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Summary

Infections remain a frequent complication following organ transplantation.

Agents present within the general population remain common in recurrent infec-

tions among renal transplant recipients. Data mining methodology has become a

promising source of information about patterns in the organ transplant recipient

population. The aim of the study was to use data mining to describe the factors

influencing single and recurrent infections in kidney transplant recipients. A

group of 159 recipients who underwent kidney transplantation between 2005 and

2008 was analysed. RapidMiner and Statistica softwares were used to create deci-

sion tree models based on CART Quinlan and C&RT algorithms. There were 171

microbiologically confirmed episodes among 67 recipients (41%), and 191 sepa-

rate species isolations were performed. Over 50% of the infected patients under-

went two or more infectious episodes. Two classification decision tree models

were created. The following features were enabled to differentiate the groups with

single or recurrent infections: the duration of cold ischaemia, the post-transplant

hospitalization period, the cause of chronic kidney disease and pathogens. The

post-transplant hospitalization period and the length of cold ischaemia appear to

be the principal parameters differentiating the subpopulations analysed. These

coexisting factors, connected with recurrent infections in kidney transplant recipi-

ents, resemble a network which requires an advanced analysis to support the tra-

ditional statistics.

Introduction

The epidemiology of infections in kidney transplant recipi-

ents has become an interesting object of research among

clinicians. The first complex studies from the early nineties

examined the kidney transplant recipient as a typical

immunocompromised host [1]. Antibiotic prophylaxis has

effectively reduced the risk of some opportunistic infections

in kidney transplant recipients. Current guidelines recom-

mend the oral administration of trimethoprim/sulpha-

methoxazole for prophylaxis against bacterial pathogens

but most specifically against Pneumocystis jirovecii and

ganciclovir/valganciclovir for prophylaxis against cytomeg-

alovirus [2,3]. Despite this, infections in kidney transplant

recipient still challenge clinical transplantologists and mi-

crobiologists. In the short term, they may create a consider-

able threat for recipients’ life and well-being. In the long

term, they become a burden for healthcare system which

faces the problem of increasing medication costs. This is

especially related to recurrent infections with multidrug-

resistant strains. The majority of studies point to urinary

tract infections (UTIs) as the most common infection and

Gram-negative bacilli Escherichia coli as the most frequent

pathogen [4–11]. It is worth emphasizing that the majority

of publications report a single-centre experience [12–18].
Besides, the studies on risk factors frequently revise a set of

previous clinical observations and implement hypothesis-

based traditional statistics. These are obviously efficient in
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recognition of particular risk factors. However, these fail in

simultaneous examination of novel factors. They also

appear inefficient in uncovering the hierachy of different

attributes coexisting in one patient and this is in fact critical

for highly individualized clinical practice. New computing

methods based on data mining provide researchers with a

possibility to gain a deeper insight into the problem. Non-

hypothesis-based approach towards data investigation,

which underlies the general idea, becomes the key to new

opportunities within this methodology.

Starting with a definition, data mining consists of finding

nontrivial connections within data. First used in nonmathe-

matical data investigation (text mining), because of its flexi-

bility, data mining has subsequently used classical statistical

methodology to become a highly advanced method dedi-

cated to the investigation of huge databases [19,20]. Con-

temporary interest in data mining has spread among certain

scientific disciplines, starting from economics, followed by

medicine. Depending on the assumptions and mathemati-

cal basis used, there are several sorts of data mining meth-

ods available: na€ıve Bayesian classifier, neural networks,

association rules, clustering and decision trees [21,22].

These can be divided into three groups: supervised learning

decision trees in which output is provided after the analysis

of input data [23–25], unsupervised learning where data are

analysed without any specific target (clustering) [23,25,26]

and reinforcement learning (neural networks where algo-

rithms represent the ability to self-adapt) [23,26,27].

For users without a professional mathematical back-

ground, decision trees appear outstandingly popular, and

this is also true in medicine. As mentioned, they represent

supervised learning tools. These require following input

data: attributes e.g. a set of clinical parameters present in

particular group (objects) and a class value which in fact

identifies the exact scientific problem of particular analysis

e.g. clinical outcome. In this manner, the researcher decides

which features will be analyzed as the attributes and which

as a class label. This approach makes decision trees even

more useful for clinicians who, in this way, can verify their

observations or results obtained from many previous stu-

dies based on classical statistics. The parametres used as

hypotheses in classical statistics can, in this case, get verified

as class labels. [23]. The general idea of the creating deci-

sion trees is to extinguish highly homogenous subgroups

(leaves) identified with a class label and characterized by a

set of attributes. In order to establish the hierarchy of their

classificatory potential, the attributes are tested during

recurrent operations. These are tending to divide the

objects into possibly homogenous groups regarding parti-

cular attributes one by one. Once the most valuable attri-

bute has been found, the same algorithm is implemented in

the subgroups extinguished on this basis. Subsequently,

decision trees present a systemic classification of objects

described with a group of attributes and class label. They

have been praised for their transparent graphical structures

of patterns displayed, illustrated by leaf nodes and non-

leaves (internal leaves or test leaves). Non-leaves are

labelled by attributes, whereas leaves are labeled according

to class value [28–30]. There are two validation rates used

to evaluate the correctness of the model: recall and preci-

sion. Precision measures how many examples classified as

‘positive’ are in fact ‘positive’ and refers to medical term of

specificity. Recall assesses how well the classifier can recog-

nize positive samples and corresponds with sensitivity [31].

The aim of the study was to investigate patients suffering

from infectious complications after kidney transplantation

with the use of data mining methodology.

Patients and methods

Group

A group of 159 patients was examined. They underwent

kidney transplantation between 2005 and 2008 and were

observed within 24 months post-transplant (Table 1).

Sixty-seven (41%: 33 women, 34 men) suffered at least one

infectious episode (all patients were followed within the

whole period). Thirty-seven (55.2%) of these were hospital-

ized longer than 17 days directly post-transplant and in 11

of those 37 (29.7%) first infection episode appeared during

this hospitalization period. One hundred and seventy-one

infectious episodes were diagnosed, and 191 pathogen iso-

lations were performed; UTI and cytomegalovirus infection

(CMV) comprised 79% of all episodes. Besides postopera-

tive wound infections, blood infections and respiratory

tract infections were also diagnosed.

Forms of infection

The definitions of particular clinical forms were estab-

lished as follows: UTI – leukocyturia over 10 in high-

power field plus positive urine culture according to the

current guidelines, CMV – seroconversion in the case of

primarily seronegative recipients combined with fever,

diarrhea or decreased graft function and successful ganci-

clovir therapy, a positive test for CMV DNA in the case

of a primarily seropositive recipient combined with fever,

diarrhea or decreased graft function and successful ganci-

clovir therapy, postoperative wound infection-positive

culture in material obtained from a wound combined

with a local inflammatory reaction or symptoms of an

impaired healing process, blood infection, positive blood

culture with clinical features of systemic inflammatory

reaction, respiratory tract infection-positive BAL culture

with clinical features of local or systemic inflammatory

reaction.
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Treatment

Most patients were treated with a standard immunosup-

pression protocol, predominantly mycophenolate plus ster-

oids and either tacrolimus (n = 122) or cyclosporine

(n = 35). Everolimus (n = 13), sirolimus (n = 16) and aza-

thioprine (n = 2) were also used in the protocol. They also

received 1.5 g cefuroxime intravenously once directly

before transplantation and 1,5 g cefuroxime daily during

following 3 days post-transplant, 480 mg thrimetoprime/

sulphametoxazole orally in a 6 months of post-transplant

period. CMV-positive patients received antiviral prophy-

laxis with acyclovir 400 mg orally for 6 months, CMV neg-

ative who received graft from CMV-positive donors had

valganciclovir administered orally, 900 mg for 100 days,

and no routine antifungal prophylaxis was used. To be as

precise as possible I ought to write as follows: The patients

with ADPKD underwent nephrectomy on individual

indications.

Data mining methodology

A Microsoft Access 2003 database was used to store clinical

and demographic data which had been obtained from med-

ical documents. CART Quinlan and C&RT algorithms were

used to create two classifying decision tree models. Both

algorithms represent the most conventional and frequently

applied forms of decision tree modelling classification and

enabled the creation and comparison of two sorts of mod-

els: multinodal (CART Quinlan) as well as binary (C&RT).

Regarding algorithms, a single microbiological isolation of

a pathogen was established as a case. The case itself was

characterized by two attributes: type of pathogen and the

moment of isolation post-transplant (in months).

Regarding the structure of the database, every case was

also assigned to each particular patient and labelled as

either a single episode or a recurrent episodes, who displayed

a certain complex of further data such as: chronic kidney

disease (CKD) pretransplant, cold ischaemia time (CIT in

hours), human leucocytes antigens (HLA) compatibility,

age, gender, length of post-transplant hospitalization (in

days). These were chosen from the spectrum of factors pre-

viously recognized as risk factors (gender, age, CKD pre-

transplant, length of post-transplant hospitalization), as

well as further factors discussed among clinicians but not

yet fully verified.

Human leucocytes antigens compatibility was encoded

as follows: low – compatibility with single DR class antigens

and complete incompatibility in B class, or complete

incompatibility in DR loci, high – all other cases.
For analytical purposes, the pathogens belonging to

Gram-negative bacilli were divided into two subgroups:

Escherichia coli and other Gram-negative bacilli. The species

Enterococcus faecalis and Enterococcus faecium were analysed

together as Enterococcus spp. RapidMiner and Statistica

softwares were used to introduce the algorithms. Accuracy

parameters were calculated for every model.

Traditional statistics

Logistic regression models for single episodes and recurrent

infections were also created. Odds ratios were calculated for

the parameters identical to these used in data mining algo-

rithms, except for pathogens. P value <0.05 was used as the

statistical significance level.

The type of pathogen was not considered in logistic

regression, as logistic regression is a traditional statistical

method when searching for typical causative connections

among clinical conditions existing before particular epi-

sodes of infection. At the same time, decision trees created

in this study represent classification, but not regression

models, so that pathogens were included as one of classifi-

catory attributes.

Table 1. Characteristics of the group.

Parameter

Women

n = 61

Men

n = 98

All

n = 159

Age 46.1 43.6 44.9

Min. 20 Min. 17 Min. 17

Max. 65 Max. 72 Max. 72

SD = 12.6 SD = 13 SD = 13

CMV (+) 54 84 138 (86.8%)

CMV (�) 7 14 21 (13.2%)

First transplantation 51 78 129 (81.1%)

Second and following

transplantation

10 20 30 (18.9%)

CIT 18.3 h 18.6 h 18.5 h

Min. 5 Min. 6 Min. 5

Max. 42 Max. 38 Max. 42

SD = 7.7 SD = 7.7 SD = 7.6

Low HLA compatibility – more

than two mismatches

(including at least

one DR antigen)

33 38 71 (44.6%)

Living donor 2 1 3 (1.8%)

Deceased donor 59 97 156 (98.2%)

Induction therapy – basiliximab 8 8 16

Induction therapy – daclizumab 0 2 2

Number of acute

rejection episodes

8 7 15

Glomerulonephritis 17 31 48 (30.1%)

Diabetic nephropathy 5 15 20 (12.5%)

Autosomal dominant

polycystic kidney disease

6 6 12 (7.5%)

Chronic pyelonephritis 7 4 11 (6.9%)

Congenital urinary tract

malformations

3 8 11 (6.9%)

Other (including hypertension

associated nephropathy)

23 34 57 (35.8%)
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Results

Female gender and post-transplant hospitalization periods

were found to increase the risk of recurrent infections in

the logistic regression model, whereas CIT appeared to

decrease the risk (OR < 1). No statistical significance was

found in the group suffering from single episodes, and no

statistical significance was found in particular CKD pre-

transplants, with regard to either single or recurrent epi-

sodes (Table 2).

Figure 1 presents the classifying model built by the

CART Quinlan algorithm using the RapidMiner applica-

tion: a multilevel decision tree was created. There are two

highly homogenous leaves containing the patients with a

single infection (1, 2 marked in blue), six highly homoge-

nous leaves containing the patients with recurrent

infections (3, 4, 5, 6, 7, 8 marked in red) and five less

homogenous leaves. The combination of post-transplant

hospitalization period, CKD pretransplant, moment of

diagnosis post-transplant, CIT and HLA compatibility

enables homogenous groups of patients to be distinguished.

The type of pathogen and gender were not found classifica-

tory in this model. The model presents high-accuracy

parameters (Table 3).

The groups suffering from single episodes consisted of

the following individuals:

1 Group 1, marked in blue – patients with CIT longer

than 31 h

2 Group 2, marked in blue – recipients suffering from

chronic pyelonephritis pretransplant with high HLA

compatibility

The groups suffering from recurrent infections consisted

of the following individuals with CIT shorter than 31 h:

1 Group 3, marked in red, placed on the first left

branch of the tree – recipients suffering from ADPKD

pretransplant

2 Group 4, marked in red, placed on the second left

branch of the tree – recipients suffering from chronic

pyelonephritis pretransplant with low HLA compatibility

3 Group 5, marked in red, placed on the third left branch

of the tree – recipients suffering from diabetic nephropathy

pretransplant, hospitalized longer than 18 days post-trans-

plant

4 Group 6, marked in red, placed on the central branch of

the tree – recipients suffering from congenital urinary tract

malformations pretransplant, diagnosed later than

3.5 months post-transplant

5 Group 7, marked in red, placed on the central branch of

the tree – recipients suffering from congenital urinary tract

malformations, diagnosed earlier than 3.5 months post-

transplant, with low HLA compatibility

6 Group 8, marked in red, placed on the first right branch

of the tree – recipients suffering from CKD of unknown

origin, hospitalized for longer than 22 days post-transplant.

Figure 2 presents the classifying model, built with a

C&RT algorithm, using a Statistica application to create a

6-levelled, 6-leaved, binary decision tree. To improve the

work of the algorithm, those patients lacking single data

were excluded. This model presents high-accuracy parame-

ters (Table 4). Gender and HLA compatibility were not

found classificatory in this model.

A combination of CIT, post-transplant hospitalization,

the time of diagnosis post-transplant, the age and the type

of pathogen distinguished six homogenous groups of

patients (marked with colours and numbers), three groups

suffering from a single episode of infection (groups 1, 4, 6,

marked in blue) and three suffering from recurrent infec-

tions (groups 2, 3, 5 marked in red).

The groups with single episodes consisted of the follow-

ing individuals:

1 Group 1, marked in blue – patients with CIT longer

than 31 h

2 Group 4, marked in blue – patients older than 41, diag-

nosed earlier than 4 months post-transplant, hospitalized

shorter than 17 days post-transplant, with CIT shorter than

31 h,

3 Group 6, marked in blue – patients younger than 41,

infected with Enterococcus spp., diagnosed earlier than

4 months post-transplant, hospitalized shorter than

17 days post-transplant, with CIT shorter than 31 h.

The groups suffering from recurrent infections consisted

of the following individuals:

1 Group 2 marked in red – patients with CIT shorter than

31 h, hospitalized longer than 17 days post-transplant

Table 2. Factors related to single and recurrent infections according to

logistic regression model.

Parameter

Single

episode

Recurrent

infections

Odds

ratio P value

Odds

ratio P value

Age 1.02 0.8 0.99 0.6

Female gender 2.16 0.06 3.53 0.0007

CIT 0.96 0.2 0.8 0.0001

Hospitalization post-transplant 0.97 0.4 1.08 0.0001

HLA compatibility 0.98 0.7 0.93 0.1

ADPKD 0.68 0.98 2.7 0.97

Unknown 2.2 0.96 0.76 0.99

Glomerulonephritis 1.04 0.99 0.45 0.98

Diabetic nephropathy 0.75 0.98 3.33 0.97

Hypertension-related nephropathy 2.49 0.95 3.64 0.97

Chronic pyelonephritis 2.50 0.95 1.9 0.98

Congenital urinary tract

malformations

0.77 0.98 1.15 0.99

Values in bold represent statistic significance.
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Legend:

Homogenous leaf consisting of recurrent infections cases.

Homogenous leaf consisting of single infection cases.   

Heterogenous leaf consisting of both single and recurrent episodes cases with 

a prevalence of single episode cases.

Heterogenous leaf consisting of both single and recurrent episodes cases with 
a prevalence of recurrent episodes cases.

Highly heterogenous leaf consisting of both single and recurrent episodes cases.

Attributes and non-leafs.

Cold
ischaemia

time

<31 
hours

CKD

ADPKD

3. recurrent 
episodes

chronic 
pyelonephritis

HLA 
compatibility

low

4. 
recurrent 
episodes

high

2. single 
episode

diabetic 
nephropathy

post-transplant 
hospitalization 

period

>18 days

5. 
recurrent 
episodes

<18 days

single 
episode

glomerulonephritis

age

>42

single 
episode

<42

recurrent 
episodes

congenital 
urinary tract 

malformations

moment of 
diagnosis post-

transplant

>3,5 months

6. 
recurrent 
episodes

<3,5 months

HLA compatibility

high

single 
episode

low

7.  
recurrent 
episodes

hypertension 
related 

nephropathy

recurrent 
episodes

unlknown

post-transplant 
hospitalization 

period

>22 days

8. 
recurrent 
episodes

<22 days

highly 
heterogenous 

group

>31 
hours

1.  
Single 

episode

recurrent 
episodes

single episode

single episode

recurrent 
episodes

Highly 
homogenous 
group

Figure 1 Classifying decision tree for patients suffering from post-transplant infections based on CART Quinlan algorithm.
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2 Group 5 marked in red – patients with CIT shorter than

31 h, hospitalized shorter than 17 days post-transplant,

diagnosed later than 4 months post-transplant

3 Group 6 marked in red – patients infected with Gram-

negative bacilli other than Escherichia coli, younger than 41,

hospitalized less than 17 days post-transplant, with CIT

shorter than 31 h.

The significant variety of pathogens isolated from the

patients hospitalized longer than 17 days post-transplant is

displayed (Fig. 3). This group of micro-organisms is char-

acterized by the strong domination of Enterobacter cloacae

and the presence of other Enterobacteriaceae spp. (Escheri-

chia coli, Klebsiella pneumoniae, Citrobacter freundii, Pro-

teus mirabilis), as well as other Gram-negative bacilli

(Pseudomonas aeruginosa, Acinetobacter baumanii) and

fungi. The spectrum of species isolated from patients hos-

pitalized shorter than 17 days post-transplant appears to

be less differentiated. Escherichia coli, Klebsiella pneumoniae

and Enterococcus faecalis dominate in this group, whereas

Enterobacter cloacae and fungi isolates are almost absent.

Discussion

Data mining seems to be a promising method supporting

the researchers. Since its invention, this has been widely

known and used among economists. However, the applica-

tion of particular algorithms has also become more fre-

quent in medicine. Decision trees appear to be an evident

example. The overall aim of new computational methods

used in clinical research is the maximal personalization of

treatment regarding the network of factors coexisting in

one patient. Their advantage is the opportunity of nonhy-

pothesis-based investigation, but on the other hand, the

implementation of particular algorithms in clinical practice

requires strong evidence. In the medical field, data mining

still coexists with classical statistics, and its role is to sketch

new directions of research, rather than to provide complete

answers.

This study is one of the few implementing data mining

in clinical transplantation [23,32] and highlights several

issues which are significant in the authors’ opinion. These

are high-accuracy parameters of both models, similar clas-

sifiers used in both trees, differences between the logistic

regression model and decision trees. Whilst the absence of

gender in decision trees and the presence of CKD and HLA

had been found insignificant in logistic regression, the role

of CIT and post-transplant hospitalization was revealed in

every model.

In terms of decision trees, the influence of CIT duration

and post-transplant hospitalization period on the classifica-

tion, and the classification itself, is identical. The binary

characteristics of the second tree create a clear border of

CIT values at 31 h, which (as far as the model is concerned)

classifies the cases as recurrent infections. The same value

appears in the first model, but in connection to its multin-

odal character, the strength of this attribute reflects a lower

significance. In fact, discussing the influence of CIT on this

particular group is problematic, as there are no data sug-

gesting a connection between recurrent infections in kidney

recipients and CIT duration. Furthermore, CIT duration

may differ between different transplantation centres, so that

with regard to the single-centre character of this analysis,

the role of CIT in this context needs further multicentre

studies.

The impact of post-transplant hospitalization period has

been clearly displayed in the both decision tree models, and

logistic regression model. The role of the length of hospital-

ization in the context of post-transplant infections has been

outlined in a single study as a potential risk factor [18]. The

association between the post-transplant hospitalization per-

iod and the frequency of recurrent infections is supported

in the epidemiological analysis displayed in Fig. 3. Remark-

ably, the spectrum of pathogens isolated from those

patients who left hospital earlier than on the 17th day of

hospitalization resembles the aetiological agents of UTI in

the general population, demonstrating the prevalence of

Escherichia coli. In contrast, the spectrum isolated from

those who stayed over 17 days at the clinic displays a signif-

icant impact of other Gram-negative bacilli such as Ente-

robacter cloacae, Citrobacter freundii and Proteus spp.

According to the research conducted during the last

10 years at the centre that the patients come from, the spe-

cies mentioned above had previously mostly been diag-

nosed as alert pathogens presenting the phenotype of

AmpC, or extended spectrum beta-lactamase (ESBL)-medi-

ated multidrug resistance [6]. These data make it highly

reasonable to suspect that, regarding the post-transplant

hospitalization period, the pathogen spectrum in the analy-

sed group had evolved from the image of common UTI

aetiology [33], to the typical nosocomial infections profile

as shown mostly by patients with recurrent infections. At

the same time, group 5 in the C&RT model contains

patients who left hospital before the 17th day post-trans-

plant, but had acquired similar, probably nosocomial flora,

and further suffered from recurrent infections. What also

needs mentioning is that in one-third cases of prolonged

post-transplant hospitalization, the first infection episode

Table 3. Accuracy parameters for CART Quinlan model.

Accuracy 88.5%

Correct as

single

episode

Correct as

recurrent

episodes Precision

Predicted as single episode 28 10 73.68%

Predicted as recurrent episodes 12 141 92.16%

Recall 70.00% 93.38%
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appeared during this period which influenced duration of

this period. However, the data from Fig. 3 (nosocomial

flora isolated from patients after long post-transplant hos-

pitalization), as well as attributes characterizing group 5

from C&RT model (as above), make it hypothetic that the

exposure to nosocomial flora itself, in the majority but not

all cases connected with prolonged hospitalization, influ-

ences long-term history of kidney recipients.

A Multinodal CART Quinlan model presents the cause

of CKD as the second most important classificatory factor.

However, apart from ADPKD, all causes of CKD have coex-

isted with other attributes.

Nevertheless, what seems worth emphasizing is that in

logistic regression model, ADPKD pretransplant achieved

high OR value: 2.7, but this has not been found statis-

tically significant. Similar, diabetic nephropathy

(OR = 3.33) has not been found significant in logistic

regression and has been found classificatory within CART

Quinlan algorithm in combination with the post-trans-

plant hospitalization period. Post-transplant hospitaliza-

tion period has been found a significant attribute in binary

C&RT model, but in multinodal, CART Quinlan algo-

rithm coexisted with other attributes such as diabetic

nephropathy (as mentioned above) but also with unknown

CKD pretransplant. At the same time, chronic pyelone-

phritis and urinary tract malformations have classified the

cases as recurrent infections in combination with low HLA

compatibility. This may possibly indicate the intensity of

immune suppression, postulated as an independent risk

factor, and remarkably, both sorts of CKD are connected

to infections pretransplant. This has been noted by other

authors using traditional methodology; however, deeper

insight into the system of particular associations displayed

Table 4. Accuracy parameters for C&RT model.

Accuracy 90%

Correct as

single

episode

Correct as

recurrent

episodes Precision

Predicted as single episode 20 2 91%

Predicted as recurrent episodes 13 114 90%

Recall 61% 98%

Legend:

Homogenous leaf consisting of recurrent infections cases.

Homogenous leaf consisting of single infection cases.   

Heterogenous non-leaf

Attributes 

Cold ischaemia time

<31 hours
heterogenous group

Post-transplant hospitalization period

<17 days
heterogenous group

Moment of diagnosis post-transplant

<4,5 months
heterogenous group

Age

<41 heterogenous group

Pathogen

6. Enterococcus spp. 
single episode

5. Gram negative bacilli 
other than Escherichia coli

recurrent episodes

4. >41 single episode

3. >4,5 months
recurrent episodes

2. >17 days
recurrent episodes

1. >31 hours
single episode

recurrent 
episodes

single episode

recurrent
episodes

single episode

Figure 2 Binary classifying decision tree for patients suffering from post-transplant infections based on C&RT algorithm.
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on the model remains unavailable in conventional statis-

tics [34–36].
What appears particularly surprising is the absence of

gender in the models, which is still regarded as an indepen-

dent risk factor in terms of post-transplant UTIs and has

been revealed in logistic regression model for recurrent

infections [33,37]. Immunosuppressive regimen (including

induction of immunosuppression) has been taken into

account in the analysis. However, the models containing

the data on immunosuppressive regimens have displayed

unsatisfactory accuracy parameters (not shown). This is the

reason why diabetes post-transplant has not been included

in the analysis, as whether its impact on post-transplant

infection is independent or CNI dependent is still in ques-

tion [38]. This is also the reason why the question about

the relation of changes in immunosuppression and the

onset of infections may not have been addressed properly.

There are two interesting groups of patients, whose attri-

butes are difficult to discuss at this stage and who probably

need further investigation. These are group 6 in the CART

Quinlan model and group 5 in C&RT model: patients with

a relatively late onset of infection suffering from congenital

urinary tract disorders pretransplant (according to CART

Quinlan) and those hospitalized shorter than 17 days post-

transplant (according to C&RT, already mentioned). In

particular, the onset of recurrent infections, despite short

post-transplant hospitalization, suggests the presence of

other coexisting factors that ought to be taken into account

in future analyses.

The role of data mining analyses in clinical studies is

rather to point to new hypotheses to be tested further, than

to provide complete answers. Regarding the classificatory,

but not predictive character, of presented models, it

appears challenging to judge particular risk factors only on

the basis of these. The study reveals several weaknesses of

which the authors are conscious. These are its single-centre

character and the absence of certain factors such as urologi-

cal disorders post-transplant. Nevertheless, the presence of

the post-transplant hospitalization period in every model

and the absence of gender in decision trees make it reason-

able to hypothesize that the prolonged post-transplant hos-

pitalization period may be a risk factor for recurrent

infections, possibly connected to the exposure to nosoco-

mial flora. Further data mining regarding other coexisting

factors in this group, as well as molecular studies of the

pathogens isolated from these patients, is required.

At the same time, the absence of gender as a classifier in

decision trees does not detract from its role as a risk factor

for post-transplant infections, as this has been strongly doc-

umented before. This fact, as well as unsatisfactory accuracy

parameters displayed by the models that included immune-

suppressive treatment, has challenged the authors. On this

basis, the authors suggest that enclosing immune-suppres-

sion regimens into the analysis points to the need for stud-

ies using data mining and classical statistics in a

complementary way, based on larger cohorts of predefined

groups: men and women separately, patients stratified with

medication protocols themselves, CKD pretransplant, post-

transplant hospitalization or other factors such as these

present in groups 5 and 6 described above.
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