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SUMMARY

Multivariable regression models are often used in transplantation research
to identify or to confirm baseline variables which have an independent
association, causally or only evidenced by statistical correlation, with trans-
plantation outcome. Although sound theory is lacking, variable selection is
a popular statistical method which seemingly reduces the complexity of
such models. However, in fact, variable selection often complicates analysis
as it invalidates common tools of statistical inference such as P-values and
confidence intervals. This is a particular problem in transplantation
research where sample sizes are often only small to moderate. Furthermore,
variable selection requires computer-intensive stability investigations and a
particularly cautious interpretation of results. We discuss how five com-
mon misconceptions often lead to inappropriate application of variable
selection. We emphasize that variable selection and all problems related
with it can often be avoided by the use of expert knowledge.
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Observational studies are often conducted in a prognos-

tic or etiologic research context [1]. To this end, many

papers dealing with observational studies use multivari-

able regression approaches to identify important predic-

tors of an outcome [2–4] or to assess effects of new

markers adjusted for known clinical predictors [5–7],
respectively. As the number of candidate predictor vari-

ables or known confounders can be large, a “full” model

including all candidate predictors as explanatory vari-

ables is often considered impractical for clinical use or,

in the extreme case, is even impossible to estimate

because of multicollinearity. Therefore, variable selection

approaches are often employed, mostly based on evalu-

ating P-values for testing regression coefficients against

zero. For example, Martinez-Selles et al. [8] used

univariate screening of effects to build a multivariable

model for survival after heart transplantation. After

univariate selection, Rodriguez-Per�alvarez et al. [9]

employed “backward elimination” which means that

first a multivariable model was built with all predictors

selected by univariate screening in a first step. Then,

nonsignificant predictor variables were sequentially

eliminated and models re-estimated until all variables

remaining in the model show significant association

with the outcome. The technique of backward selection

is sometimes also applied directly to a set of predictor

variables [10–13], or the process of variable selection is

reversed by “forward selection” [5,14], meaning that

candidate predictors are sequentially included in a

model if their association with the outcome variable, on

top of the set of variables already in the model, is sig-

nificant. Box 1 provides an overview of the most com-

mon approaches of variable selection and explains some

statistical notions commonly used in this context.

Whatever technique applied, the approach of letting

statistics decide which variables should be included in a

model is popular among scientists. Among all 89 clini-

cal research articles published in Transplant
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International in 2015, 49 applied multivariable regres-

sion modeling, and variable selection was used in 30

(65%) of those 49 articles. However, it is not commonly

known that there hardly exists any statistical theory

which justifies the use of these techniques. This means

that quantities such as regression coefficients, hazard

ratios or odds ratios, P-values or confidence intervals

may suffer from systematic biases if variable selection

was applied, and usually, the magnitude or direction of

these biases is unpredictable [15]. This is in sharp con-

trast to the simplicity of application of variable selection

approaches, being ready to use in statistical standard

software such as IBM SPSS [16] or SAS software [17].

The popularity of variable selection approaches is based

on five myths, that is, “believes” lacking theoretic founda-

tion. Before discussing these myths in this review, it should

be noted that no variable selection approach can guard

against general errors in setting up a statistical modeling

problem, for example, putting the “cause” as outcome

variable and the “effect” as independent, adjusting effects

for later outcomes, or the like. Moreover, it is assumed

here that, without looking into the data, a set of candidate

predictors has already been preselected by clinical exper-

tise, for example, a prior belief that those predictors could

be related to the outcome. Availability in a data set alone is

not the basis for their consideration for a model.

Myth 1: “The number of variables in a model
should be reduced until there are 10 events per
variables.” No!

Simulation studies have revealed that multivariable mod-

els become very unstable with too low events-per-variable

(EPV) ratios. Current recommendations suggest that a

minimum of 5–15 EPV should be available, depending

on context [15,18]. However, practitioners often overlook

Box 1. Glossary
AIC Akaike information criterion. A number based on information theory expressing the model fit

(log likelihood) discounted by the number of unknown parameters
Augmented
backward elimination

An extension of backward elimination recently proposed by Dunkler et al. [23], which can
consider the change-in-estimate as an additional selection criterion. Usually leads to selection
of more variables than standard backward elimination. Preferable method for etiologic models

Backward
elimination

Remove insignificant predictors from a model one-by-one until all variables are significant.
The preferable method for prognostic models if enough data are available

Bayes factor Ratio of likelihood of two competing models
Change-in-estimate The magnitude by which the regression coefficient of a variable X changes if a variable Z is

removed from a multivariable model
EPV Events per variable. A simple measure to define the amount of information in a data set (the

number of events or the sample size) relative to the number of regression coefficients to be
estimated (the number of variables). Note that nonselection of a variable corresponds to an
estimated regression coefficient of zero, and thus, this formula should always consider
all candidate variables

Etiologic models Statistical models used to explain the role of a risk factor or treatment in its (possibly causal)
effect on patient outcome

Forward selection Add significant candidate predictors to a model one-by-one until no further predictors can be added.
Usually leads to inferior results compared to backward elimination

Likelihood The probability of the data to be observed under a given model
Maximum likelihood Statistical estimation techniques which sets unknown model parameters (e.g., regression

coefficients) to those values which are such that the observed data are most plausibly explained
Multicollinearity Almost perfect correlation of explanatory variables. Causes ambiguity in estimation of regression

coefficients and selection of variables. Can be a problem if regression coefficients should be
interpretable, that is, in etiologic research contexts

Prognostic models Statistical models used to prognosticate a patient’s outcome (e.g., graft loss or death) by
the values of some variables available at the time point at which this prediction is made

Univariable
prefiltering
(bivariable analysis)

Each candidate variable is evaluated in its association with the outcome. Only significant variables
are entered in a multivariable model.
Often used by researchers, but should be avoided

Variable, independent
or dependent

Independent variable: a variable considered as predicting or explaining patient outcome.
Also termed predictor or explanatory variable, respectively.
Dependent variable: the variable representing the outcome under study, for example,
occurrence of rejections, patient survival, or graft survival
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that this recommendation refers to a priori fixed models

which do not result from earlier selection [15]. If variable

selection is considered, the rule should consider the num-

ber of candidate variables with which the selection pro-

cess is initialized, and probably even much higher values

such as 50 EPV are needed to obtain approximately stable

results, as the selection adds another source of uncer-

tainty to estimation [19]. If the number of candidate vari-

ables seems to be too large, background knowledge

obtained from analyses of former studies or from theoret-

ical considerations should be applied to prefilter variables

in order to meet the EPV-rule requirements of a problem.

Causal diagrams such as directed acyclic graphs can also

help in discarding candidate variables before statistically

analyzing the data [20,21].

Myth 2: “Only variables with proven
univariable-model significance should be
included in a model.” No!

While it is true that regression coefficients are often larger

in univariable models than in multivariable ones, also the

opposite may occur, in particular if some variables (with

all positive effects on the outcome) are negatively corre-

lated. Moreover, univariable prefiltering, sometimes also

referred to as “bivariable analysis,” does not add stability

to the selection process as it is based on stochastic quanti-

ties, and can lead to overlooking important adjustment

variables needed for control in an etiologic model.

Although univariable prefiltering is traceable and easy to

do with standard software, one should better completely

forget about it as it is neither a prerequisite nor providing

any benefits when building multivariable models [22].

Myth 3: “Insignificant effects should be
eliminated from a model.” No!

Eliminating a variable from a model means to put its

regression coefficient to exactly zero – even if the likeli-

est value for it, given the data, is different. In this way,

one is moving away from a maximum likelihood solu-

tion (which has theoretical foundation) and reports a

model which is suboptimal by intention. Eliminating

weak effects may also be dangerous as in etiologic stud-

ies, bias could result from falsely omitting an important

confounder. This is because regression coefficients gen-

erally depend on which other variables are in a model,

and consequently, they change their value if one of the

other variables are omitted from a model. This

“change-in-estimate” [23] can be positive or negative,

that is, away from or toward zero. Hence, it may

happen, that after eliminating a potential confounder

another adjustment variable’s coefficients moves closer

to zero, changing from “significant” to “nonsignificant”

and hence leading to the elimination of that variable in

a later step. However, despite its usual detrimental

effects on bias, elimination of very weak predictors from

a model can sometimes decrease the variance (uncer-

tainty) of the remaining regression coefficients. Dunkler

et al. [23] have proposed “augmented backward elimi-

nation,” a selection algorithm which leaves insignificant

effects in a model, if their elimination would cause a

change in the estimate of another variable. Thus, their

proposal extends pure “significance”-based sequential

elimination of variables (“backward elimination”) and is

of particular interest in etiologic modeling.

Myth 4: “The reported P-value quantifies the
type I error of a variable being falsely
selected.” No!

First, while the probability of a type I error mainly

depends on the significance level, a P-value is a result of

data collection and analysis and quantifies the plausibility

of the observed data under the null hypothesis. Therefore,

the P-value does not quantify the type I error [24]. Sec-

ond, after a sequence of elimination or selection steps,

standard software reports P-values only from the finally

estimated model. Any quantities from this last model are

unreliable as they do not “remember” which steps have

been performed before. Therefore, P-values are biased

low (as only those P-values are reported which fall below

a certain threshold), and confidence intervals are often

too narrow, claiming, for example, a confidence level of

95% while they actually cover the true value with a much

lower probability [15]. On the other hand, there is also

the danger of false elimination of variables, the possibility

of which is not quantified at all by just reporting the final

model of a variable selection procedure. To overcome

these problems, statisticians have argued in favor of using

resampling techniques or relative AIC- or Bayes factor-

based approaches to explore alternative models and their

likelihood to fit the data, and to use averages over com-

peting models instead of just selecting one ultimate

model [25]. Such analyses may provide valuable insight

in how stable models are and how many and which com-

peting models would be selected how often. Resampling

can also be used to quantify selection probabilities of

variables or pairs of correlated, competitive variables

[26]. Unfortunately, with the exception of SAS/PROC GLMSE-

LECT software [17], we do not know of any implementa-

tions of these very useful approaches in standard
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software. For example, while simple bootstrap resampling

is indeed implemented in IBM SPSS software [16], its appli-

cation is restricted to a model with a fixed set of indepen-

dent variables rather than to evaluating the stability of

variable selection across resamples.

Myth 5: “Variable selection simplifies analysis.”
No!

While a smaller model may be easier to use and – at first

glance – to report, there are many problems to be solved

when variable selection techniques are considered. First,

an appropriate variable selection method has to be

selected for the problem at hand. Statisticians have rec-

ommended backward elimination as the most reliable

one among those that can be easily achieved with stan-

dard software [27]. Second, an often arbitrary choice has

to be made about the selection parameter, that is, the sig-

nificance level to decide whether an effect should be

retained in a model. While smaller values such as 0.05 or

0.01 are only recommended for very large sample sizes

(EPV of 100 or above), in the vast majority of applica-

tions, a value of 0.2 or 0.157 (corresponding to selection

based on AIC) or even 0.5 (resulting in very mild selec-

tion) will be a better choice. Third, as selection is a “hard

decision” but often based on vague quantities, investiga-

tions on model stability should accompany any applied

variable selection to justify the decision for the model

finally reported or at least to quantify the uncertainty

related to the selection of the variables. This has to be

done with resampling methods, which, until robust

implementations are available in standard software, are

still cumbersome to implement. Such evaluations are also

needed (and even more computationally demanding) for

best subset searches, that is, letting the computer evaluate

all different models that can be thought of using a given

set of candidate predictors. Similar stability investigations

should be carried out if modern variable selection meth-

ods such as the LASSO [28] or boosting [29] are used.

By way of conclusion, we see that five myths have

obscured the problems of variable selection that have

been identified in recent decades by statisticians. While

variable selection methods seem simple to use and handy

to build multivariable models, issues such as selection

uncertainty or bias in the reported quantities have too

often been overlooked by practitioners. Before using vari-

able selection techniques one should critically reflect

whether such methods are needed in a particular study at

all, and if yes, whether there is enough data available to

justify elimination or inclusion of variables in a model

just by “letting the data speak.” By contrast, expert

background knowledge, for example, formalized by direc-

ted acyclic graphs [20,21], is usually a much better guide

to robust multivariable models. At least, such knowledge

(and not data-driven methods!) should be used to restrict

the number of candidate variables competing for selec-

tion to a number compatible with published EPV rules.

In line with many other statisticians, we think that for

prognostic models backward elimination with a selection

criterion of 0.157 and without a preceding univariable

prefiltering is a good starter, but sometimes other choices

for the selection criterion may be more appropriate. For

etiologic models, “augmented backward elimination”

[23] preceded by a careful preselection based on assump-

tions on the causal roles of variables [20,21] is a reason-

able approach. Whenever investigators decide to use

statistical variable selection approaches, they should use

them with care and should add sensitivity and robustness

analyses. Ideally, such analyses are conducted using

resampling techniques, but often it will already be helpful

if robustness of basic conclusions of a study is demon-

strated by comparing the main results with those

obtained after eliminating some variables from the main

model or including additional ones. The key messages of

this review are summarized in Box 2.
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Box 2. Key points to remember

1. The five myths presented here are all misconcep-

tions of variable selection.

2. Often there is no scientific reason to perform

variable selection. In particular, variable selection

methods require a much larger sample size than esti-

mation of a multivariable model with a fixed set of

predictors based on clinical expertise.

3. If a researcher needs to perform variable selec-

tion, and sample size is large enough and the candi-

date predictors have been carefully selected based on

prior knowledge, then backward elimination with a

P-value criterion of 0.157 is a good choice for prog-

nostic models, and augmented backward elimination

for etiologic models.

4. Variable selection should always be accompanied

by sensitivity analyses to avoid wrong conclusions.
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