphorylases, a and b, (Garcia-Fuentes

et al., 1996b; Garcia-Fuentes et al., 1996a), af-

finity of Mg-ATP for mutated � subunit of

TF1-ATPase (Odaka et al., 1994), and binding

of several mononucleotides to ribonuclease T1

(Hu & Sturtevant, 1992). Some of the studies

involve association between flavoproteins and

flavine mononucleotides, FMN (Lostao et al.,

2000), association between IMP and inosine

monophosphate dehydrogenase (Bruzzese &

Connelly, 1997), forced two-state transition in

bovine liver glutamate dehydrogenase upon

binding of NADPH (Singh & Fisher, 1994),

and binding of the anticancer agent

5-fluoro-dUMP to thymidylate synthase (Gar-

cia-Fuentes et al., 1995). The thermodynamic

studies of nonenzymatic proteins included the

ATP interactions with heat shock protein

Hsp90 (Scheibel et al., 1999), chaperonin

GroEL (Terada & Kuwajima, 1999) and A3

adenosine receptors (Gessi et al., 2001), and

comparison of binding of biotin and

bio-5�-AMP to a transcriptional repressor of

biotin biosynthesis, BirA (Xu et al., 1996).

Most of the thermodynamic data, �G�, �H�,
�S� and �Cp

o
, have been gathered by means

of sensitive calorimeters and interpreted in

relevance to the complex stability, driving

forces of the complex formation,

enthalpy-entropy compensation (see Eqns.

4–6), structural and/or molecular surface

changes, influence of pH and ionic strength,

and stoichiometry and cooperativity of bind-

ing of several ligands. A comprehensive re-

view of the earlier publications on the thermo-

dynamic aspects of nucleotide binding to pro-

teins can be found in a Beaudette and Langer-

man’s publication in CRC Critical Reviews in

Biochemistry (Beaudette & Langerman, 1980).

Theoretical and empirical (combined) appro-

aches for predicting the binding affinity of

small ligands for proteins (rational drug de-

sign) including microcalorimetry methods

were recently reviewed by Gholke and Klebe

in Angewandte Chemie (Gohlke & Klebe,

2002).

Similarly to structural studies, the number

of publications on the thermodynamics of pro-

tein–RNA interactions lags behind those con-

cerning protein–DNA complexes. The latter

topic has been reviewed several times in rela-

tion to sequence-specific protein–DNA recog-

nition (Oda & Nakamura, 2000; Patikoglou &

Burley, 1997; Plum & Breslauer, 1995) as well

as the role of water in protein–DNA associa-

tion (Schwabe, 1997). ProNIT, an electroni-

cally accessible Thermodynamic Database for

Protein–Nucleic Acid Interactions (Sarai et

al., 2001), which contains thermodynamic

data on interactions between proteins and nu-

cleic acids, is mainly devoted to protein–DNA

complexes. According to a 1995 review by

Draper (1995) “thorough thermodynamic

analyses of [protein–RNA] recognition mech-

anism have yet to be performed”. Some spe-

cific thermodynamic aspects related to RNA

have been surveyed recently, e.g. RNA folding

due to formation of complexes with proteins

(Weeks, 1997), verification of the allosteric

three-state model of the elongation cycle in

the translation process (Nierhaus et al., 1992),

and mechanisms of translation and mRNA de-

cay in yeast (McCarthy, 1998).

Most of the publications that deal with the ki-

netic and energetic properties of pro-

tein–RNA interactions limit the thermody-

namic description to merely free energy of the

complex stability and its consequences for the

binding mechanism. Several examples are as

follows. A thermodynamic scheme for binding

of a 153 nucleotide fragment R153 of 23S

rRNA and ATP to E. coli DbpA protein re-
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vealed cooperativity, lost upon removal of a

necessary structural element, helix 89, from

R153 (Polach & Uhlenbeck, 2002). The ther-

modynamic contributions of the amino-acid

side chain and the tRNA body to the overall

binding affinity for the elongation factor Tu

(EF-Tu) were shown to be independent of, and

compensate for, each other, when the tRNA

was correctly acetylated (LaRiviere et al.,

2001). A series of protein mutations and RNA

modifications were used to evaluate the ther-

modynamic basis for the improved affinity of

the specific RNA hairpin for bacteriophage

MS2 coat protein (Johansson et al., 1998). A

minimal kinetic and thermodynamic frame-

work (Lorsch & Herschlag, 1998) for the

RNA-activated ATPase function was estab-

lished for the translation initiation factor

eIF4A, an ATP-dependent helicase that un-

winds secondary structures in the 5�-untrans-

lated regions of eukaryotic mRNA during

translation initiation. Synthetic nucleotide

analogues provide opportunity to evaluate the

importance of individual functional groups on

RNA in the thermodynamic stability of pro-

tein–RNA complexes (Elliott et al., 2001), the

role of the 2�-hydroxyl being probably the

most thoroughly investigated (Baidya &

Uhlenbeck, 1995; Batey et al., 2001; Pleiss &

Uhlenbeck, 2001).

More thorough thermodynamic analyses of

protein-RNA association require studies on

the temperature-dependence of the binding.

Interaction of Neurospora crassa mitochon-

drial tyrosyl–tRNA synthetase (CYT-18) with

a small RNA intron fragment (P4-P6 RNA)

was shown to be enthalpy-driven and en-

tropy-opposed (Caprara et al., 2001). Thermo-

dynamic studies together with tracing RNA

conformational changes induced by Mg2+ sug-

gested a model in which the binding of magne-

sium ions to some parts of the RNA induced

specific phosphodiester-backbone geometry

that was necessary for the CYT-18 binding. In-

vestigations of the association between an

A+U rich element (ARE) of tumor necrosis

factor 
 mRNA and the protein chaperone

Hsp70 by gel mobility shift and fluorescence

anisotropy assays (Wilson et al., 2001) indi-

cated that the binding was driven entirely by

enthalpy at physiological temperatures.

Hence, the principal stabilization mechanism

was ascribed to burial of hydrophobic sur-

faces. A thermodynamic and functional analy-

sis of the formation of the ternary complex

composed of tRNA and two proteins, tRNA

synthetase and Trbp111, showed that sand-

wiched tRNA retains its native structure

(Nomanbhoy et al., 2001). Complete sets of

thermodynamic parameters, �H�, �S�, and

�G� were obtained and analysed in relation to

the mechanisms of recognition between inter-

feron-induced protein kinase (PKP) and

bulged dsRNA (Zheng & Bevilacqua, 2000),

between Q �-replicase and its RNA template

molecules (Werner, 1991), and between

TRAP (tryptophan RNA-binding attenuation

protein) and trp leader RNA (Baumann et al.,

1996). The thermodynamic parameters in the

latter case, i.e. regulation of the tryptophan

biosynthetic genes in Bacillus subtilis, led to

an unexpected observation that the interac-

tion between TRAP and trp leader RNA is

higly enthalpy unfavourable (�H� = +66.5 kJ �
mol–1) and completely entropy-driven, �S� of

+406 J � mol–1 � K–1. Thermodynamic de-

scription was linked to analyses of ionic

strength influence on the association between

E. coli single-stranded binding (SSB) protein

and poly(U) (Lohman et al., 1996), between E.

coli C5 protein and M1 RNA (Talbot &

Altman, 1994b), and between E. coli ribo-

somal protein S8 and 16S rRNA (Mougel et

al., 1986). Similar studies were performed for

the interaction between phage R17 coat pro-

tein and its 21-nucleotide binding site (Carey

& Uhlenbeck, 1983). The results gave insight

into the charge effect on the binding affinity.

Two topics concerning protein–RNA inter-

actions have gained a considerable interest

among various research groups: recognition

between U1 protein and small nuclear RNA

(snRNA) in mRNA splicing, and specific bind-

ing of mRNA 5� terminus, the so-called cap
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structure, to various cap-binding proteins.

The latter subject will be discussed in detail in

the next paragraph (see below). The U1A pro-

tein is one of the family of RNA binding pro-

teins that contain RNA binding domain(s)

(RBD) also called RNA recognition motif

(RRM) (for a review see Varani & Nagai,

1998). Two thermodynamics-related research

areas were exploited by K.B. Hall and her

group at Washington University, i.e. affinity

and thermodynamics of the association be-

tween the RBD1 of the human U1A protein

and stem/loop II of U1 snRNA (Hall & Stump,

1992; Williams & Hall, 1996), as well as the

application of the pairwise coupling theory to

determine the energetics between the two ele-

ments (Kranz & Hall, 1998; Kranz & Hall,

1999). Van’t Hoff plots of BRD1 association

with the normal RNA hairpin and the 1XL

RNA containing hexaethylene glycol are ac-

companied by large, negative apparent heat

capacity changes, �Cp
o

= –13.0 kJ/mol � K

and �Cp
o
=–18.0 kJ/mol � K, respectively,

due to the burial of hydrophobic groups on the

surface of the �-sheet BRD. Accordingly, the

thermodynamic properties of this pro-

tein–RNA system are similar to those of pro-

tein–DNA (Ha et al., 1989). Determination of

the salt dependence of the Kas suggested that

at least 8 ion-pairs were formed upon forma-

tion of the complex. The two- and three-dimen-

sional thermodynamic cycles for the local in-

teractions in terms of the pairwise coupling

theory showed indirect coupling between

Tyr13 and the C-terminal tail, mediated

through the bound RNA. Combination of ther-

modynamic pairwise coupling and backbone

dynamics derived from 15N-relaxation and
1H-15N-NOE (nuclear Overhauser effect) pro-

vided further evidence for local cooperative

interactions between Tyr13, Gln54 and Phe56

that directly affected the RNA binding. The

system was also analysed by means of molecu-

lar dynamics simulation (Pitici et al., 2002;

Reyes & Kollman, 2000). The results from the

MD studies combined with structural and

thermodynamic data indicated that the in-

duced fit of the U1A protein upon the binding

of RNA involves a non-native thermodynamic

substate while the conformational change of

the RNA involves a distortion of the native

structure to an unstable form (Pitici et al.,

2002). MD simulations were also applied to

answer a more general question on the reduc-

tion of the entropic cost of induced fit in pro-

tein–RNA recognition (Ribas et al., 1996).

THERMODYNAMIC ASPECTS OF

mRNA 5� cap–PROTEIN

RECOGNITION

Translation initiation, a multi-step and

highly regulated process of formation of large

protein–mRNA complexes, determines the

overall rate of protein biosynthesis in

eukaryotes (Dever, 2002; Gingras et al., 1999).

Eukaryotic mRNA differs from its proka-

ryotic counterpart by the presence of cis-act-

ing elements that stimulate translation

(Londei, 1998; Sachs et al., 1997; Shatkin et

al., 1982): the 5�-terminal cap, the 3�-terminal

poly(A) tract, and, in a small subset of viral

and cellular mRNAs, the internal ribosome

entry sequence (IRES). Messenger RNA

5�-terminus in most organisms consists of

7-methylguanosine linked by a 5�-to-5� tri-

phosphate bridge to the next nucleoside

(m7GpppN), guanosine, adenosine, cytidine

or uridine. A significant fraction of cellular

and viral RNAs is additionally methylated at

the ribose 2�-hydroxyl of the first (N) or the

first and second nucleosides. The translation

initiation starts by recognition of the cap

structure by the 25 kDa eukaryotic initiation

factor eIF4E (Raught & Gingras, 1999). The

4E protein is a member of the eIF4F complex

that also includes eIF4A, a 46 kDa RNA

helicase, and eIF4G (154–180 kDa), which

serves as the central organizing protein in re-

cruitment of mRNA. The 43S complex of

eIF3-eIF2-GTP-(Met-tRNA)–eIF1A–(40S ribo-

somal subunit) recruits mRNA to form the

48S initiation complex. It scans until the start-
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ing AUG codon is encountered. Then, replace-

ment of the initiation factors by the 60S ribo-

some subunit makes it possible to form the

first peptide bond.

The molecular structures of several eIF4E–

cap complexes have been resolved by crystal-

lography: murine eIF4E(28-217) with m7GDP

(Marcotrigiano et al., 1997) and m7GpppG

(Niedzwiecka et al., 2002a), full length human

eIF4E with m7GTP and m7GpppA (Tomoo et

al., 2002), two ternary complexes of murine

eIF4E(28-217) with m7GDP and a synthetic

peptide, one corresponding to the eIF4E rec-

ognition sequence of eIF4G and the other cor-

responding to the eIF4E recognition sequence

of 4E-BP1 (Marcotrigiano et al., 1999). The so-

lution structure of yeast eIF4E bound to

m7GDP was resolved for the double labelled
13C/15N protein by multidimensional NMR

(Matsuo et al., 1997). The cap is located in a

narrow slot, formed like a “hand” from an

antiparallel �-sheet and three loops, and stabi-

lized by the cation-� sandwich stacking of

7-methylguanine in between two tryptophan

indole rings, Trp102 and Trp56 (Fig. 1). Addi-

tionally, the nucleic base forms three Wat-

son–Crick-like hydrogen bonds with the

Glu103 carboxyl group and peptide chain NH

of Trp102, and a van der Waals contact with

Trp166. Positively charged arginines and

lysines interact through hydrogen bonds

and/or salt bridges with the phosphate chain

of the cap analogue, depending on the eIF4E

type and the length of the cap phosphate

chain. Recognition of the cap by sandwich cat-

ion-� stacking between the protein aromatic

side chains is shared by other cap-binding pro-

teins, viral methyltransferase VP39 (Hodel et

al., 1997; 1998), and nuclear cap-binding com-

plex CBP80/20 (Calero et al., 2002; Mazza et

al., 2002).
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marked amino acids in direct stabilizing contacts with the cap analogue.

The second nucleoside G is not visible in the electron density map.



Description of the 43S initiation complex

formation in terms of association (dissocia-

tion) constants derived from fluorescence ani-

sotropy measurements and the corresponding

free energy changes (�G�) appeared as early

as middle 90s (Parkhurst et al., 1994). Simi-

larly, a fragmentary thermodynamic appro-

ach to translation regulation in yeast was re-

ported (Koloteva et al., 1997), based on the de-

termination of binding affinity of IRP1 (iron

regulatory protein 1) for the iron-responsive

element (IRE) in the 5�-untranslated region of

mRNA. Development of the thermodynamic

description of the interactions involving the

mRNA 5� cap structure was hampered by a

lack of precise values of the association con-

stants. The first two communications on ther-

modynamic parameters of the eIF4E–m7GTP

and eIF4E–m7GpppG association (Carberry

et al., 1989; Shen et al., 2001) were misleading

and contradictory to each other due to lack of

precise values of the association constants

Kas, e.g. the binding of the latter cap analogue

was postulated to be enthalpy driven (�H� =

–36.4 kJ � mol–1, �S� = –2.3 J � mol–1 � K–1)

by one group (Shen et al., 2001), and entropy

driven (�H� = +34.0 kJ � mol–1, �S� = +219 J

� mol–1 � K–1) by the other (Carberry et al.,

1989).

A new fluorescence time synchronized titra-

tion method (Niedzwiecka et al., 2002a) pro-

vided precise and absolute values of equilib-

rium association constants Kas, without previ-

ous experimental and numerical sources of er-

rors. The new methodology gave rise to reli-

able parsing of �G� into several components,

i.e. anchoring of the cap to eIF4E through the

phosphate groups, and subsequent coopera-

tive sandwich cation-� stacking and hydrogen

bonding of 7-methylguanine. Similarly, the

van’t Hoff plots of ln Kas vs. temperature for

the binding of m7GTP (Niedzwiecka et al.,

2002a) and of m7GpppG (Niedzwiecka et al.,

2002b) to murine eIF4E resulted in a proper

thermodynamic description of the associa-

tion. The strong specific interaction between

m7GTP and eIF4E is unambiguously con-

nected with a high enthalpy of association,

�H� = –74.3 kJ � mol–1, and negative entropy

change (entropy-opposed), �S� = +98.7 J �
mol–1 � K–1. The less strong binding of

m7GpppG is characterized by nonlinear van’t

Hoff relation (Fig. 2) leading to an unexpected,

large positive heat capacity change �Cp
o

=

+1.94 kJ � mol–1 � K–1 with the critical tem-

peratures, TH = 327.1 K and TS = 307.4 K. The

�Cp
o

value was independently confirmed by

isothermal titration calorimetry (Niedzwiecka

et al., 2002b). As a consequence, the nature of

the thermodynamic driving forces changes

with temperature, being enthalpy- and en-

tropy-driven in the range of biological temper-

atures. The enthalpy-entropy compensation

leaves constant free energy �G� of about –37

to 40 kJ � mol–1 within the whole temperature

range. Both van’t Hoff (�HVH
o

) and calorimet-

ric (�Hcal
o

) enthalpy values were in perfect

agreement if protonation equilibrium in

7-methylguanine, coupled with the associa-

tion, was taken into account. The positive �Cp
o

relevant to intermolecular association is rarely

observed (Hileman et al., 1998; Luther et al.,

1986; Matulis et al., 2000). However, it has

been shown that the heat capacity change
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Figure 2. Plot of ln Kas vs. temperature (T), and

the temperature dependence of enthalpy (�H�),

entropy (T�S�), and free energy (�G�), for the

binding of m
7
GpppG to murine eIF4E

(Niedzwiecka et al., 2002b).



could be strongly temperature- and ionic

strength-dependent, even up to sign inversion

(Oda et al., 1998). Stabilization of the complex

occurs by electrostatic interactions partially

complemented by van der Waals and hydro-

phobic contacts. Hence, many charged and po-

lar groups are removed from water, contribut-

ing positively to �Cp
o

(see Eqn. 8). Kinetic

studies of the eIF4E–m7GpppG interaction by

means of stopped-flow fluorescence spectros-

copy and Brownian molecular dynamics simu-

lations (Blachut-Okrasinska et al., 2000) re-

vealed a two-step character of the complex for-

mation: diffusionally and electrostatically

controlled encounter and internal rearrange-

ment of the protein. The latter is accompanied

by an uptake of about 65 water molecules

(Niedzwiecka et al., 2002a). Both effects, the

preferential hydration and burial of charged

and polar groups can make the heat capacity

change positive. An additional positive contri-

bution may come from the overall long-range

electrostatic interactions upon the binding,

dominated by rearrangement of water di-

poles, redistribution of mobile ions, and the

coupling between the dipolar and ionic terms

(Gallagher & Sharp, 1998).

Parallel spectroscopic and calorimetry titra-

tion studies were performed for eIF4E from

Saccharomyces cerevisiae (Kiraga-Motoszko et

al., 2003). The association equilibrium con-

stants and the enthalpy of the association for

m7GTP derived from the two methods were in

reasonably agreement, and showed signifi-

cantly different affinities of the cap analogue

for the yeast and mammalian proteins. This

observation corresponds to the structural dif-

ferences of the stacking between 7-methyl-

guanine and two tryptophans in murine

(Marcotrigiano et al., 1997; Niedzwiecka et al.,

2002a) and yeast (Matsuo et al., 1997) eIF4E,

and relates to the thermodynamic (NMR)

study of a model system of 7-methylguano-

sine and a synthetic dodecapeptide containing

tryptophan (Niedzwiecka et al., 2003). Both

reports (Kiraga-Motoszko et al., 2003;

Niedzwiecka et al., 2003) make the first at-

tempt to analysis of the evolutionary changes

of structural and energetic requirements in

the eIF4E active centres.

PROGRESS ON THE WAY TO

UNDERSTANDING MOLECULAR

RECOGNITION

Thermodynamic characterization of inter-

molecular binding specificity is one of the fun-

damental goals of biophysical approach in mo-

lecular biology. Analysis of thermodynamic

functions and parameters in terms of statisti-

cal physics, e.g. standard molar heat capacity,

seems to be absolutely necessary here. Re-

striction to phenomenological thermodynam-

ics of (linear) correlations between �H�
and/or �S� and �Cp

o
(see, e.g., Murphy et al.,

1990) as well as enthalpy-entropy compensa-

tion, �H� vs. �S� (see, e.g., Eftink et al., 1983),

although very helpful, is far from satisfactory.

The problem is directly linked to the hydro-

phobic effect (Eftink et al., 1983; Israelachvili

& Wennerstrom, 1996) that still lacks a

proper physical description. Recent attempts

in this regard concentrate on development of

good models of water structure (Madan &

Sharp, 2003; Silverstein et al., 1998; Tsai et

al., 2002).

Statistical mechanics allows straightforward

calculations of the thermodynamic functions,

including heat capacity, from the partition

function (Boresch et al., 1994; Freire, 1998;

Gilson et al., 1997; Luo & Sharp, 2002; Rosgen

et al., 1998). Predictions based on these calcu-

lations, e.g. related to protein folding/unfold-

ing, can differ from the simple, more intuitive

models derived from phenomenological ther-

modynamics (Rosgen et al., 1998). Moreover,

proper interpretation of experimental data

like DSC curves is sometimes difficult without

taking into account the principles of statisti-

cal thermodynamics (Rosgen & Hinz, 2002). A

nice example of the application of a general

statistical model to the widely discussed phe-

nomenon of enthalpy-entropy compensation
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shows benefits of the approach based on the

sound knowledge of statistical thermodynam-

ics (Sharp, 2001). The model provided a rigor-

ous test for some extra-thermodynamic mech-

anism of the �H-�S linear relationship upon

changing experimental variables that do not

just follow the well-known thermodynamic

laws or arise from experimental uncertain-

ties.

I wish to thank Dr. Anna Niedzwiecka for

providing the figures and helpful comments

on the manuscript.
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