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Introduction

Metazoan species use at least two recognition strategies to

sense and defeat pathogens [1]. The pattern-recognition

strategy is based on the recognition of conserved molecu-

lar patterns that are shared by large group of pathogens

and not subject to antigenic variability. Moreover, the

‘missing self’ strategy is based on the detection of molecu-

lar markers specific for self and absent from the patho-

gens or any other foreign entity. Recognition of these

markers (also known as self-associated molecular pat-

terns) by soluble and membrane receptors is associated

with inhibiting innate immune response [2]. The targets

of pattern recognition are detected by pattern recognition

receptors (PRRs), including Toll-like receptor (TLR) fam-

ily and complement. The complement system also

involves the ‘missing self’ strategy. Pathogens generally

lack membrane complement regulatory proteins, which

allows activation of complement, leading to cell lysis or

phagocytosis [3,4].

In addition to contributing to the first line of defence

against microbial infection, both complement and TLRs

have been found to be essential for bridging the gap

between innate and adaptive immunity [5,6]. In the field

of transplantation, previous research on graft rejection

has largely focused on T-cell-mediated immunity. How-

ever, mounting evidence indicates that innate immunity

plays an important role in all the major aspects of trans-

plantation. In this review, we will discuss recent advances

in our understanding of how the complement and TLRs

participate in organ transplant injury.

Complement

The complement system includes over 30 components,

regulators, and receptors that interact in a sequential

manner to participate in host defence [7,8]. There are

three pathways of complement activation, all of which

generate C3 convertases that cleave C3 to C3a and C3b.

In turn, C3b and C5b lead to formation of the membrane

attack complex (MAC; C5b-9), which results in activation

of granulocytes, endothelia and epithelia or, at higher

concentration, to cell lysis. C3a and C5a have traditionally

been considered as anaphylatoxins that act on specific
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Summary

The innate immune system not only participates in host defence but also

contributes to the control of adaptive immune responses. Complement and

Toll-like receptors (TLR) are key components of innate immunity. Emerging

evidence suggests their activation is involved in all major aspects of transplan-

tation. This paper reviews the current understanding of how the complement

and TLR on impact transplant injury.
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receptors to produce local inflammatory responses.

Recent data have shown they were also able to either

enhance or suppress T-cell immunity [9–11]. In addition

to being a central part of complement activation, comple-

ment C3 provides a vital link between innate and adap-

tive functions of the immune system [5,12]. Interest in

the role of complement as a regulator of the alloimmune

response has focused on C3.

Complement and ischaemia/reperfusion injury

It has been established that nonimmunological injury,

such as brain death and ischaemia/reperfusion (I/R) are

important factors affecting allograft survival. Early evi-

dence emerged from a clinical trial by Land et al. in 1994

[13,14]. Intra-operative treatment of postischaemic reper-

fusion injury significantly reduced the incidence of acute

rejection and improved the long-term graft outcome. Fur-

ther evidence came from a large study of 27 096 kidney

transplant recipients, which showed that prolonged cold

ischaemia and its manifestation as delayed graft function

are associated with lower short-term and long-term graft

survival rates [15]. Complement is one of a number of

inflammatory mediators that participate in I/R injury.

Complement activation after ischaemia and reperfusion

causes vascular and parenchymal cell injury. The precise

mechanism may vary from one organ to another. In the

heart, gut and muscle, the main lesion of complement-

mediated injury is small vessel thrombosis, which is asso-

ciated with vessel wall inflammatory cell infiltration and

direct endothelial membrane injury [16–18]. In contrast,

renal postischaemic injury appears to cause primary dam-

age of the renal tubules, those worst affected being in the

hypoxia-sensitive region of the corticomedullary junction

[19].

The mechanism of action of complement leading to

I/R injury has already been investigated in detail.

Although recruited neutrophils play a part in postischae-

mic renal failure, there was no demonstrable role of leu-

cocyte production of C3 [20,21]. MAC appears to play a

major role [22]. The anaphylatoxin C5a has also been

documented to contribute to the pathogenesis of ischae-

mic renal failure [23]. The products of C3 cleavage seem

to have little direct importance for tubular injury. Rather,

the main function of C3 activation is to drive the forma-

tion of C5b-9.

Previous study indicated that the lectin pathway and

classical pathway triggers complement-mediated I/R

injury in the heart, intestine and skeletal muscle [24–27].

In contrast, complement activation after renal I/R occurs

via the alternative pathway. Renal I/R injury proceeds in

the absence of both C4 and Ig, indicating that neither the

classical nor the lectin pathways are involved [22,28].

Thurman et al. [29] found that factor B-deficient mice

strongly resisted renal I/R injury, confirming the alternat-

ive pathway is the main driver of complement activation

after renal ischaemia and reperfusion.

While most of the circulating C3 is produced by hep-

atic synthesis, smaller amounts are generated at extrahe-

patic sites [30]. Local sources include epithelial cells,

endothelial cells, macrophages and neutrophils [31–34].

In the postischaemic kidney, tubular epithelium is the

most relevant site [22,35]. Although it is known that C3

mRNA is increased in ischaemic kidney [36], the relative

contribution of local and systemic C3 in the pathogenesis

was not clarified until very recently. Using a kidney trans-

plant model, Farrar et al. [37] demonstrated that intrare-

nal synthesis of C3 is governed by the duration of

ischaemia and the reperfusion time. Transplanted ischae-

mic C3-positive C57BL/6 kidney in syngeneic C3-positive

or C3-negative recipients developed widespread tissue

damage and acute renal failure. In contrast, ischaemic

C3-negative grafts exhibited only mild injury even when

transplanted into C3-positive recipients. Therefore, these

data clearly show that local synthesis of C3 is essential for

complement-mediated injury of renal I/R, while circula-

ting C3 is dispensable in this model.

Under normal circumstances, the complement system

is tightly controlled by membrane-bound and fluid-phase

regulatory proteins. Several inhibitors are present within

the mouse kidney, such as CD55 (DAF), CD59 and, in

rodents, complement receptor 1-related protein y (Crry).

Deficiency of CD55 or/and CD59 results in complement

activation in the peritubular capillaries after I/R injury

leading to severe damage [38,39]. However, in normal

mice complement activation after I/R occurs along the

tubular basement membrane. And Crry, one of the major

inhibitors of C3 activation, is the main complement regu-

latory protein expressed on mouse tubular epithelial cells

[40]. Most recently, Thurman et al. [41] have shown that

Crry shifted away from the basolateral membrane and

into the cytoplasm after 24 min of ischaemia, which sub-

sequently resulted in extensive activation of complement

on the tubules. Furthermore, mice expressing lower levels

of Crry (Crry+/) mice) were more sensitive to ischaemic

injury. Therefore, a factor contributing to alternative

pathway of complement activation after I/R injury

appeared to be altered expression of Crry within the

tubular epithelial cells.

Complement and allograft rejection

Evidence that complement is a controller of adaptive

immunity can be traced back at least three decades.

The early observation by Nussenzweig et al. that B

lymphocytes bound complement C3 suggested that the
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complement system might be involved in adaptive

immune responses [42]. Subsequently, Pepys [43] found

that antibody responses to thymus-dependent and thy-

mus-independent antigens were deficient in C3-depleted

mice. Recently, accumulating experimental and clinical

data support the notion that complement components

are important regulators of T-cell function. As there have

been many excellent reviews on the role of complement

in the B-cell response [44], here we are concentrating on

its importance as an effector of T-cell immunity.

Impaired T-cell responses in C3-deficient or -depleted

mice were reported in several disease models including

infection, asthma and autoimmune disease [45–47]. For

kidney transplantation, it seems that local synthesis of com-

plement is essential for regulating allograft rejection.

Rejecting allograft undergoes upregulation of C3 mRNA

expression, implying that local production of C3 is

involved in alloimmune responses [48–50]. In a mouse kid-

ney transplant model, most B10.Br recipients could not

reject C3-deficient C57BL/6 donor kidneys within

100 days, whereas WT C57BL/6 grafts were rejected within

14 days [51]. This finding has been confirmed recently in

another recipient strain (BALB/c) (T Lin, CA Farrar,

W Zhou, SH Sacks, unpublished data). In humans kidney

transplant, it has been shown donor C3 is able to affect the

long-term graft survival [52]. Human C3 exists as two main

allotypes, F (fast) and S (slow). C3 allotypes of 662 pairs of

adult kidney donors and recipients were determined and

then the relationship between C3 polymorphism status and

grafts outcome data analysed. The results showed that graft

survival and function was significantly better with a C3F/F

or C3F/S donor allotype than a C3S/S allotype.

How local complement regulates the anti-donor T-cell

response is at present unclear. A recent study highlighted

the role of dendritic cell (DC) synthesized C3 [53]. Com-

pared with C3 sufficient DCs, C3 deficient DCs displayed

reduced surface expression of major histocompatibility

complex (MHC)-II and B7.2. Furthermore, C3 deficient

DCs elicited impaired alloreactive T-cell responses in vitro

and in vivo, favouring the polarization of CD4+ T cells

toward Th2 phenotype. Priming mice with C3 deficient

DCs led to delayed skin allograft rejection compared with

C3 sufficient DCs. It therefore seems DC synthesis of C3 is

crucial for alloreactive T-cell responses. However, it may

not be the sole explanation. As distinct from the belief that

T -cell priming is exclusively a local lymph node event

[54], recent evidence suggested that allorecognition may

occur in the graft itself [55]. Moreover, in vitro experi-

mentation has shown that proximal tubular epithelial cells

(PTEC) were able to stimulate antigen-experienced allore-

active T cells. The response was enhanced when C3 depos-

ited on PTEC [56]. Given the fact that the tubular

epithelium is the main source of intrarenal C3 [48], these

data imply that C3-producing parenchymal cells may

focus the attention of alloreactive T cells. Another possi-

bility is the effect of local complement mediated inflam-

mation. It is now well recognized that DCs are essential

both in the induction of antigen-specific immune

responses and in the maintenance of tolerance [57].

Inflammation controls the balance between induction of

immunity and tolerance [58]. As C3a and C5a are import-

ant proinflammatory factors, absence of C3 could reduce

the local inflammatory responses, and consequently impair

DC maturation and migration. Taken together, it is clear

that local synthesis of C3 plays a vital role in acute kidney

allograft rejection. However, the relative contribution of

parenchyma and DCs is obscure. A transplant model in

which C3 is only produced by DCs or parenchymal cells is

needed to address this question.

Conversely, several works showed that C3 is associated

with inducing tolerance. Induction of antigen-specific

tolerance after intraocular injection is dependent on the

ligation of iC3b to complement receptor type 3 on anti-

gen-presenting cells (APCs) [59]. In vitro experiments

showed that CD46, a regulatory protein controlling C3

activation, is able to induce CD4+ T cells to a T-regulatory

phenotype [60]. In transplantation, studies of the immune

mechanism of rat liver transplant tolerance suggested that

C3 might be linked to tolerogenic function. Fujino et al.

[61] demonstrated that the C3 gene is up-regulated in per-

ipheral blood lymphocytes from Lewis rat liver transplant

recipients that had been induced to accept PVG livers.

Pan et al. [62] documented that spontaneously tolerant

DA to PVG rat liver transplant recipients had increased

level of C3 protein in the serum. Of note in both studies,

only late-stage expression of C3 gene (100 days after trans-

plant) or protein (60 days) was measured. Cordoba et al.

[63] used microarray analysis to determine the early chan-

ges in gene expression in the spleen of liver transplant

recipients. Twenty-four hours after transplantation, C3

gene was up-regulated in the tolerant recipient compared

with the rejecting one. These observations suggest vari-

ation of regulatory mechanism in different organs.

As indicated earlier, intrarenal production of C3 was

essential for graft rejection, but which of the three main

activation pathways of complement trigger this response

is unclear. This is important because selective inhibition

might allow limited therapeutic blockade without disrupt-

ing all the complement pathways vital to host defence.

One study assessed the role of the classical and lectin

pathways by investigating the common component C4 in

mouse kidney transplant rejection [64]. In three donor-

recipient strain combinations, allograft survival was inde-

pendent of the presence of C4 in either the donor kidney

or recipient mouse. In addition, tubular deposition of C3

to C9 occurred regardless of the absence or presence of

Lin et al. Role of complement and TLRs in organ transplantation

ª 2007 The Authors

Journal compilation ª 2007 European Society for Organ Transplantation 20 (2007) 481–489 483



C4. These data suggest that complement activation and

renal allograft rejection are independent of the classical

and lectin pathways in these models, implying the alter-

native pathway is the main trigger for complement-medi-

ated rejection.

Decay-accelerating factor (DAF; CD55) is a glycosyl-

phosphatidylinositol-anchored membrane inhibitor of

complement whose function is to dissociate C3 and C5

convertases in both the classical and alternative pathways

[65,66]. Transgenic pigs expressing human decay acceler-

ating factor have been widely used as donors in various

nonhuman primate transplant models [67–69]. A recent

intriguing study suggested that DAF also has the potential

to regulate alloimmune T-cell responses [70]. Transplan-

tation of DAF)/) females with DAF)/) male skin grafts

led to increased frequency of anti-HY CD4 and CD8

T cells, when compared with control DAF+/+ females

engrafted with DAF+/+ male skin. Similarly, in a heart

allograft model, alloreactive T cells in recipient mice

primed much higher frequencies to allogeneic DAF)/)

grafts than that to DAF+/+ transplants. Moreover, the

absence of DAF on antigen-presenting cells also enhanced

the T-cell proliferation and augmented the induced fre-

quency of effector cells. These effects were largely depend-

ent on local complement activation. Thus, hypo-reactivity

of T cells can result from impaired complement activa-

tion, while T-cell hyper-responsiveness is a feature of

overactivity of complement.

Toll-like receptors

The TLR family is one of the best characterized classes of

PRRs in mammalian species. To date, 11 family members

have been identified in the mammalian system [71]. TLRs

1, 2, 4, 5 and 6 are expressed on the cell surface and seem

to be important for the recognition of bacterial products.

In contrast, TLRs 3, 7, 8 and 9 are contained within

intracellular compartments and specialize in viral recogni-

tion by detecting nucleic acids [3].

Toll-like receptors are expressed in a variety of cell

types including antigen presenting cells, epithelial cells

and endothelial cells, as well as in leucocytes like neu-

trophils, mast cells, basophils and eosinophils [3]. Activa-

tion of TLRs in these subsets contributes differently to

host defences, such as up-regulation of selectins and

chemokines, leucocyte recruitment and activation, and

naı̈ve T-cell priming [3,72,73].

TLR and Ischaemia/reperfusion injury

Toll-like receptor represent the host sentinel system

responsive to infections by recognizing bacterial/viral-spe-

cific pathogen-associated molecular patterns. In addition,

studies have shown that TLRs can be activated by endog-

enous ligands such as heat shock protein, heparan sulfate,

surfactant and fibrinogen [74–77]. In noninfectious set-

tings, such as I/R injury, endogenous ligands from dam-

aged/stressed cells have the capability to active the TLRs.

Activation of TLRs-bearing cells triggers the release of

proinflammatory cytokines and chemokines and recruit-

ment of macrophages, neutrophils and T cells, leading to

a full-scale I/R injury.

Experimental data have shown the selective functional

usage of TLRs during I/R injury in different organs. A

murine model of myocardial I/R injury showed that

TLR4-deficient mice had smaller infarctions and exhibited

less inflammation after myocardial reperfusion injury

[78]. Whereas, TLR-2 has been shown to involve in car-

diac remodelling after myocardial infarction [79]. From

studies in knockout mice, Zhai et al. [80] found that

TLR4, but not TLR2, was required in initiating the I/R

injury cascade, as reflected by liver function, pathology

and local induction of proinflammatory cytokines/chem-

okines. The I/R-induced TLR4 activation was mediated by

interferon (IFN) regulatory factor 3, but not myeloid dif-

ferentiation factor 88 (MyD88). As TLR4 is expressed on

both hepatocytes and nonparenchymal cells (NPC), Tsung

et al. [81] examined the contribution of these cell types

to the outcome of liver I/R injury. Chimeric mice were

produced by adoptive transfer of donor bone marrow

cells into irradiated recipient animals using combinations

of TLR4 wild type (WT) and TLR4-/- mice. TLR4 WT

mice that underwent adoptive transfer with TLR4-/- bone

marrow cells were protected from liver I/R compared

with WT/WT mice. In contrast, serum ALT levels in

TLR4-/- mice transferred with TLR4 WT bone marrow

cells remained comparable with those of WT/WT con-

trols. These results suggested that TLR4 expressed on

NPC plays a crucial role in the induction of liver I/R

injury. In renal I/R injury, however, the key player seems

to be TLR2 which is mainly expressed by tubular cells.

Leemans et al. [82] found that TLR2 plays a proinflam-

matory role in vivo after renal I/R injury, as manifested

by reduced cytokine and chemokine production as well as

reduced leucocyte infiltration in TLR2-/- mice when com-

pared with TLR2 WT animals. Using chimeric mice, they

demonstrated that TLR2 expressed on the renal paren-

chyma plays a primary role in the early induction of

inflammation and I/R injury. These results provide valu-

able information for designing organ-specific therapeutic

strategies to ameliorate I/R injury in the clinic.

TLRs and allograft rejection

Research into the role of TLRs in transplant rejection is

at an early stage. As the interaction between DCs and
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T cells is central to transplant rejection, the focus of

experimental study in this area has been directed at DCs.

TLR activation on DCs initiates a signalling pathway via

their signal adaptor protein, inducing translocation of

NF-jB and ultimately leading to DC maturation. The

maturation is associated with increased expression of co-

stimulatory molecules and secretion of proinflammatory

cytokines [73,83]. Subsequently, DCs migrate to the

draining lymph nodes and initiate an immune response

by activating naı̈ve T cells. This migration is mediated by

TLR-induced down-regulation of receptors for inflamma-

tory chemokines and upregulation of lymphoid chemo-

kine receptors, especially CCR7 [84,85].

In the setting of transplantation, one unsolved issue is

what ligands are crucial for TLRs to initiate alloreactive

responses. The evidence that heat shock protein is upregu-

lated during allograft rejection raised the possibility that

TLRs may be involved in alloimmune responses [86].

MyD88 is an adaptor protein shared by all TLRs except

TLR 3. Using a skin transplantation model, Goldstein

et al. [87] documented that minor mismatched (HY-mis-

matched) allograft rejection does not occurred in

MyD88)/) mice. In the absence of MyD88, male MyD88)/)

male skin grafts transplanted to female MyD88)/) recipi-

ents survived more than 100 days, whereas the WT litter-

mate rejected their grafts by day 25 after transplantation.

Further experiments confirmed that the abrogation of

graft rejection in the absence of MyD88 resulted from lack

of DC maturation, leading to attenuate the generation of

anti-donor specific T cells and impaired Th1 immunity.

This is the first study that provided key evidence that

TLRs are able to control adaptive immunity in rejection of

minor MHC-mismatched tissue grafts.

To determine whether MyD88 plays a similar role in

rejection of major MHC-mismatched allografts, the same

group studied the rejection of skin and cardiac grafts in

mice [88]. They showed when MyD88 was absent from

the recipient alone or from both recipient and donor, the

allografts were rejected without significant delay com-

pared with WT controls. The number of matured DCs in

the draining lymph node was reduced. In addition, the

ability of DCs to prime naı̈ve T cells and Th1 immune

responses were significantly diminished, although Th2

immunity remained untouched.

Why MyD88 is crucial for the rejection of minor, but

not fully mismatched skin graft is not clear. There are

other innate immune receptors that are TLR-independent,

such as mannose and complement receptors, DC-SIGN

and scavenger receptors [89]. Recent studies have shown

that the interaction of DCs with innate leucocytes, such

as NK cells, NKT cells and cd T cells, represents one of

the major control mechanisms for immunity that is inde-

pendent of TLR ligands [90]. Thus, one possible explan-

ation is that major MHC-mismatched transplants would

lead to stronger TLR-independent immune responses.

However, the reduction of mature DCs in the draining

lymph node and the attenuation of Th1 immunity seems

no significant difference when transplant MyD88)/)

donor skin graft to minor or major mismatched recipient.

A strong possibility is that the untouched Th2 immune

response contributed to allograft rejection. This is in line

with previous work showing that the Th2 immune

response alone is sufficient to reject MHC-mismatched

allografts [91,92]. Alternatively, allograft rejection may

involve MyD88-independent signalling. Trif is an adaptor

protein that mediates a MyD88-independent pathway

through TLR3 and TLR4 [93,94]. Recently, Trif was iden-

tified as a crucial regulator of TLR4-dependent DC

responses [95]. Simultaneous deletions of both MyD88

and Trif in mice result in prolonged skin graft survival,

notably across a complete MHC and minor antigen bar-

rier. Prolonged survival of skin grafts resulted from a

reduced number of donor cells in draining lymphnodes

and, subsequently, with delayed infiltration of recipient

T cells into the grafted tissue [96].

In a mouse skin transplant model, absence of TLR4

had no effect on the survival of either major or minor

histocompatibility-mismatched grafts [97]. However,

clinical data support the possibility that TLR4 may par-

ticipate in acute and chronic allograft rejection. Two

human TLR4 polymorphisms, Asp299Gly and Thr399Ile,

are associated with blunted responsiveness to lipopoly-

saccharide (LPS) [98]. Lung transplant patients with

the 299 or 399 polymorphism exhibited reduced acute

rejection compared with WT controls [99]. Another

study investigated 238 renal transplant patients over a

95-month follow-up period. The same TLR4 polymorph-

ism presented lower rate of acute rejection and reduced

post-transplant atherosclerotic events [100]. Recently,

Palmer et al. found that patients received donor kidneys

heterozygous for the Asp299Gly or Thr399Ile alleles had

a reduced acute rejection. There was no association with

recipient TLR4 allele and rejection [101]. In addition,

the polymorphisms of one of the important endogenous

ligands, Hsp 70, has also been shown contribute to the

development of acute rejection after renal transplanta-

tion [102]. Further investigations are needed to reconcile

the conflicting data from animal experiments and clini-

cal observations.

Transplantation using anti-CD154 monoclonal anti-

body (mAb) has successfully induced tolerance or pro-

longed allograft survival in different animal models

[103,104]. Anti-CD154 mAb blocks the interaction

between CD154 on T cells and CD40 on APCs, inhibit-

ing naive alloreactive CD8+ T-cell activation. The mech-

anism of promoting long-term graft survival by CD154
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targeted therapy also involves the induction of CD4+

Treg [105]. TLR activation, however, is capable of

maturing APCs independently of CD40-CD154 interac-

tions [106]. Administration of TLR2, TLR3, TLR4 or

TLR9 agonist during treatment with anti-CD154 mAb

abrogates skin allograft survival induced by costimula-

tion blockade [107]. The underlying mechanism is by

protecting alloreactive CD8+ T cells from apoptosis, sub-

sequently leading to alloreactive CD8+ T-cell expansion

and rapid rejection of the allograft [107]. This study

suggested that activation of TLRs pretransplantation

could prevent tolerance induction by costimulation

blockade. However, are these TLRs signals capable of

breaking costimulation blockade induced tolerance after

transplantation? Zhai et al. [105] established a murine

cardiac transplant model in which tolerance was induced

by a single dose of anti-CD154 mAb at the time of

transplantation. They demonstrated that CD4+ Treg were

responsible for maintaining unresponsiveness in this

model. Following administration of LPS in concert with

donor-type skin graft challenge in tolerant recipients,

neither of the allografts was rejected, indicating that

TLR4 activation was not capable of breaking Treg-medi-

ated alloimmune tolerance in this model.

Concluding remarks

Renewed interest in the innate immune system has greatly

expanded our understanding of how the complement and

TLR control adaptive immunity. However, a number of

important questions remain. Local synthesis of comple-

ment C3 plays a vital role in acute kidney allograft rejec-

tion. Distinguishing the relative contribution of different

sources of local synthesis could provide crucial informa-

tion for the potential design of therapy. Ligation of TLRs

expressed in DCs has been considered as an important

mechanism for DCs maturation. During allograft rejec-

tion, however, the ligands of TLRs are not yet known.

Apart from the common MyD88-dependent pathways,

each TLR seems to have its own signal pathway [108].

Their effects on rejection require further resolution.

Finally, activation of innate immune system after trans-

plantation is a complex process. It is likely there is a reg-

ulatory link between the complement and TLR system

[109]. This topic provides a rich area for further investi-

gation.
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