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Introduction

For selected patients with organ failure, transplantation is

the preferred treatment modality. Over 25 000 solid organ

transplants are performed each year in the United States,

and 15 000 of these are renal transplants. The number of

transplant recipients in the United States has more than

doubled in the past decade, now exceeding 150 000 indi-

viduals [1]. This growing population of immunocompro-

mised individuals poses unique challenge for the

development of immunization and containment strategies

to protect the general population from communicable

pathogens such as endemic or pandemic influenza, or

weaponized infectious agents as the immunosuppressive

therapies that prevent rejection impair key components of

the adaptive and innate immune responses. Although

immunosuppression is known to attenuate the response

to vaccines and preclude the use of live attenuated vac-

cines, few studies have described how conventional

immunosuppressive regimens that may include calcineu-

rin inhibitors (CNI), m-TOR inhibitors, anti-proliferative

agents, or steroids alter the immune response of trans-

plant recipients to a vaccine. This review summarizes the

current knowledge of how conventional immunosuppres-

sive drugs alter the immune response to vaccines. This

review also provides an overview of how the mechanisms

of action on the immune system by both currently used

immunosuppressive agents and those in development

(e.g. CD28 costimulation blockers and/or JAK3 kinase

inhibitors) might alter specific immunologic responses to
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Summary

The growing success of solid organ transplantation poses unique challenges for

the implementation of effective immunization strategies. Although live attenu-

ated vaccines have proven benefits for the general population, immunosup-

pressed patients are at risk for unique complications such as infection from the

vaccine because of lack of both clearance and containment of a live attenuated

virus. Moreover, while vaccination strategies using killed organisms or purified

peptides are believed to be safe for immunosuppressed patients, they may have

reduced efficacy in this population. The current lack of knowledge of the basic

safety and efficacy of vaccination strategies in the immunosuppressed has lim-

ited the development of guidelines regarding vaccination in this population.

Recent fears of influenza pandemics and potential attacks by weaponized

pathogens such as smallpox heighten the need for increased knowledge. Herein,

we review the current understanding of the effects of immunosuppressants on

the immune system and the ability of the suppressed immune system to

respond to vaccination. This review highlights the need for systematic, longitu-

dinal studies in both humans and nonhuman primates to understand better

the defects in innate and adaptive immunity in transplant recipients, thereby

aiding the development of strategies to vaccinate these individuals.
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vaccination. These issues will have clear implications for

the design of vaccination strategies to protect immuno-

suppressed transplant recipients from outbreaks of bio-

logic pathogens and will also affect more global

biodefense strategies.

Overview of the immunologic response
to infection/vaccination

Linking innate and adaptive immunity

To understand the response of the immune system to

vaccination one must understand how the immune sys-

tem identifies and contains an infection. The first line of

defense against primary infection is the innate immune

system, which then coordinates with the adaptive immune

system, generating an effective immune response [2–4].

Natural killer (NK) and dendritic (DC) cells are impor-

tant components of the innate immune system. NK cells

can directly lyse infected target cells and/or secrete cyto-

kines, such as interferon-gamma (IFN-c), that influence

the adaptive immune response while DC recognize for-

eign pathogens through pattern recognition receptors

including Toll-like receptors (TLRs) and present antigen

to the adaptive immune system [2–4].

There are multiple subsets of DCs that represent differ-

ent lineages and maturation stages, and may differ in

phenotype, function, and microenvironment localization

[5–7]. Three major subsets of DC precursors exist in

human blood: myeloid, monocytic-derived (MDDC), and

plasmacytoid (pDC). Each is identifiable through distinct

surface marker expression patterns and possesses distinct

immunoregulatory functions. For instance, MDDCs and

pDCs have been shown to induce differentially either Th1

or Th2 responses in T cells [8]. Functionally, pDC pre-

cursors are a chief source of interferon-alpha (IFN-a)

released in response to viral infections [9]. Influenced by

TLR signaling, DC express distinct profiles of costimula-

tory molecules and cytokines that can induce pro-inflam-

matory or tolerogenic immune responses from cells of the

adaptive immune system [10]. Potentiated by cells of the

innate immune system, the antigen-specific T and B cells

of the adaptive immune system differentiate into effector

cells, disseminate throughout the organism, and eventu-

ally contract in number after further differentiation into

memory cells.

Immune memory

Immunological memory comprises preformed antibody,

memory B cells, antibody secreting plasma cells, and

memory CD4 and CD8 T cells. Pre-existing antibody

directly binds to pathogens and can directly neutralize or

facilitate opsonization of pathogens to prevent infection.

Additional antibody production to increase protective

titers is provided by memory B cells that rapidly differen-

tiate into plasma cells upon re-activation. Memory B cells

also provide an anamnestic response by replenishing the

long-lived plasma cell population present in the bone

marrow. The memory T-cell compartment can facilitate

the elimination of pathogens from the host by rapidly

proliferating, secreting inflammatory cytokines, and kill-

ing infected cells. Optimal immunity to a previously

encountered pathogen requires maintenance of all mem-

ory cell types in the absence of antigen and the ability to

expand and mobilize these cell types upon re-infection

(Fig. 1, bold line).

Memory B-cell maintenance

The mechanisms by which memory responses are main-

tained are incompletely understood. Re-exposure to anti-

gen, because of re-infection or booster vaccination, is

clearly the most effective mechanism to maintain B-cell

memory. In the absence of antigenic re-exposure, how-

ever, memory B cells still can persist for decades, suggest-

ing that long-term B-cell memory can be maintained in

the absence of antigen. For example, vaccine-specific anti-

bodies and memory B cells were detected in individuals

60 years after vaccination with the smallpox vaccine

[11,12]. It was proposed that antigen trapped in immune

complexes on follicular DCs was required for memory

B-cell maintenance [13,14]. This theory has been chal-

lenged as memory B cells can still persist in mice, which

lack the ability to form immune complexes [15]. Further-

more, alteration in the B-cell receptor to prevent recogni-

tion of cognate antigen does not prevent the long-term

survival of memory B cells [16] suggesting that ongoing

antigen-specific stimulation is not required for memory

maintenance. However, alteration in the B-cell receptor
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Figure 1 Schematic representation of primary and recall immune

responses to viral infection or vaccination in healthy individuals (bold

line) and transplant population (dotted line). CMI, cell-mediated

immunity.
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so that it is nonfunctional prevents the maintenance of

memory B cells. This suggests that in the absence of anti-

gen that low-affinity, nonantigen-specific signaling

through the B-cell receptor is required for maintenance of

memory B cells [17]. Intermittent bystander activation,

mediated by TLRs and CD4 T cell help, may be responsi-

ble for maintaining B-cell memory in humans [18].

T-cell memory maintenance

T-cell responses following infection or vaccination occur

in a series of phases (Fig. 1, bold line). In the first phase

after encounter with antigen, T cells undergo massive

expansion and acquire effector function. The contraction

phase is a death phase, where �90% of the responding T

cells die by apoptosis. The final phase involves develop-

ment and maintenance of a long-lived population of

memory T cells. Throughout these phases, CD8 T cells

undergo the gradual differentiation and selection pro-

cesses that eventually result in formation of effective CD8

T-cell memory. For instance, murine studies suggest that

the duration of antigen stimulation [19–22] and the pres-

ence of CD4 T-cell help [23–25] during the initial

immune response are critical for optimal CD8 T-cell

memory development. In addition, murine CD8 T cells

expressing high levels of the IL-7Ra chain (CD127)

bypass the death phase, differentiating into memory T

cells [26]. Long-term maintenance of murine memory T

cells has been shown to be antigen-independent [27],

relying on IL-7 and IL-15 signals for T-cell survival and

homeostatic turnover respectively [26,28,29]. Similar

studies of T-cell memory in both nonhuman primates

and humans have only recently begun.

Memory T-cell subsets

Memory T cells express molecules that are associated with

migration (CCR7, CCR5, CD62L), cytotoxic potential

(perforin, granzyme), activation status (CD38, HLA-DR,

CD45RA/RO), susceptibility to apoptosis (Bcl-2) [30–32],

and proliferation (Ki-67). Memory T cells can be divided

into subsets exhibiting distinct phenotypic and functional

properties. Effector memory T cells (TEM: CCR7),

CD62L)) preferentially migrate to peripheral tissues, pro-

duce IFN-c upon stimulation, and have direct ex vivo

cytotoxicity. In contrast, central memory T cells (TCM:

CCR7+, CD62L+) are localized to lymph nodes and lack

immediate effector function, but possess greater prolifera-

tive potential [33]. As previous murine studies found that

TCM cells are more protective against viral challenge than

TEM cells, alteration in those subsets could have impor-

tant implications for how well protective immunity is

maintained in immunosuppressed patients [34].

Transplant patients have poor immune responses
to vaccination

General comments

While vaccination of healthy individuals decreases viral

transmission and/or prevents disease, it is not known

whether it has similar effects in the immunosuppressed.

Large-scale studies of vaccination efficacy in transplant

patients are lacking. Studies utilizing neutralizing antibod-

ies as surrogate markers for successful vaccination do not

necessarily correlate with effective protection from infec-

tion. Studies in immunosuppressed transplant patients

demonstrate an attenuated response to certain vaccina-

tions including influenza [35,36], hepatitis A [37], and

diphtheria [38]; but not against pneumococcus [39] and

the tetanus toxoid [38]. As protection from infection

depends on the presence of neutralizing antibodies and

cellular immune activity, inhibition of T-cell activity by

conventional immunosuppressants may limit the predic-

tive value of these otherwise protective antibody titers

[40] (Fig. 1, dotted line). In spite of these limitations,

some polysaccharide, peptide, toxoid, or killed vaccines

are recommended, as potential benefits outweigh adverse

effects (see Table 1) [41].

Whether more frequent vaccination would boost

immunity remains unclear. In a small study of 16 heart

transplant recipients, neutralizing antibodies to influenza

vaccination were formed less commonly in immunosup-

pressed patients than in healthy controls (40–60% vs.

80–97%) [39] and booster vaccination at 4 weeks did not

significantly increase vaccine efficiency [39]. In liver

transplant recipients who generally receive less immuno-

suppression, primary influenza vaccination still led to

production of less neutralizing antibodies than healthy

controls (70% vs. 95%) [42]. A booster vaccination

resulted in a small but significant increase in the number

of liver recipients with neutralizing antibodies (70% vs.

80%) albeit with lower titers than controls [42].

Influenza vaccination

Influenza infection is associated with higher morbidity,

mortality, and organ rejection in renal transplant recipi-

ents [40]. In clinical trials, the theoretical risk of vaccina-

tion-induced rejection has not been observed [35,43].

Some studies in kidney transplant recipients demonstrate

strain-specific defects in the development of neutralizing

antibodies after vaccination [35,36,44], while others do

not [45,46]. Most studies of other solid organ transplant

recipients (heart, lung, liver) also show strain-specific dif-

ferences in vaccine efficiency [39,46,47]. Thus, some

influenza strains may be more immunogenic than others.

Alternatively, differences in the immunosuppressive
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regimens employed may be responsible for the observed

differences in vaccine efficiency [35,48].

Much less information is available on cell-mediated

immune responses to influenza in vaccinated transplant

recipients. Animal studies suggest that CD4 and CD8 T

cells participate in clearing influenza infection [49], and

suggest IFN-c production is crucial for clearance of a sec-

ondary influenza infection [50]. Lower neutralizing anti-

body levels in immunosuppressed patients may reflect an

underlying defect in T-cell responsiveness, as efficient

antibody production depends on T-cell help. In healthy

humans, influenza vaccination leads to a viral strain-spe-

cific cellular response, as measured by cytokine and gran-

zyme production. No systematic studies of T- and B-cell

function following influenza vaccination have been con-

ducted in humans receiving the state-of-the-art immuno-

suppression. A small study in lung transplant recipients

revealed impaired virus-specific cellular responses as

assayed by cytokine and granzyme B production, but did

not correlate this cellular activity with neutralizing anti-

body production [47]. Another study in liver transplant

recipients that attempted to correlate virus-specific PBMC

proliferation with neutralizing antibody production

showed only a nonstatistically significant trend towards

correlation [42]. In a recent study, Ballet et al. compared

influenza vaccination in immunosuppressed renal trans-

plant patients and patients having stable renal function

years after cessation of immunosuppressive treatment. In

this study, while patients under conventional immuno-

suppressive treatment showed a weak humoral and T-cell

response compared with healthy volunteers, three of five

patients free of all immunosuppressive therapy demon-

strated immune response comparable with healthy volun-

teers [51].

It is important to establish whether there is a causal

link between cell-mediated responses, neutralizing anti-

body production, and overall protection against viral

infection to understand fully the effects that different

immunosuppressive regimens may have on the potential

for vaccine efficiency.

Smallpox vaccination

Smallpox belongs to the genus Orthopoxvirus, family

Poxviridae, which includes the variola (smallpox), vac-

cinia and monkeypox viruses. Although presently not

occurring naturally, infection by smallpox is known to be

highly communicable, spread rapidly, and be associated

with a mortality approximating 30% that could approach

100% in immunosuppressed patients [52]. The smallpox

vaccine utilizes an attenuated live vaccinia virus; as the

Poxviridae family viruses are highly similar, cross-protec-

tion occurs after infection or ‘vaccination’. This vaccina-

tion results in viral replication, establishment of anti-viral

immunity, and long-term protection against smallpox

[53–57].

The ‘Dryvax’ smallpox vaccine contains live vaccinia

virus isolated from the lymph of calves infected with the

New York City Board of Health strain [58]. About

10 days after inoculation in humans, neutralizing anti-

bodies can be detected in the blood [56]. Two weeks after

vaccination, vaccinia-specific CD4 and CD8 effector T

cells are identifiable in antigen stimulation assays [59].

Formation of a pool of memory CD8 T cells [53] that

declines slowly over several decades follows [11,12]. In

contrast, virus-specific memory B cells and antibody

titers continue to remain stable in the absence of

antigenic re-exposure [11,12].

Table 1. Vaccines for transplant recipients.

Vaccines generally considered to be safe

Influenza Inactivated trivalent Yearly

Pneumococcal Capsular polysaccharides Every 5 years

Tetanus-diphtheria Toxoid Primary pretransplant. Boost every 5 years

H. Influenza Polysaccharide Primary pretransplant, Unknown booster

Hepatitis A Inactivated whole Primary pretransplant for liver patients or travelers to endemic areas,

antibody titers helpful to determine responsiveness

Hepatitis B Recombinant HBsAg Pretransplant, antibody titers helpful

Polio Inactivated trivalent Primary pretransplant and use in household contacts

Controversial vaccines: use post-transplant indicated for high-risk populations

MMR Live attenuated Pretransplant recommended. Consider use post-transplant in nonimmune

patients attempting pregnancy in areas endemic for rubella

Varicella Live attenuated Pretransplant recommended. Controversial use in nonimmune pediatric

patients at high risk for primary varicella infection

Contraindicated vaccines: use by family members may place patient at risk

Oral polio Live attenuated Contraindicated. Avoid use in family members

Vaccinia Live attenuated Contraindicated. Avoid use in family members

Yellow fever Live attenuated Contraindicated. Avoid use in family members
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Studies using the smallpox vaccine in solid organ trans-

plant recipients have not been performed as patients with

defects in T-cell immunity may develop severe life-threat-

ening complications resulting from progressive vaccinia

infection after inoculation with smallpox vaccine [60].

Progressive infection by either vaccinia necrosum or vac-

cinia gangrenosum poses a major risk for immunosup-

pressed persons with progression at the primary

vaccination site and viremic spread to other sites over a

period of days or weeks [61]. Obviously, a safer vaccina-

tion for smallpox would be needed for immunocompro-

mised individuals. One possibility is to use the modified

vaccinia Ankara strain (MVA) which after more than 500

passages of vaccinia in chick embryo fibroblasts acquired

multiple gene mutations that resulted in the loss of its

ability to replicate effectively in human cells [62]. As the

vaccines to prevent smallpox cannot ethically be tested in

humans, this approach has been tested in nonhuman pri-

mates. In healthy nonhuman primates, two doses of MVA

proved as effective as the licensed Dryvax vaccinia vaccine

in protecting against infection by monkeypox. Immuniza-

tion produced neutralizing antibodies and specific T-cell

responses, detectable as early as 1 week postvaccination

and sustained for over 16 weeks [63]. In a 13-day study

of immunosuppressed (lymphocyte depleted or total body

irradiated) nonhuman primates, MVA vaccination was

safe and effective, as determined by production of a vac-

cinia virus-specific antibody response [64]. Because organ

transplant recipients require immunosuppression for life,

live vaccines such as MVA need to be carefully tested for

both long-term safety and efficacy in immunosuppressed

nonhuman primates prior to study in human transplant

recipients. While smallpox is considered eradicated world-

wide and arguably only two well-protected stockpiles

exist, there is the threat that it could be reintroduced

by terrorists into the environment. Also, there have been

a few natural outbreaks of less severe monkeypox in

humans, which could also pose a risk to immuno-

suppressed patients. The threat that smallpox or even

monkeypox could be re-introduced to the population

by bioterrorists mandates studies to understand the

effects of the MVA vaccine on immunosuppressed popu-

lations and determine its potential as a vaccine in this

group.

Other vaccinations and transplantation

Earlier reviews on vaccination of transplant recipients

have raised issues that merit discussion [65,66]. While

some vaccines, such as influenza, lead to a poor antibody

response in transplant patients compared with healthy

subjects, other vaccines, such as pneumococcus, do not

lead to an impaired response [39]. It has been

hypothesized that polysaccharide vaccinations may be

more effective in transplant recipients than peptide-based

vaccinations because of their lack of dependence on T-cell

help.

The immune system maintains immunologic memory

of a viral pathogen either to prevent re-infection or to

clear an infection more rapidly. However, there is evi-

dence that maintenance of immunologic memory is

impaired in immunosuppressed transplant recipients. For

example, liver and kidney transplant recipients usually

produce protective antibody titers in response to immuni-

zation against hepatitis A similar to healthy subjects; how-

ever, they fail to maintain this response with only 59% of

liver and 26% of kidney transplant recipients maintaining

protective antibody titers at 2 years compared with 100%

of healthy subjects [37]. Similar findings were reported

for the diphtheria vaccine, but not polio [38] or pneumo-

coccus [67]. Recently, two independent studies evaluated

hepatitis B surface antigen–specific antibody titer in

response to hepatitis B vaccination in liver transplant

recipients and found that hepatitis B immunoglobulin

prophylaxis was not required in a majority of the patients

[68,69]. Furthermore, in these studies, vaccination was

effective against de novo hepatitis B infection [68] and did

not have any side effects [69].

In contrast to the list of vaccines that are generally

considered to be safe and effective based on a large num-

ber of clinical studies, the use of certain live-attenuated

vaccines in solid organ transplant population is contro-

versial (Table 1). Studies using live-attenuated vaccines

[varicella and MMR (mumps, measles, rubella)] have

been performed mostly in pediatric transplant recipients.

With varicella vaccine, even though vaccination in pediat-

ric solid organ transplant recipients was effective in

reducing the incidence of disease [70], concerns about the

reactivation of the vaccine strain in the immunosup-

pressed population and the possibility of spread and onset

of zoster in the general population warrants further clini-

cal trials before the vaccine is considered safe for use in

solid organ transplant recipients [71]. Despite some stud-

ies in bone marrow transplants and pediatric liver recipi-

ents [72], MMR, another live-attenuated vaccine, has not

been deemed necessary in solid organ transplants as

rubella infection does not cause severe disease in solid-

organ recipients, and also because of the fact that the

efficacy and safety have not been established in adult

solid-organ recipients. Furthermore, some live-attenuated

vaccines such as oral polio, vaccinia, and yellow fever are

regarded as contraindicated vaccines for transplant recipi-

ents since no data are available [73]. Moreover, oral polio

vaccine carries the potential for shedding of the virus and

the possibility of transmission to family members of

transplant recipients.
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Immunosuppressive drugs: distinct mechanisms
of action, differing immunodeficiencies

General overview

At present, a successful outcome in transplantation is

dependent on the prevention of graft rejection through

life-long therapy with immunosuppressive drugs. The

principal targets of immunosuppressive therapies are

either T cells or antigen presenting cell (APC) signals

leading to T-cell activation (reviewed in [74]). The three-

signal model of the T-cell activation (Fig. 2) can be used

to describe the mechanism of action of different immu-

nosuppressive drugs. The primary antigen-induced signal

(Signal one) is received by the TCR/CD3 complex. Signal

two, delivered via costimulatory molecules, amplifies the

signal one resulting in cytokine production and induction

of anti-apoptotic factors. Signal three results from the

engagement of cytokine receptor, particularly those spe-

cific for cytokines using the common gamma chain (IL-2,

IL-7, and IL-15). Engagement of cytokine receptors

results in signals transduced via JAK3 and mTOR that

contribute to T-cell proliferation. As individual immuno-

suppressive drugs inhibit different pathways involved in T

cell and B-cell activation (Fig. 2), it is likely that they

have differential effects on the immune response to vacci-

nation. To understand better these potential differences,

the known mechanisms of action of both commonly used

immunosuppressants and novel immunosuppressive

agents are detailed below.

The calcineurin-inhibitors

Cyclosporin and tacrolimus are CNIs that bind to cyto-

solic proteins to inhibit calcineurin-phosphatase. This

inhibition prevents the nuclear translocation of NFAT, a

transcription factor, in response to TCR/CD3 signals to

prevent activation of lymphocytes. Although remarkably

effective at preventing graft rejection, they undoubtedly

Figure 2 Schematic representation of the signaling pathways inhibited by commonly used immunosuppressants and novel immunomodulatory

agents. Key interactions between an antigen presenting cell and a responding T cell are shown.
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contribute to the defective vaccine responses observed in

transplant patients. The effects of continuous CNI therapy

on the human innate and adaptive immune systems are

not known. Without this fundamental knowledge, it is

difficult to design rational strategies to protect patients

who require treatment with CNI from specific pathogens.

Because of their impact on early antigen-dependent

T-cell activation, CNIs affect the magnitude of the T-cell

expansion phase. Additionally, TCR signal attenuation by

CNIs may alter the TCR-self MHC interactions required

for survival of naı̈ve T cells in the periphery [27] thereby

affecting the longevity and perhaps the repertoire of naı̈ve

T cells emigrating from the thymus. In younger recipi-

ents, this effect may not significantly impair immunity,

but the effects of the drug could be more significant as

thymic function declines with age. CNIs may also impair

vaccination efficiency because of their potent inhibitory

effects on the maturation and activation of DCs [75].

Anti-proliferative agents (azathioprine and mycophenolic

acid)

Azathioprine, a prodrug releasing 6-mercaptopurine,

ultimately inhibits DNA synthesis and inhibits both

T and B-cell proliferation in addition to other rapidly

dividing cell types. Recent information suggests azathio-

prine induces T-cell apoptosis through blockade of

CD28-mediated Rac1 activation [76].

Mycophenolic acid, the active component of myco-

phenolate mofetil and mycophenolate sodium, inhibits

inosine monophosphate dehydrogenase activity, prevent-

ing guanosine nucleotide synthesis in lymphocytes and

other cells lacking the salvage pathway of purine biosyn-

thesis. In animal studies, it inhibits antibody production

in a T-cell independent manner [35], which could affect

vaccine efficacy. In this regard, the limited studies per-

formed to date are contradictory [35,36].

Corticosteroids

The broad anti-inflammatory effects of corticosteroids are

still not fully defined. These drugs bind glucocorticoid

receptors and once translocated to the nucleus, reduce

production of pro-inflammatory cytokines such as IL-1,

IL-2, IL-6, IFN-a, and TNF-a [77]. Glucocorticoid immu-

nosuppression alone appears not to alter vaccine efficacy

[66].

mTOR inhibitors

Sirolimus and everolimus are increasingly used in the

postrenal transplant maintenance phase. These agents act

to limit lymphocyte proliferation by inhibiting mTOR, a

signaling molecules engaged when cytokine receptors that

use the common cytokine receptor gamma chain are

bound by their cytokine ligands [74]. Two cytokines/cyto-

kine receptors that use the common gamma chain, IL-7

and IL-15, are crucial for initiating the survival and long-

term cell cycling of memory T cells, respectively [26,28].

IL-15-deficient mice cannot mount a protective immuno-

logic response to vaccinia virus infection [29]. Addition-

ally, some mTOR inhibitors inhibit murine DC

development and expansion [75].

New immunosuppressive agents and emerging drugs

It is critical to study the currently approved regimens

mentioned above. However, a number of promising new

immunosuppressive agents are currently being evaluated

in transplant recipients. In as much as many of these have

unique mechanisms of action, they will require indepen-

dent study. These agents primarily target T cells (ATG)

[78], B cells (anti-CD20 antibody) [79], T cells and B

cells (anti-CD52 antibody; alemtuzumab) [80], and

cytokine receptor on T cells (anti-IL-2 receptor antibody;

basiliximab and daclizumab) [81]. However, recent stud-

ies have suggested that the effects of some of these

reagents extend beyond intended use; for example, ATG

has the potential to suppress DCs [82] and both ATG

and alemtuzumab also deplete NK cells [83]. As some of

these agents are shown to influence other subsets of T

cells with potential regulatory function (CD4+ CD25+ T

cells) [84], it is critical to understand the effects of this

new class of immunosuppressive agents on immune

responses to vaccination, particularly with respect to

safety.

While a number of well-designed clinical trials support

the evaluation of some of the above mentioned immuno-

therapeutic strategies for vaccine efficacy studies, two

strategies that exploit T-cell activation signaling cascade

have shown significant promise in preclinical animal

models and clinical trials of solid organ transplantation.

First, as discussed, complete T-cell activation requires

costimulatory signal by receptors such as CD28. B7 family

receptors B7-1 (CD80) and B7-2 (CD86), expressed by

APCs, are ligands that can bind to both CD28 and its

homologue CTLA4 (Fig. 2). CTLA4-Ig is a soluble recom-

binant immunoglobulin fusion protein, comprises the

extracellular portion of CTLA4 and the constant portion

of an IgG1 antibody. Recently, a high-affinity mutant

derivative of CTLA4-Ig, LEA29Y (belatacept), was shown

to inhibit very effectively activation of human T cells.

Phase III clinical trials in renal transplantation are now

underway [85]. Companion studies may begin to define

the effects of LEA29Y on the response to vaccines. Sec-

ond, a JAK3 inhibitor (CP-690550) showing immunosup-
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pressive properties in nonhuman primate transplant mod-

els is under clinical development for use in renal trans-

plantation [86]. Cytokine receptors that use the common

c-chain (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) require the

cytoplasmic tyrosine kinase JAK3 for signaling critical for

the development and homeostasis of immune cells.

Patients with mutations in common c-chain suffer from

severe combined immunodeficiency (SCID) [87], and

those lacking JAK3 expression also display a SCID pheno-

type [88]. Studies in nonhuman primates revealed signifi-

cant, dose-dependent decreases in circulating NK and

CD8+ T cells following administration of CP-690550 for

3 weeks, likely because of inhibition of IL-15 dependent

homeostasis [89]. To date, no studies have addressed

responses to infection or vaccination.

Progress, current challenges, and unmet needs

To prevent graft rejection, those receiving transplants today

must remain on immunosuppression for the rest of their

lives. An increase in both success rates and the number of

procedures has produced a growing population of immu-

nosuppressed transplant recipients at a greater risk of infec-

tions, whether they originate naturally or as a result of

bioterrorism. Additionally, little is known about the risks

or efficacy of live, live attenuated, or killed vaccines in these

patients. Despite the pressing need for more information,

relatively few studies have been undertaken. In particular,

studies must be designed that will determine the outcome

of natural infections and vaccination in the setting of dif-

ferent immunosuppressive regimens. Identification of the

specific innate and adaptive immune alterations and their

clinical significance will aid in designing and choosing

appropriate vaccines and anti-infective therapies, as well as

in defining public health policy on prevention and treat-

ment of the immunosuppressed during outbreaks.

Detailed mechanistic longitudinal studies of the effects

of CNI- and sirolimus-based immunosuppressive regi-

mens on adaptive and innate immunity in human renal

transplant recipients have not been conducted. By collect-

ing serial blood samples from recipients who have or have

not received vaccinations (most likely the inactivated

influenza vaccine) as well as from healthy controls, it

should be possible to compare their adaptive and innate

immune responses to the vaccine. As there are some limi-

tations regarding immunizations and tissue collection

(number of samples and types of tissue) in human stud-

ies, the vaccination regimens need to be tested in nonhu-

man primate models of transplantation. Additionally,

such testing would be required for the study of responses

to more harmful pathogens such as Poxvirus.

Beyond patient protection and health policy, the rami-

fications of these in-depth studies will, without doubt,

advance the understanding of alloimmunity, pharmaco-

logical development of immunosuppressive drugs, vacci-

nation strategies, and ultimately contribute to a more

thorough understanding of those factors necessary for the

development and maintenance of immunologic memory.

Thus, research on immune response and protection will

not only touch the immunosuppressed patient commu-

nity, but extend to future patients and the well-being of

the general population.
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