

Vol. 48 No. 4/2001

1197 - 1201

QUARTERLY

Communication

Influence of organic solvents on papain kinetics**

Mariusz Szabelski, Krystyna Stachowiak and Wiesław Wiczk[⊠]

Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland

Received: 26 September, 2001; accepted: 27 November, 2001

Key words: papain, fluorogenic substrate, enzyme activity, organic solvent

Papain activity was studied in water-organic solvent mixtures using the fluorogenic substrate Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans. The increase of organic solvent (MeOH, EtOH, iPrOH, TFE, MeCN, (MeO)₂Et and DMF) concentration in the mixture caused a substantial decrease the initial rate of papain-catalyzed hydrolysis. Moreover, the number of papain active sites decreased with the increase of DMF and MeOH concentration.

Since the beginning of the 1980s it has been clearly shown that enzymes can be used in organic solvents with great efficiency [1]. Nonaqueous enzymology is one of the major fields in biotechnological research [2]. At low organic solvent concentrations, the activity can be as high as in aqueous solution, or even slightly enhanced [3, 4]. At moderate concentrations of miscible solvents, usually in the 30-50% volume range, the catalytic rate is often close to zero [5, 6]. However, at higher organic solvent concentrations, typically in the range 70–99%, the catalytic activity can often be observed again [7–9]. After extensive re-

*Presented at the XVI Polish Peptide Symposium, September 1-4, 2001, Jagiellonian University, Kraków, Poland.

This work was supported by the State Committee for Scientific Research (KBN, Poland) under grant 1410/T09/2001/21.

Corresponding author: Wiesław Wiczk, Faculty of Chemistry, University of Gdańsk, J. Sobieskiego18, 80-952 Gdańsk, Poland; phone: (48 58) 345 0353; fax: (48 58) 341 0357;
 e-mail ww@chemik.chem.univ.gda.pl

Abbreviations: Amc, 7-amino-4-methylcoumarin; Boc, t-butoxycarbonyl; Dabcyl, 4-(4'-dimethylaminophenylazo)benzoyl; DMF, dimethyformamide; Me₂SO, dimethyl sulphoxide; E-64, L-trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane; Edans, 5-[(2-aminoethyl)amino]naphthalene; Fmoc, 9-fluorenylmethoxycarbonyl; iPrOH, 2-propanol; MeCN, acetonitrile; (MeO)₂Et, 1,2-dimethoxyethane; TFE, 2,2,2-trifluoroethanol; Z, benzyloxycarbonyl.

search in various laboratories, molecular basis of the behaviour of enzymes in water-organic solvent mixtures is nowadays understood [10-14].

Papain, a cysteine protease, can be used to synthesize protected dipeptides in an aqueous-organic two phase system [15], but it loses its proteolytic activity in neat glycerol [16]. Our previous study on papain activity [17] revealed that an increase of Me₂SO concentration in a water mixture decreases the active site number of the enzyme as well as the initial rate of hydrolysis of Z-Phe-Arg-Amc and Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans. In this communication we present the influence of seven organic solvents: MeOH, EtOH, iPrOH, TFE, MeCN, (MeO)₂Et and DMF on papain activity measured with the fluorogenic substrate Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans displaying a high specificity for papain [18] as well as the standard substrate Z-Phe-Arg-Amc.

MATERIALS AND METHODS

Materials. E-64 and papain (EC 3.4.22.3) were purchased from Sigma. The commercial enzyme was purified as described previously [19]. Z-Phe-Arg-Amc, Amc, Boc- and Fmocamino acids were purchased from Bachem AG, all solvents used were from Aldrich and were HPLC grade or the highest grade available (TFE, (MeO)₂Et).

Peptide synthesis. The substrate Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans was synthesized and characterized using the procedure described in [17, 18].

Fluorescence measurements. Fluorescence was monitored on a Perkin-Elmer LS 50B spectrofluorimeter using the time drive option of the Fl WinLab software provided by the manufacturer. The measurements for Amc and Z-Phe-Arg-Amc were done using 380 nm as the excitation wavelength and 460 nm as the observation wavelength. In the case of Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans the excitation and observation wavelengths were 336 nm and 490 nm, respectively.

Enzymatic assays. All kinetic experiments were performed according to the method described by Barrett et al. [20], partially modified by us [17]. The activating buffer was 0.4 M sodium potassium phosphate, pH 6.8, containing 8 mM dithiothreitol and 4 mM EDTA. During the measurements the cuvette contained 750 μ l of the activating buffer, 50 μ l of papain $(1.68 \times 10^{-7} \text{ M solution in } 0.1\% \text{ Brij})$ 35), substrate, organic solvent (total concentration of organic solvent in the cuvette was from 0.2 to 10% depending on the experiment) and was filled up with 0.1% Brij 35 to $3000 \,\mu$ l. The stock solutions of the substrates prepared before the experiments were $870 \,\mu\text{M}$ Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans in the organic solvent.

In order to determine the Michaelis-Menten kinetic parameters, the enzyme was preincubated for 10 min at 40°C in cuvettes containing the activating buffer and 0.1% Brij 35 and then appropriate amounts of organic solvent and Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans were added. The reaction was monitored for 10 min.

To study the influence of the organic solvent concentration on the activity of papain we carried out a series of kinetic measurements for different organic solvent concentrations using Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans as a substrate.

Active sites titration. To examine the influence of the organic solvent concentration on the papain number of active sites per dm^{-3} titration with E-64 was carried out at 0.95%, 4.95% and 9.95% of organic solvent, according to the procedure described in [20].

A series of tubes containing 750 μ l of the activating buffer, 50 μ l of the enzyme solution and a suitable amount (from 0 to 400 μ l) of 0.1 μ M E-64 solution in 0.1% Brij 35 were filled up with 0.1% Brij 35 to 2900 μ l, 2780 μ l or 2630 μ l for the total concentration of the organic solvent (DMF or MeOH) equal to 0.95%, 4.95% and 9.95%, respectively. After 30 min of incubation at 40° C 100 μ l of 100 μ M Z-Phe-Arg-Amc solution and organic solvent were added to each tube. After 10 min the reaction was stopped with 1500 μ l of 100 mM sodium monochloroacetate solution in 100 mM sodium acetate (pH = 4.3) and then the fluorescence of the liberated Amc was measured.

RESULTS AND DISCUSSION

In this work we examined the influence of some organic solvents on the initial rate of papain-catalyzed hydrolysis of the papain specific substrate Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans. We carried out these reactions at fixed substrate and enzyme concentrations changing only the organic solvent content within the range from 0.2 to 10% in reaction mixtures. The results for seven organic solvents (MeOH, EtOH, iPrOH, TFE, MeCN, (MeO)₂Et and DMF) and Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans as a substrate are presented in Fig. 1. The curves show that the in-

Figure 1. Dependence of the initial rate of papain catalyzed hydrolysis of Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans on organic solvent concentration: a) \blacksquare EtOH, b) \oplus MeCN, c) \blacktriangle (MeO)₂Et, d) \bigstar DMF, e) \clubsuit iPrOH, f) \blacklozenge MeOH, g) \triangleright TFA.

crease of organic solvent concentration in the working buffer decreased the initial rate of papain-catalyzed hydrolysis of Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans. The fastest decrease of the initial rate was observed for $(MeO)_2Et$ and DMF between 1 and 3%. Papain loses about 80% of the initial activity in a buffer containing 2–3% of DMF or $(MeO)_2Et$. For MeOH the initial rate of the reaction decreases very slow.

In order to examine the influence of organic solvents concentration on the number of papain active sites we titrated the enzyme according to the procedure described in [17] in buffers containing 0.95%, 4.95% and 9.95% DMF (Fig. 2) or MeOH (not shown) using 30

Figure 2. Influence of DMF concentration on titration of papain with E-64:

a) $\blacksquare 0.95\%$ DMF, number of active sites = 1.2168 \times 10⁻⁹ mol/dm³; b) \oplus 4.95% DMF, number of active sites = 1.0010 \times 10⁻⁹ mol/dm³; c) \blacktriangle 9.95% DMF, number of active sites = 0.7967 \times 10⁻⁹ mol/dm³.

min incubation of papain with E-64, a covalent-type inhibitor for active sites titration of the papain family enzymes [20]. The results presented in Fig. 2 indicate that the active sites number depends on DMF concentration in buffers and decreases with increasing DMF concentration. We observed the same effect for buffers containing MeOH but the changes were smaller (Table 1).

The Michaelis-Menten equation was used to compare the kinetics of papain-catalyzed hydrolysis of Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans in buffers containing DMF or MeOH. The initial rate dependence on substrate concentration for 0.6% and 5% DMF is presented in Fig. 3. For 5% DMF it was impossible to cal-

ent	Number of papain active sites × 10 ⁹ [mol/dm ³]			Enzymatic assays									
Organic solv				Cp	Michaelis-Menten equation					Hill equation			
	C _p 0.95%	C _p 4.95%	C _p 9.95%		V _{max} [μM/min]	$K_{\rm m}$ [μ M]	k_{cat} [s ⁻¹]	$k_{\text{cat}}/K_{\text{m}}$ [μ M ⁻¹ s ⁻¹]	R ²	V _{max} [µM/min]	$K_{0.5}$ [μ M]	b	R ²
DMF	1.2168	1.0010	0.7967	0.6%	0.87 ± 0.03	20.75 ± 1.33	11.92	0.57	0.9988	-	-	-	-
				5%	19 ± 58	1765 ± 5313	-	-	0.9982	_	-	-	-
НО	1.3843	1.2833	1.0317	1%	$0.23\pm0,02$	3.85 ± 0.52	2.77	0.72	0.9965	0.15 ± 0.01	1.65 ± 0.13	1.40 ± 0.07	0.9992
Me				5%	0.57 ± 0.03	12.43 ± 1.10	6.86	0.55	0.9980	0.45 ± 0.03	7.69 ± 0.86	1.21 ± 0.07	0.9990

Table 1. Kinetic parameters calculated from the Michaelis-Menten and Hill equations

culate with reasonable errors $K_{\rm m}$ and $V_{\rm max}$. The kinetic parameters were calculated basing on the Michaelis-Menten equation for both organic solvents and are presented in Table 1. In the case of MeOH, Hill equation gave a better fit to the experimental data. The results obtained suggest that Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans shows higher affinity for

REFERENCES

- Brink, L.S.E., Tramper, J., Luyben, K.C.A.M. & Van't Riet, K. (1988) *Enzyme Microbiol. Technol.* 10, 736-743.
- Koskinen, A.M.P. & Klibanov, A.M. (eds.) (1996) Enzymatic Reaction in Organic Media, Blackie Academic & Professional, Glasgow.
- Okazaki, S., Goto, M. & Furusaki S. (2000) Enzyme Microbiol. Technol. 26, 159–164.
- Simon, L.M., László, K., Vértesi, A., Bagi, K. & Szajáni, B. (1998) J. Molec. Catal. B: Enzymatic 4, 41-45.
- Kermasha, S., Bao, H. & Bisakowski, B. (2001)
 J. Mol. Catal. B: Enzymatic 11, 929–938.
- Girard, E. & Legoy, M.-D. (1999) Enzyme Microbiol. Technol. 24, 425-432.
- Zaks, A. & Klibanov, A.M. (1984) Science 224, 1249–1251.
- Potier, P., Bouchu, A., Descotes, G. & Queneau, Y. (2000) *Tetrahedron Lett.* 41, 3597-3600.

Figure 3. Dependence of the initial rate of papain catalyzed hydrolysis on substrate concentration in buffer containing \blacksquare 0.6% and \bigcirc 5% DMF.

papain in buffers containing MeOH. The $k_{\text{cat}}/K_{\text{m}}$ value is the same within experimental error, for 0.6% DMF, 1% and 5% MeOH. However, the hydrolysis products are probably released more slowly from the enzymatic pocket in buffers containing MeOH.

The results presented in this paper indicate that organic solvents seriously affect papain

- Partridge, J., Moore, B.D. & Halling, P.J. (1999) J. Mol. Catal. B: Enzymatic 6, 11-20.
- 10. Cowan, D.D. (1997) Comp. Biochem. Physiol.118A, 429-438.
- 11. Carrera, G., Ottolina, G. & Riva, S. (1995) *TBIOTECH* 13, 63-70.
- **12.** Klibanov, A.M. (1997) *TBIOTECH* **15**, 97–101.
- 13. Klibanov, A.M. (2001) Nature 409, 241-246.
- 14. Ke, T. & Klibanov, A.M. (1998) Biotechnol. Bioeng. 57, 746–750.
- 15. Felieu, J.A., de Mas, C. & Lopez-Santin, J. (1995) *Enzyme Microbiol. Technol.* 17, 882-887.

- Castro, G.M. (1999) Enz. Microbiol. Technol. 25, 689–694.
- 17. Szabelski, M. Stachowiak, K. & Wiczk, W. (2001) Acta Biochim. Polon. 48, 995-1002.
- **18.** Garcia-Echeverria, C. & Rich, D.H. (1992) *FEBS Lett.* **297**, 100–102.
- **19.** Blumberg, S., Schechter, I. & Berger, A. (1970). *Eur. J. Biochem.* **15**, 97–102.
- 20. Barrett, A.J., Kembahavi, A.A., Brown, M.A., Kirschke, H., Knight, C.G., Tamai, M. & Hanada, K. (1982) *Biochem. J.* 201, 189–198.