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SUMMARY

Antibody-mediated rejection (AMR) usually starts with generation of
donor-specific anti-HLA antibodies (DSAs), arising from a B-cell response
to antigen recognition. In vitro and preclinical data demonstrate that mam-
malian target of rapamycin (mTOR) inhibition attenuates the mTOR-
mediated intracellular signaling pathway involved in AMR-related kidney
damage. The limited available data from immunological studies in kidney
transplant patients, however, have not shown such effects in vivo. In terms
of clinical immunosuppression, the overriding influence on rates of de
novo DSA (dnDSA) or AMR—regardless of the type of regimen—is patient
adherence. To date, limited data from patients given mTOR inhibitor ther-
apy with adequate concurrent immunosuppression, such as reduced-expo-
sure calcineurin inhibitor (CNI) therapy, have not shown an adverse effect
on the risk of dnDSA or AMR. Early switch to an mTOR inhibitor (<6–
12 months post-transplant) in a CNI-free regimen, in contrast, can
increase the risk of dnDSA, especially if adjunctive therapy is inadequate.
Late conversion to CNI-free therapy with mTOR inhibition does not
appear to affect the risk of dnDSA. More data, from prospective studies,
are required to fully understand that association between use of mTOR
inhibitors with different types of concomitant therapy and risk of dnDSA
and AMR.
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Introduction

Late graft loss after kidney transplantation remains a

major clinical issue. Acute T-cell-mediated rejection has

been largely controlled, helping to increase short-term

survival rates to over 90% [1], but only around half of

all grafts are still functioning after 10 years [1]. In

recent years, there has been a growing awareness that

inadequate control of the humoral component of a

recipient’s immune response is pivotal in many cases of

chronic graft dysfunction and failure [2]. Antibody-

mediated rejection (AMR), overlooked for decades, is

now recognized as a leading cause of late kidney graft

loss [3]. Chronic AMR has a complex pathophysiology

with a highly variable course that can manifest in vari-

ous clinical forms [2]. It is frequently detected only

after irreversible damage has developed [4], and the

patient presents with deteriorating graft function. As a
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result, it is notoriously difficult to treat, with 15–20% of

grafts failing within a year after diagnosis [5]. Preventa-

tive strategies, which aim to block the generation of de

novo donor-specific anti-HLA antibodies (dnDSAs),

should therefore be the priority of physicians in charge

of transplanted patients.

The natural history of AMR starts with generation of

high-affinity alloantibodies directed against protein anti-

gens in the graft, usually DSAs, which are largely

responsible for chronic graft deterioration [2]. The

introduction of solid-phase single antigen bead technol-

ogy to detect and characterize HLA antibodies has

prompted a new phase of research in this field.

Solid-phase immunoassays, notably Luminex�, are more

sensitive than earlier complement-dependent lymphocy-

totoxicity (CDC) assays and Luminex� testing for DSA

in transplant candidates—with regular DSA monitoring

of high-risk patients—is now recommended [6]. The

resulting insights into the impact of DSA on graft out-

comes, and the ability to evaluate levels of DSA under

specific immunosuppressive regimens, have drawn

attention to the question of which drug classes may

influence the risk of generation of DSA [7].

The mammalian target of rapamycin (mTOR) inhibi-

tors everolimus and sirolimus exert highly complex

effects on the immune system due to the multiple roles

of the mTOR signaling pathway in the immune cascade

[8]. It has long been known that their potent immuno-

suppressive action is founded on suppression of the

proliferation and clonal expansion of antigen-specific T

cells, but ongoing research has shown that this is

accompanied by alterations in the balance of memory

and helper T-cell subsets [8] and, more recently, by

potential effects on B cells, plasma cells, and natural

killer (NK) cells [9].

Modulation of B-cell activity could influence AMR

by inhibiting differentiation to plasma cells, as well as

suppressing their immunoregulatory functions and pre-

sentation of antigens to T cells. This article considers

the current evidence regarding a potential influence of

the non-T-cell immunological effects of mTOR inhibi-

tors on development of DSA and AMR following kidney

transplantation.

An overview of the pathophysiology of AMR

The pathological processes underlying AMR are not

fully elucidated, although recent experimental studies

have provided new insights [10]. The cascade of events

begins with the generation of DSA, a relatively frequent

event after kidney transplantation. Prospective studies

have shown the incidence of dnDSA, that is, DSA in

patients without DSA at time of transplant, to be 15–
20% by 5 years after transplantation [11–13], with the

highest rate of development during the first post-trans-

plant year [12]. The presence of dnDSA is a well-recog-

nized risk factor for chronic AMR and graft loss [2].

Complement-binding dnDSA and anti-HLA DQ DSA

are particularly unfavorable for risk of AMR and graft

failure [14–17].
Donor-specific anti-HLA antibodies bind to mis-

matched polymorphic HLA antigens on the graft

endothelium, or to other targets such as polymorphic

minor histocompatibility antigens, initiating antigen-

mediated allograft injury. If complement-activating

DSAs are present, binding of circulating DSA to

endothelial cells can trigger activation of the classical

complement pathway. This ultimately leads to deposi-

tion of C4d in graft tissue and cleavage of C3 to C3a

and C3b, resulting in leukocyte recruitment and

endothelial cell activation [2,10]. Activation of the clas-

sical complement pathway is fundamental for acute

AMR, but chronic AMR can develop in its absence,

arising from non-complement-fixing DSA [17,18].

Chronic AMR, characterized by chronic vascular inflam-

mation, and vascular lesions such as transplant

glomerulopathy, which gradually become irreversible

and eventually cause progressive tissue destruction and

loss of graft function, may be more dependent on NK

cells [19]. It has also been proposed that DSA may

directly induce activating signals in endothelial cells,

prompting the expression of adhesion molecules and

growth factors [20].

The characteristics of DSAs (high affinity, mutated

immunoglobulins) indicate that they arise from a

thymo-dependent B-cell response to recognition of its

cognate antigen, which takes place within secondary

lymphoid organs, that is, the spleen and lymph nodes.

After entering the germinal center, activated B cells then

proliferate and differentiate toward antibody-secreting

long-lived plasma cells, which generate circulating DSA,

or toward memory B cells [21]. If mTOR inhibitors

restrict B-cell activity by blocking the mTOR-mediated

downstream signaling triggered by antigens binding to

surface B-cell receptors, it could potentially be highly

relevant for prevention of dnDSA after transplantation.

mTOR inhibition & mediators of AMR: in vitro
& preclinical data

The mTOR signaling pathway exerts highly diverse

effects on immune cell proliferation, function, and
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interactions [22,23]. Research has tended to focus on

the mTOR complex 1 (mTORC1), the principal target

of everolimus and sirolimus, in mediating T-cell

responses. In vitro and preclinical data are now starting

to accumulate regarding the role of the mTOR pathway

within B cells and other immune cell types involved in

the pathogenesis of AMR [9]. Understanding the impli-

cations of mTOR inhibition, for B-cell activity in par-

ticular, is by no means a simple challenge, as the

relative activity of regulatory and effector B cells

appears critical [24]. Although B-cell depletion can

improve graft survival rates in patients being treated

for AMR, B cells can also exert a protective effect on

the graft by secretion of protective antibodies or via

lowering of inflammatory response via secretion of

IL-10, as well as by direct inhibition of effector T cells

[24].

The conclusions of murine experimental models can-

not always be translated directly to patients due to the

fact that (i) the biology of mice differs from that of

humans, (ii) laboratory mice live in an abnormally

hygienic environment, which detrimentally impacts on

memory effector development [25], and (iii) genetic

engineering leads to complete extinction of the mTOR

pathway in a specific cell subset rather than the partial

blockade in all cell types observed during treatment

with mTOR inhibitors. Yet murine experimental models

are useful to dissect the role of the mTOR pathway in

B-cell biology. Laboratory mice are inbred and geneti-

cally homogeneous, can be genetically manipulated,

allow kinetic tissue analyses to be carried out from the

onset of disease, and permit the use of tractable disease

models. Comparably reductionist experiments are nei-

ther technically nor ethically possible in humans. There-

fore, where clinical studies can only establish

correlations (often blurred by many confounding fac-

tors), murine experimental models allow precise dissec-

tion of the molecular mechanism of immune responses

and establishment of causality.

Knock-in mTOR hypomorph mice models in which

mTOR transcription is neo-inserted then partially dis-

rupted have been used to explore the effect of mTOR

deficiency. Using this approach, Zhang and colleagues

demonstrated that mTORC1/mTORC2 inhibition not

only lowered T-cell counts (particularly memory T

cells), with lower cytokine levels and greater FoxP3

expression, but suppressed B cells to an even greater

degree [26]. A partial block of B-cell development

was detected, with reduced proliferation, antibody

production, and migration to cytokines. Consistent

with this, Jones et al. [27] observed that abrogation

of mTORC1 in a similar model prevented the genera-

tion of antibody-secreting plasma cells. Additionally,

newly formed plasma cells in the spleen and bone

marrow were ablated—an effect replicated by acute

sirolimus administration—although long-lived bone

marrow plasma cells were unaffected [27]. Using the

same knock-in technology, Jindra et al. [28] showed

that knockdown of either mTORC1 and mTORC2

blocked endothelial cell proliferation induced by HLA

Class I. In a murine model where mice were trans-

planted with allogeneic hepatocytes, administration

of mTOR inhibitors suppressed alloantibody produc-

tion by alloprimed IgG1 B cells, an effect that was

not observed after calcineurin inhibitor (CNI)

administration [29].

In vitro cultures of human B cells have also provided

evidence concerning the effects of mTOR inhibitors on

B-cell proliferation, activation, and differentiation [30–
32]. Both everolimus [30] and sirolimus [33] have been

shown to inhibit CD19+ B-cell proliferation and differ-

entiation into plasma cells, even at low doses. Experi-

ments with everolimus [30,31] and sirolimus [32] have

shown that B-cell activation and production of IgG

antibodies are profoundly attenuated in a dose-depen-

dent manner. Sirolimus exerted a more potent effect on

cultured B cells than tacrolimus [30,32], cyclosporine

(CsA) [30,32], or steroids [30], while mycophenolic acid

(MPA) strongly influenced B-cell function [30–32]. The
picture is complex, however. Traitanon and colleagues,

when assessing the effect of sirolimus on stimulated

human B cells, found that CD27+ memory B cells were

suppressed more than na€ıve B cells, but that the residual

B cells acquired an activated phenotype, and induced

proliferation of CD4+CD25� T cells with a shift to the

type 1 T helper cells (Th1) phenotype. Additionally, the

residual B cells showed enhanced expression of HLA

DR [33].

In addition, there is preliminary evidence that

mTOR inhibition may disrupt T-cell infiltration of

endothelial cells. By interrupting the mTORC2 pathway,

sirolimus can inhibit expression of vascular cell adhesion

molecule-1(VCAM-1) by activated endothelial cells [34].

Overall, the available evidence from in vitro and

murine models indicates that mTORC1 and mTORC2

inhibition can suppress B-cell activation, immunoglobu-

lin production, proliferation and differentiation into

plasma cells, and attenuate the mTOR-mediated

intracellular signaling pathway involved in AMR-related

kidney damage [9] (Fig. 1).

One further area of interest is a potentially beneficial

impact of mTOR inhibition in patients who have
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preformed DSA at the time of transplant, or who

develop dnDSA. Awareness that complement-indepen-

dent endothelial cell injury can contribute to AMR

lesions has led to an exploration of the proinflamma-

tory and proproliferation mechanisms involved [20,35].

DSAs have been shown to directly trigger activating

signals in endothelial cells by cross-linking with major

histocompatibility complex I (MHC-I) [20], a process

in which the mTOR pathway plays a major role

[35,36]. Furthermore, activation of the innate immune

effectors, such as neutrophils and monocytes, which

are involved in the development of antibody-dependent

cell-mediated cytotoxicity, is also dependent on the

mTOR pathway [37,38]. One could postulate that

inclusion of mTOR inhibitors in the immunosuppres-

sive regimen for DSA-positive transplant recipients

might attenuate complement-independent AMR

endothelial damage, but this possibility is beyond the

scope of the present review and will not be discussed

herein.

Immunoregulatory effects of mTOR inhibitors:
clinical findings

Different immunosuppressant classes exert various—or

indeed no—direct effects on B-cell or plasma cell activ-

ity (Table 1). Studies in kidney transplant patients have

consistently demonstrated that the proportion of

CD4 + CD25high FOXP3-expressing regulatory T cells in

kidney transplant patients expands under sirolimus

compared to CNI therapy in patients with or without

prior lymphocyte-depleting induction therapy [51–55],
but this does not appear to protect against chronic allo-

graft injury [52]. Data regarding the effects of mTOR

inhibitors on B-cell or plasma cell activity in vivo are

sparse. A small study of 19 kidney transplant patients

who underwent profound T-cell depletion with rabbit

antithymocyte globulin (rATG), followed by mainte-

nance immunosuppression based on sirolimus or CsA,

reported that reconstitution of CD19�IgD+/�CD27+

memory B cells was expanded under sirolimus, with

Figure 1 Potential role of mammalian

target of rapamycin (mTOR) inhibition in

suppression of B-cell function. Binding

of the cognate antigen to immunoglob-

ulin (Ig) on the surface of B cells triggers

activation of the mTOR pathway, which

stimulates production of nucleotides.

Inhibition of the mTOR pathway blocks

nucleotide production, thus restricting

B-cell proliferation and differentiation to

plasma cells. The second activation

signal for B cells is generated by T follic-

ular helper (Tfh) cells. Internalization and

processing of cognate antigen by B cells

are followed by presentation of selected

antigen peptides to the B-cell surface on

MHC class 2 (MHC II) molecules, leading

to coupling of the B cell to a Tfh cell.

The Tfh cell then activates the B cell by

cell surface costimulatory ligand

interactions (e.g., CD40) and by releas-

ing directional cytokine production (IL-2

and IL-21). IL-2 receptor stimulation on

the B cells and on the Tfh cells stimulates

mTOR-mediated nucleotide production.

mTOR inhibition can thus restrict

the extent and effect of the Tfh

cell-mediated second activation signal.
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fewer na€ıve B cells [55]—an effect that would be

expected to promote AMR. In a study of 36 kidney

transplant patients, Latorre and colleagues observed that

both mTOR inhibitors and CNI agents significantly

reduced the number of Breg cells versus healthy controls

[54], which again could potentially contribute to anti-

body-induced injury. However, Gong et al. [53] assessed

18 recipients of a related living-donor kidney and found

that neither sirolimus nor tacrolimus therapy affected

the proportion of Bregs compared to controls. Studies

reporting plasma cell counts or T cell-independent anti-

body production in transplant patients receiving mTOR

inhibitors are lacking.

mTOR inhibition in the context of overall
immunosuppression

A regimen that provides adequately potent immunosup-

pression, regardless of its constituent drugs, is essential

to minimize risk of DSA and AMR-related graft

loss—although of course this must be balanced against

potentially fatal complications of over-immunosuppres-

sion, notably infections, and malignancies. Nonadher-

ence to the prescribed regimen [4,11], or overly mild

immunosuppression [56,57], very substantially increase

rates of both DSA and AMR. Wiebe et al. [11] studied

risk factors for dnDSA in a series of 315 consecutive kid-

ney transplants and found nonadherence to have the

greatest predictive effect of any variable, increasing risk

almost nine-fold. One series of 23 patients with late

AMR (>6 months) found that 17% had documented

nonadherence, while in 69% of the cases the treating

physician had reduced immunosuppression prior to

AMR [56]. Another retrospective analysis, in a cohort of

27 patients with late AMR, found that 56% were either

nonadherent or had suboptimal immunosuppression

[57]. In a prospective study, Sellar�es and colleagues

found that among 36 kidney transplant patients who

progressed to graft failure after rejection (all of whom

had evidence of AMR), 47% had been assessed as non-

adherent [3]. The evidence for nonadherence as the

dominant risk factor for AMR is compelling. Pertinent

to this, the prevalence of adverse events associated with

mTOR inhibitors, including early mild stochastic symp-

toms triggered by a paradoxical inflammatory response

due to destabilization of the inflammatory cytokine bal-

ance [58,59], can prompt nonadherence although

today’s lower exposure levels have ameliorated side

effects [60]. The in vitro and preclinical evidence demon-

strating a potential benefit for mTOR inhibition in con-

trolling humoral alloimmunity may be attenuated by

nonadherence, dose reductions or, indeed, discontinua-

tion of mTOR inhibitors due to intolerance.

Although the overall intensity of immunosuppression

remains the key determinant for risk of dnDSA, the

specific immunological actions of immunosuppressant

agents may also be influential [7]. As transplant recipi-

ents are only rarely maintained on a single agent, disen-

tangling whether specific agents affect DSA development

is challenging. A recent review [61] concluded that

induction with rATG may achieve a short-term decrease

in dnDSA production in moderately sensitized patients

[62]. Although randomized trials are lacking, this is

consistent with prolonged depletion of CD19+ B cells

Table 1. Overview of the impact of immunosuppressive agents & classes on B-cell ontogeny.

Immunosuppressive agent/class Impact on B-cell/plasma cell biology

Antithymocyte globulin

In
h
ib
it
io
n
o
f
T
-B

co
o
p
e
ra
ti
o
n

In vitro B- and plasma cell apoptosis [39]
Rituximab Depletes memory B cells [40,41]
Bortezomib Inhibits activated B cells [42]

Induces plasma cell apoptosis [43]
Alemtuzumab B-cell repopulation with protolerogenic profile [44]
IL2R antagonists No direct action
Corticosteroids Apoptosis of activated B cells [45,46]

Prevent B-cell differentiation to plasma cells in vitro [30]
Calcineurin inhibitors No direct action [47,48]
mTOR inhibitors Inhibition of B-cell activation [30–32], proliferation [30,33],

and differentiation to plasma cells [30,33] in vitro
Belatacept Expansion of transitional B cells [49]
Mycophenolic acid Inhibition of B-cell proliferation and generation of plasma

cells [50]

mTOR, mammalian target of rapamycin.
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observed in a prospective clinical trial of kidney trans-

plant patients given rATG [63]. MPA or early steroid

withdrawal [64] in standard-risk patients does not

appear to modify the risk of dnDSA [61]. The fusion

protein belatacept appears to lower rates of dnDSA

compared to CsA [65]. CNI administration, however,

reduces risk of dnDSA versus regimens based solely on

antimetabolite agents and steroids [61]. As one would

expect, the level of exposure to CNI agents is highly

influential: one retrospective analysis of 749 liver trans-

plant patients found the risk of dnDSA at 1 year post-

transplant to be increased by 2.66-fold if tacrolimus

trough concentration was <3 ng/ml or CsA concentra-

tion was <75 ng/ml [66]. Clearly, any assessment of

mTOR inhibitors must take into account the other

component of the immunosuppressive regimen.

Clinical evidence regarding dnDSA & AMR
under mTOR inhibition

De novo DSA

Until recently, the protocols for trials of mTOR inhibi-

tors and other immunosuppressants only rarely

included DSA measurement. Table 2 summarizes the

key randomized clinical trials of mTOR inhibitors in

which rates of dnDSA were captured. Regretfully, data

on DSA were not collected in the large A2309 study, in

which patients received everolimus with reduced-expo-

sure CsA, or standard-exposure CsA with MPA, from

the time of transplant [67]. Robust information on rates

of dnDSA in patients given an mTOR inhibitor with

reduced-CNI therapy is still lacking.

For patients who are switched from CNI therapy to

mTOR inhibition, the evidence is mixed. The SPIESSER

[68] and CENTRAL [69] studies showed no meaningful

effect on dnDSA rates following withdrawal of CsA and

introduction of sirolimus or everolimus (Table 2). In

the large ELEVATE trial, 709 participants were random-

ized at 10–14 weeks post-transplant to start everolimus

with CNI withdrawal or to continue standard CNI ther-

apy (either tacrolimus or CsA), both with MPA and

steroids [70]. In the subset of patients with DSA data

available at year 2 post-transplant, dnDSA against HLA

Class I was detected in more everolimus patients than

in control patients (8.3% vs. 2.4%). Perhaps unexpect-

edly, the difference was largely due to low rates of anti-

HLA Class I DSA in the subset of patients treated with

CsA (0/52). The incidence of DSA against HLA Class II

antigens was similar between the everolimus and control

groups (6.3% vs. 7.0%) [70].

Two studies have reported a significantly higher rate of

dnDSA after switch to mTOR inhibition [72,73] and

merit discussion. In the CERTITEM study, the authors

attributed this effect to overwhelming under-immuno-

suppression [72]. Everolimus exposure was relatively low

(with ~35% having a trough concentration below the

minimum threshold of 6 ng/ml) and, by protocol, was

administered with half-dose MPA compared to full-dose

MPA in the CNI treatment arm. Secondly, a post hoc anal-

ysis of 127 patients randomized in either the ZEUS or

HERAKLES studies at a single center, published by Lie-

feldt et al. [73], reported that after a median follow-up of

3.5 years, dnDSA was detected in 23.0% of patients (14/

61) who switched from CsA to everolimus, compared to

10.8% of patients (7/65) who continued CsA [hazard

ratio (HR) = 2.43; P = 0.048]. The time to onset was

shorter in the everolimus-treated patients (median 551 vs.

1173 days). It seems likely that the everolimus group was

again under-immunosuppressed: 59% of patients in the

everolimus group were steroid-free, and the mean dose of

enteric-coated mycophenolate sodium was 1212 mg/day.

Lastly, de Sandes-Freitas et al. [71] observed a nonsignifi-

cant trend to higher rates of dnDSA at year 2 post-trans-

plant when patients were switched from tacrolimus to

sirolimus at month 3 post-transplant, both with MPA

and steroids (Table 2). In this study, tacrolimus exposure

was low by protocol from time of transplant (mean 6 ng/

ml at month 3), and only 36% received any induction

therapy, so despite the low-risk population the overall

intensity of immunosuppression may have been inade-

quate. Data on DSA in patients treated with sirolimus

and belatacept versus belatacept-MPA or tacrolimus-

MPA are too limited to draw firm conclusions [74]. The

ongoing TRANSFORM study, in which over 2000 kidney

transplants are randomized to everolimus with reduced-

exposure CNI or to standard-exposure CNI and MPA,

includes the incidence of DSA as an exploratory objective

[75], providing high-quality data on this issue.

Retrospective single-center studies have suggested that

patients converted early to an mTOR inhibitor with

CNI withdrawal (<12 months after kidney transplanta-

tion) [76] experience a higher rate of dnDSA than those

maintained on CNI therapy, but that later conversion

(>6–12 months post-transplant) [76–79], or treatment

with everolimus and low-dose CNI [80], incurs no

additional risk.

Antibody-mediated rejection

Few randomized trials of mTOR inhibitors have

reported rates of AMR, since at the time the protocols
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were developed endpoints focused on the occurrence

and severity of cellular rejection. One recent exception

was the A2309 trial, in which 833 de novo kidney trans-

plant recipients were randomized from time of trans-

plant to everolimus targeting either 3–8 ng/ml or 6–
12 ng/ml with reduced-exposure CsA, or to standard

CsA and MPA [67]. Both groups were given basiliximab

induction and steroids were optional. Rates of AMR at

two years’ post-transplant were statistically noninferior

in the two everolimus arms versus controls (3.6%,

4.3%, and 5.4%, respectively) (Table 2). The ELEVATE

trial reported rates of histologically confirmed AMR in

a cohort of 712 kidney transplant patients [70]. AMR at

month 12 was more frequent in patients converted from

CNI to everolimus at 10–24 weeks after kidney trans-

plantation versus controls [3.7% (13/353) vs. 0.6% (2/

356), P = 0.004]; at month 24, the rate of AMR

remained numerically higher [4.5% with everolimus

(16/353) vs. 2.0% with CNI (7/356) (P = 0.059) [70]].

Other major randomized trials in which patients were

switched from CNI to mTOR inhibitor therapy during

the first year post-transplant have not described AMR

events. In the single-center analysis by Liefeldt et al.

[73], the rate of AMR was higher after switch to mTOR

inhibition than in controls who continued to receive

CNI therapy (13.1% vs. 3.0%, P = 0.036). Of the eight

everolimus-treated patients with AMR, however, five

were receiving reduced-dose MPA, two had discontin-

ued steroids, and one was on low-dose steroids.

More data are required, but based on these studies,

everolimus with reduced-exposure CNI does not appear

to increase risk of AMR but rates increase after early

CNI withdrawal, particularly if adjunctive immunosup-

pression is inadequate.

Conclusion

Antibody-mediated rejection, the leading cause of kid-

ney graft loss, represents the main unmet medical need

in solid organ transplantation. In the absence of an

effective treatment to block late events in the AMR cas-

cade, clinicians should focus on primary prevention:

that is, avoiding the generation of dnDSA. The influence

of post-transplant immunosuppression on risk of

dnDSA generation is very largely determined by the

overall intensity of the regimen, and by the extent to

which the patient adheres to that regimen. The overrid-

ing priority is to ensure that immunosuppressive taper-

ing or withdrawal is gauged carefully to minimize the

risk of dnDSA generation. The impact of a specific

agent or class is secondary, but nevertheless ofT
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considerable interest. Determining the contribution of

an individual component is difficult since monotherapy

is not widely used after kidney transplantation and the

type and dose of adjunctive therapy vary. In vitro and

preclinical data from mouse models suggest that mTOR

inhibitors could potentially suppress development of

dnDSA via effects on B-cell proliferation and differentia-

tion but also act on late events in the AMR cascade includ-

ing activation of innate immune effectors responsible for

antibody-dependent cell-mediated cytotoxicity-mediated

lesions and endothelial cells. The multiple functions of the

mTOR pathway, however, mean that mTOR inhibition

can also enhance certain B-cell responses or subpopula-

tions [23], adding further complexity.

Well-designed studies are required to determine

whether the B-cell modulation observed with mTOR

inhibition in vitro is also manifested clinically. To date,

limited data from patients given mTOR inhibitor ther-

apy with adequate concurrent immunosuppression,

such as reduced-exposure CNI therapy, has not shown

an adverse effect on the risk of dnDSA or AMR. In

contrast, an early switch from CNI therapy to mTOR

inhibitor may increase the risk of dnDSA production,

and it certainly seems prudent to maintain optimal

MPA dosing and possibly continue steroids to minimize

risk in this scenario. Early conversion to a CNI-free

regimen should be followed by protocol biopsies and

DSA monitoring. Late conversion from CNI therapy to

an mTOR inhibitor, after the first year post-transplant,

has not been shown to affect the risk of dnDSA devel-

opment.
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