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Introduction: clinical need, tolerance,
and regulatory DCs

The transplantation of organs has expanded greatly over

the last five decades with an ever-increasing number of

patients with an end-organ failure benefiting from kidney,

liver, heart, and lung transplantation. Improvements in

surgical techniques and ancillary care, as well as adoption

of the multi-drug immunosuppressive regimens now

widely employed in most organ transplant recipients,

have led to dramatically improved short-term (1–3 year)

patient and graft survival rates, with 1-year graft survival

approaching or exceeding 80% for many organ systems

(e.g. kidney, intestine, liver, pancreas, heart, and lung;

data from http://www.ustransplant.org). However, despite

these dramatic improvements in short-term graft survival,

as well as a significant reduction in acute rejection rates,

little improvement has been made in long-term graft

attrition [1,2]. Although there are nonimmune factors

that contribute to late graft loss (i.e. ischemia reperfusion,

infection, drug-specific toxicities, hypertension, and

dyslipidemia [2]), allo-immunity leading to chronic rejec-

tion plays a dominant role in rejection of most organs,

i.e. the kidney, heart, and lung [2]. In the US, the renal

allograft population, although in need of improved

outcomes, has a 1-year graft survival in excess of 90%
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Summary

Dendritic cells (DCs) are uniquely well equipped antigen (Ag)-presenting cells.

Their classic function was thought to be that of potent initiators of innate and

adaptive immunity to infectious organisms and other Ags (including transplan-

ted organs). Evidence has emerged, however, that DCs have a central and cru-

cial role in determining the fate of immune responses toward either immunity

or tolerance. This dichotomous function of DCs, coupled with their remarkable

plasticity, renders them attractive therapeutic targets for immune modulation.

In transplantation, much recent work has focused on the ability of DCs to

silence immune reactivity in an Ag-specific manner in the hope of preventing

rejection and diminishing reliance on potentially harmful immunosuppressive

agents. Experimental strategies have included in vivo targeting of DCs, as well

as ex vivo generation of regulatory (or tolerogenic) DCs with subsequent rein-

fusion (i.e. cell therapy). Different approaches to ‘program’ DC toward tolero-

genic properties include genetic (transgene insertion), biologic (differential

culture conditions, anti-inflammatory cytokine exposure) and pharmacologic

manipulation. Recent data suggest a promising role for pharmacologic treat-

ment as a means of generating potent regulatory DCs and have further stimula-

ted speculation regarding their potential clinical application. Herein, we discuss

evidence that the potential of regulatory DC therapy is considerable and that

there are compelling reasons to evaluate it in the setting of organ transplanta-

tion in the near future.
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and 5-year graft survival in excess of 79% (http://www.

ustransplant.org). Patient populations in particular need

of improved outcomes are thoracic transplant recipients

(heart and lung). While 5-year graft survival of heart

transplant recipients is slightly less than that of live-donor

kidney recipients (71% compared with 79%), patient sur-

vival is much more discrepant (72% for heart recipients

and 90% for living-donor kidney recipients) because, in

part, of the availability of dialysis for kidney recipients

with failed grafts, while there is no such replacement ther-

apy for heart recipients with failing grafts short of a

re-transplant. In addition, chronic rejection in heart

transplant recipients is frequently silent, leading to sud-

den death from ischemia. Lung transplant recipients suf-

fer more. In the US, 1-year patient survival approximates

80%, while 5-year survival is approximately 45% (http://

www.ustransplant.org) with recipients also suffering from

a high rate of infectious complications (the leading cause

of death in the first three years following transplantation)

and immunosuppression-related drug toxicities.

Since the seminal work of Billingham et al. in 1953 [3],

transplant researchers have aspired to achieve the ‘holy

grail’ of tolerance – perhaps best defined as the lack of a

destructive immune response against a graft in the

absence of chronic immunosuppression (with retention of

generalized immune competence). Achievement of this

lofty goal would not only alleviate the burden of chronic,

nonspecific immune depression and drug-related toxici-

ties, but also greatly alleviate the problem of late graft loss

(or at least that portion because of chronic rejection

resulting from alloimmunity). Following the studies of

Medawar’s group utilizing donor strain hematopoietic

cells to induce tolerance, tremendous effort, especially in

recent years, has been expended to develop models of tol-

erance induction and define their mechanisms with the

hope of clinical translation [4,5]. However, the excellent

short-term outcomes achieved with conventional multi-

drug immunosuppression – particularly for the kidney –

have made it ethically difficult to initiate clinical tolerance

trials, particularly when the approach involves a dramatic

departure from standard clinical immunosuppression.

Among the strategies being evaluated to modify recipi-

ent antidonor immunologic responses in the setting of

organ transplantation, much interest has focused on the

potential of dendritic cells (DCs) [6,7]. Recent results in

experimental models that have examined the impact of

infusion of DCs conditioned to be regulatory (or ‘tolero-

genic’) DCs have fueled this enthusiasm, suggesting that

regulatory DCs can drive in vivo generation of regulatory

T cells (Treg), thus promoting robust peripheral tolerance

[8]. The potential for clinical application of this approach

is supported by ongoing clinical trials utilizing DC vac-

cines for tumor immunotherapy [9], as well as the fact

that regulatory DC therapy in transplantation could be

used in (and perhaps benefit from) the setting of conven-

tional immunosuppression. In this review, we discuss DC

biology and recent developments in the generation of reg-

ulatory DCs, as well as the hurdles for their application

in clinical transplantation. Much of the discussion is gen-

erally applicable to live donor organ transplantation, but

the potential of regulatory DCs to affect deceased donor

transplant outcome is also considered. We provide a

rationale for regulatory DC therapy and a proposed strat-

egy for its implementation in the clinic.

Immunobiology of DCs

Dendritic cell are rare, ubiquitously distributed migratory

leukocytes, derived from CD34+ stem cells. In the normal

steady state, DCs are present as ‘immature’ antigen (Ag)-

presenting cells (APC) in the interstitium of nonlym-

phoid/peripheral tissues, including the commonly trans-

planted organs (liver, heart, lung, kidney, pancreas, and

skin). Under these conditions and when freshly isolated,

they express few surface major histocompatibility complex

(MHC) and accessory (intercellular adhesion/costimulato-

ry) molecules (CD40, CD54 [ICAM-1], CD80 [B7–1], or

CD86 [B7–2]) and are at best, poor stimulators of naı̈ve

T cells. These immature DCs, however, are extremely well

equipped, both for Ag capture and for efficient loading of

foreign Ag fragments onto MHC class II molecules for

export to the cell surface. It is now evident that DCs also

phagocytose and process dying (apoptotic) cells [10]. This

capacity to phagocytose apoptotic bodies appears to be

restricted to the immature stage of DC development

[11,12] and may be a potential means by which DCs

maintain peripheral self-tolerance under steady-state con-

ditions (see below). Integral to their function as sentinels

of the immune system, DCs possess several other import-

ant properties, including (i) the ability to convey Ag from

peripheral sites to T-cell areas of secondary lymphoid

organs (where primary immune responses are initiated);

(ii) in their mature form, they are potent stimulators of

naı̈ve CD4+ and CD8+ T cells; and (iii) they are able to

‘cross-prime’ or ‘cross-tolerize’ T cells [13,14] to either

self-proteins or alloAgs. Furthermore, immature DCs can

acquire Ag from living hematopoietic cells for cross-pres-

entation to cytotoxic T lymphocytes [15].

Dendritic cell maturation is essential for these APCs to

stimulate T-cell responses. Maturation is stimulated by

microbial products [e.g. exogenous ‘danger’ signals, inclu-

ding bacterial lipopolysaccharide (LPS), unmethylated

cytosine poly-guanine (CpG) motifs and double-stranded

RNA], pro-inflammatory cytokines [granulocyte/macro-

phage-colony-stimulating factor (GM-CSF), interleukin

(IL)-1b, tumor necrosis factor (TNF)-a and interferon
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(IFN)-a], cyclooxygenase metabolites, and CD40 ligand

(L) (e.g. on activated platelets and T cells). Maturation is

promoted by several nominal endogenous mediators fol-

lowing necrotic cell death or ischemia/reperfusion injury,

such as high mobility group box 1 [16–18], heat shock

proteins [19–21], purine metabolites, including uric acid

[22] and adenosine triphosphate [23], and the S100 fam-

ily of molecules [24]. In addition to CD40L, these endog-

enous mediators may be of great importance in the

setting of the ischemic and inflammatory injury sustained

at the time of organ transplantation that ultimately leads

to maturation of DCs (see below). Further, nuclear trans-

location of the transcription factor nuclear factor jB
induced by signaling through TNF receptor (R) family

members [e.g. TNFR, CD40, and TNF-related activation-

induced cytokine (TRANCE)/receptor activator of NFjB
(RANK)] and ligation of toll-like receptors (TLR) are two

other mechanisms that trigger maturation of DCs. Mature

DCs are potent stimulators of naı̈ve and memory T cells.

Expression of CC chemokine receptor (CCR) 7 by activa-

ted DCs facilitates their trafficking to T-cell areas of sec-

ondary lymphoid tissues in response to the CCR7 Ls,

CCL19, and CCL21.

DCs and transplant rejection

Following transplantation, recognition of alloAg (primar-

ily the MHC) by recipient T cells can occur via direct

and/or indirect pathways [25]. While DCs are central to

both pathways, the roles of donor versus recipient-derived

DCs are discrete. The direct pathway involves interaction

(and stimulation) of recipient T cells directly with intact

MHC molecules on the surface of donor APC transferred

with the graft (i.e. ‘passenger leukocytes’). The high fre-

quency of recipient T cells capable of responding in this

capacity (between 1% and 7% of the T-cell repertoire

[26]) is explained by studies suggesting that T cells with a

memory phenotype represent the greater proportion of T

cells capable of recognizing allo-MHC in a direct fashion.

Such T cells are specific for self-MHC (with allo-MHC

peptide) but cross-react with allo-MHC directly. Classic

passenger leukocyte depletion experiments performed in

the 70s and 80s indicated that graft-resident donor DCs

were the predominant APC population responsible for

recipient T-cell activation via this pathway [27–29]. DCs

trafficking from heart or skin allografts to host secondary

lymphoid tissue were implicated as the principal instiga-

tors of graft rejection [30,31]. Current thought suggests

that graft-resident donor DCs receive maturation signals

from the inflammatory environment in the graft following

transplantation (pro-inflammatory cytokines and other

‘danger’ signals discussed above) after which they mature

and migrate to draining lymph nodes. Once in the T-cell-

rich area of secondary lymphoid organs, they initiate pri-

mary and cross-reactive memory responses via the direct

pathway that are responsible for graft rejection. On the

other hand, Starzl et al. (1992) observed persistent,

donor-derived leukocytes (including DC) in lymphoid

and nonlymphoid tissues of long-surviving stable human

organ graft recipients, including patients off all immuno-

suppression [32,33]. This led to speculation that donor-

derived DC could play a role in the induction/mainten-

ance of organ transplant tolerance [34].

Recipient DCs participate in activation of T cells via

the indirect pathway. The indirect pathway involves pro-

cessing and presentation of allo-MHC peptides on recipi-

ent MHC to T cells in an MHC-restricted fashion. The

proportion of T cells capable of responding to allopeptide

in this fashion is significantly less than that via the direct

pathway [6,35] and more closely mimics acquired immu-

nity to environmental pathogens. Allosensitization via the

indirect pathway results from migration of recipient

immature DC to the graft with subsequent acquisition of

donor MHC (by mechanisms described above). In the

presence of ‘danger’ signals in the graft, these DCs

mature, traffic to secondary lymphoid organs, and initiate

primary immune responses.

Experimental data suggest that both the direct and the

indirect pathways are involved in allograft rejection,

although the relative contributions of each have been

debated for some time [25]. However, based on animal

and human work, a paradigm has evolved whereby the

direct pathway is thought to mediate early (several

months) alloimmune responses, whereas the indirect

pathway is the primary contributor to ongoing late allo-

responses [25]. Evidence supporting this paradigm in

human renal [36], cardiac [37,38], and lung transplant

[39,40] recipients has demonstrated that direct alloreac-

tivity diminishes with time from transplant, whereas the

indirect pathway response increases over time, with

increased frequencies of T cells with indirect allo-specifici-

ties. These studies suggest that the indirect pathway plays

a central role in the development of chronic rejection.

With emerging evidence that humoral immunity plays an

important role in chronic rejection [41] and as elicited

antibody (Ab) responses require CD4+ T-cell help, this is

further evidence of indirect pathway involvement in chro-

nic rejection. As discussed, recipient DCs are central to

the development of indirect alloreactivity and are

uniquely well equipped to activate (and perhaps to toler-

ize) both CD4+ T cells through MHC class II as well as

cross-prime CD8+ T cells through MHC class I molecules.

As such, tolerance-enhancing strategies utilizing recipient-

derived (as opposed to donor-derived) regulatory DCs

may be more successful in controlling long-term alloreac-

tivity (discussed below).
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DCs and tolerance

The role of DCs in central tolerance and induction/main-

tenance of peripheral self-tolerance is now well recog-

nized. A role for DCs in tolerance induction was first

demonstrated in the context of intrathymic self-tolerance,

where DCs were shown to be integral to negative selec-

tion in the thymus [42,43]. Subsequent work demonstra-

ted that intrathymic injection of allo-DCs (minor

lymphocyte-stimulating locus-incompatible spleen or thy-

mic DCs) in neonatal mice can induce tolerance (via

T-cell clonal anergy) [44]. Similar results have been

reported in bone marrow (BM) chimeric and transgenic

mice [45,46]. Tolerance exhibited following intrathymic

inoculation of alloAg appears to be dependent on thymic

DC [47], and, indeed, BM-derived host MDC pulsed with

allopeptide and injected intrathymically can induce organ

or pancreatic islet transplant tolerance in antilymphocyte

serum-conditioned hosts ([48,49] and Table 2).

Dendritic cells also play an important role in the

induction and maintenance of peripheral tolerance. Evi-

dence suggests that the presentation of peripherally

derived Ag by DC within secondary lymphoid tissue is

not only effective for T-cell priming, but, under steady-

state conditions, is also effective for the induction of

T-cell tolerance to self-Ag expressed exclusively by periph-

eral (extralymphoid) tissues. Steinman et al. [14,50] have

suggested that the presentation of newly exposed or

-expressed ‘self Ags’ by immature DCs to Ag-specific

T cells in the absence of danger signals results in toler-

ance. This hypothesis is supported by data demonstrating

that the interaction of Ag-specific T cells with DCs

expressing low levels (or no) costimulatory molecules

leads to anergy/apoptosis of the T cell [51] or to genera-

tion of Treg cells [52]. Further evidence supporting this

concept has come from experiments targeting DCs in vivo

in the steady state with exogenous Ag. Under steady-state

conditions in mice, Hawiger et al. [53] targeted low doses

of the hen egg lysozyme (HEL) peptide to DC utilizing

an Ab to the DC receptor CD205 (DEC205). Transgenic

CD4+ HEL peptide-specific T cells underwent several

rounds of division and then were entirely deleted. Subse-

quent rechallenge with Ag in conjunction with an

immune adjuvant demonstrated that the adoptively trans-

ferred HEL peptide-specific T cells had been tolerized.

Recent work has demonstrated that apoptotic cells

injected intravenously are efficiently captured by DCs,

whose pro-inflammatory function is undermined [6,54].

Several groups have targeted DCs in the steady state with

apoptotic cells in an attempt to promote Ag-specific

unresponsiveness. This work has demonstrated that

uptake of apoptotic cells by DCs does not induce inflam-

mation or maturation of DC and that DCs are able to

process and present apoptotic cell-derived peptides

[55,56]. Indeed, a recent report by Morelli et al. [10]

indicates that delivery of apoptotic donor leukocytes

7 days prior to cardiac transplantation in mice, in the

absence of immunosuppression, significantly prolongs

graft survival and induces deficient activation, transient

proliferation and subsequent deletion of adoptively trans-

ferred, allospecific transgenic CD4+ T cells. These interest-

ing data suggest that targeting of DCs in vivo with

apoptotic donor leukocytes under steady-state conditions

might be an alternative to ex vivo generation of regulatory

DCs for cell therapy in transplantation. Such a strategy,

however, would require access to donor leukocytes with

subsequent cell administration under steady-state condi-

tions several days (7 days in results reported thus far)

prior to transplantation. This approach is applicable to

living donor transplantation.

Regulatory DCs for cell therapy in organ
transplantation

A large body of evidence has accumulated in recent years

regarding the ability of DCs administered as cell therapy

to diminish alloreactivity or promote tolerance in the set-

ting of transplantation [6]. Although various subsets of

DCs are being examined in experimental models, we will

focus our discussion in this review on classic myeloid (or

monocyte-derived) DCs. The biological principles under-

lying this approach for myeloid DCs are based mainly on

those discussed above for the role of DCs in induction

and maintenance of peripheral tolerance. It is clear, how-

ever, that DCs can regulate immune reactivity by a variety

of mechanisms (as reviewed in [6,57,58]). Indeed, the

role(s) of DCs in immune regulation (i.e. expansion/

induction of Treg cells, such as CD4+CD25+ T cells or

Tr1 cells that make IL-10) and in anergy/deletion has

both been postulated to be important, and likely not

mutually exclusive mechanisms via, which DCs exert their

tolerogenicity. Initial studies of regulatory DC therapy

focused on ex vivo generation of immature myeloid DCs

from donor bone marrow under specific cell culture con-

ditions. Subsequent work has demonstrated the feasibility

of genetic or pharmacologic approaches to enhance and

maintain the tolerogenicity of either ex vivo-generated

donor or recipient DCs, as well as explored the potential

of ‘alternatively activated’ DCs. The various approaches

are discussed below.

Generation of regulatory DCs utilizing cell culture
conditions

The first demonstration of in vitro generation of regula-

tory DCs was by Lu et al. in 1995 [59]. They generated
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immature DCs from murine BM in vitro utilizing GM-

CSF. These in vitro-generated myeloid DCs were pheno-

typically immature (costimulatory molecule-deficient) and

induced Ag-specific hyporesponsiveness in allogeneic T

cells in vitro. A subsequent study demonstrated that

recipient injection with these costimulatory molecule-defi-

cient, donor-derived DCs, 7 days prior to transplantation

in a fully MHC-mismatched, murine cardiac transplanta-

tion model – without pharmacologic or biologic immu-

nosuppressive cover – resulted in significant prolongation

of graft survival compared with untreated recipients [60].

Since these seminal experiments, the goal has been to

optimize DC manipulation and/or delivery to maximize

their Ag-specific, tolerogenic potential. Much attention

has also been given to determining the ideal DC ‘subset’

for alloAg-specific prolongation of graft survival; however,

the most successful models to date (>100 d cardiac allo-

graft survival) have utilized classic myeloid DCs.

Therapeutic strategies with regulatory DCs have inclu-

ded the use of donor or recipient DCs, with or without

short-term immunosuppression or other biological agents

(Tables 1 and 2). Donor DC therapies most frequently

involve the targeting of co-stimulatory molecule expres-

sion or interactions with their T-cell-expressed Ls,

through generation of immature DCs [61–64] that are

then administered with or without monoclonal (m) Ab

or CTLA4 (cytotoxic T-lymphocyte-associated Ag 4)-

immunoglobulin (Ig)-targeting of key co-stimulatory

molecules expressed by mature/activated DCs [63,65–67]

(Table 1). In cardiac allograft models, the addition of

co-stimulation blockade to donor DC therapy results in a

striking synergistic effect, with >100-day prolongation of

graft survival (Table 1). To directly address the issue of

chronic vascular rejection, we have evaluated the influ-

ence of immature donor DCs administered in conjunc-

tion with anti-CD40L (CD154) mAb in a murine aortic

Table 1. Promotion of indefinite heart graft survival by donor dendritic cells (DC).

DC

Source Species DC treatment

Additional

treatment

Route of

injection MST Refs

MoDC Rat Granulocyte/macrophage

-colony-stimulating

factor (GM-CSF)

i.v. >160 days [64]

BMDC Mouse GM-CSF+GFb Anti-CD40L mAb i.v. >100 days (40%) [63]

BMDC Mouse Low GM-CSF i.v. >100 days [62]

BMDC Mouse NF-jB + rAd CTLA4Ig i.v. >100 days (40%) [65]

BMDC Rat GM-CSF + IL-4 ALS i.v. >200 days† (50%) [66]

BMDC Mouse Low GM-CSF Anti-CD54 mAb

+ CTLA4Ig

i.v. >100 days* [67]

*Secondary challenge: cardiac allograft recipients were tested with skin grafts 30 days after heart transplantation, regardless of rejection. All 3rd

party grafts were rejected; approximately 50% of donor skin grafts were accepted in anti-CD54 + CTLA4Ig-treated recipients.

†Secondary challenge post-100 days: 2nd donor heart accepted; 3rd party hearts rejected.

ALS: antilymphocyte serum; BMDC: bone marrow-derived dendritic cells; i.v.: intravenous; MoDC: monocyte-derived DC; MST: mean survival time;

‘blank’: none.

Table 2. Promotion of indefinite heart graft survival by recipient DCs.

DC

Source Species DC treatment

Additional

treatment

Route of

injection MST Refs

BMDC Rat Donor MHC I peptide (RT1.Au) ALS i.t. >150 days* [49]

BMDC Rat Donor MHC I peptide (RT1.Au) ALS i.v. >200 days* [70]

BMDC Mouse RAPA + donor cell lysate i.v. (·3) >100 days [69]

BMDC Rat GM-CSF + IL-4 LF 15–0195† i.v. >100 days [72]

BMDC Mouse GM-CSF + IL-4 NFjB ODN

+ donor-derived

cell lysate

i.v. >100 days (33%) [71]

BMDC Rat Low GM-CSF + IL-4 i.v. >100 days (20%) [68]

*Secondary challenge post-100 days: 2nd donor heart accepted; 3rd party rejected.

†Deoxyspergaulin derivative.

ALS: antilymphocyte serum; BMDC: bone marrow-derived dendritic cells; i.t.: intra-thymic; i.v.: intravenous; ODN: oligodeoxyribonucleotides;

RAPA: rapamycin; ‘blank’: none.
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allograft model [61]. Immature donor DCs were adminis-

tered on days )7, 0, 4 and 10, with or without anti-

CD40L mAb. While either treatment alone resulted in

diminished intimal cell proliferation compared with

untreated animals, the combination resulted in near com-

plete inhibition of vascular sclerosis (Fig. 1). This effect

was associated with significant reductions in T cell (direct

pathway) and humoral immunity to donor.

Strategies utilizing recipient DCs have also included

generation of immature DCs [68,69], as well as enhanced

targeting of the indirect pathway through pulsing of

recipient DCs with donor peptide or donor cell lysate

[49,69–71], with or without additional pharmacologic or

biologic treatment (Table 2). The theoretical advantage of

use of recipient DCs to impact the indirect pathway could

have significant benefit in counteracting the major cause

of late graft failure in human organ transplantation –

chronic rejection. In addition, recipient DCs are more

readily available (at least in the setting of deceased donor

transplantation) than donor DCs. Recently, Beriou et al.

have utilized this approach and demonstrated that donor-

specific, indefinite heart graft survival can be achieved in

rats given ex vivo-generated, recipient-derived, regulatory

(immature) DCs, together with only a short course of

perioperative LF 15–0195 (a deoxyspergualin derivative)

to control the direct pathway. While this effect implies

induction of indirect pathway regulation, the mechan-

ism(s) that underlies graft prolongation has yet to be

elucidated [72]. A recent human study adds further sup-

port for this approach in humans. Thus, Dhodapkar et al.

Figure 1 Immature DC + anti-CD40L monoclonal antibody (mAb) dramatically reduces transplant vasculopathy. View of aortic allografts of recipi-

ents treated with immature donor DC (iDC) or anti-CD40L mAb, either alone or in combination. Sections were stained for a-smooth muscle

(asmA) actin-positive cells by immunohistochemistry and intimal thickness was measured. Whereas moderate reductions in asmA actin-positive

cells are evident with either treatment alone compared with untreated controls at day 30, proliferation is almost completely inhibited by combina-

tion of donor iDC and anti-CD40L mAb. This suppressive effect of the combination therapy persisted on day 60. Data obtained from normal con-

trol aortas and syngeneic aortic grafts are also shown. Results are mean ± 1 SD from groups of four to six animals per group. ABC

immunoperoxidase, counterstained with H&E (magnification · 200). Reprinted with permission from Wang et al. Transplantation 2003; 76: 562.
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demonstrated that a single s.c. injection of immature

autologous myeloid DCs pulsed with influenza matrix

peptide in two healthy human volunteers led to inhibition

of MP-specific CD8+ T-cell effector function, as evidenced

by diminished IFN-c production and cytolytic function

[73]. This was associated with detection of IL-10-produ-

cing CD8+ Treg cells. Silencing of CD8+ T-cell effectors

was specific for MP, as cytomegalovirus-specific CD8+ T

effector cells were unaffected. This important study dem-

onstrates that human immature DCs administered in the

absence of danger signals promote the development of

Treg cells capable of regulating immunity in an Ag-speci-

fic manner and provide further impetus for assessment of

this approach in human organ transplantation.

In transplantation, one of the potential difficulties asso-

ciated with the administration of immature, regulatory

DCs is that, in the context of the danger signals present

following surgical trauma and ischemia-reperfusion

injury, the administered DCs may mature and accelerate

graft rejection or, at least, be unable to diminish allore-

sponses. This potential difficulty would be overcome if

the immature, regulatory DCs were administered suffi-

ciently in advance of transplantation, such that their tol-

erogenic effect would be achieved by the time of

transplantation (the approach taken in most experimental

animal models). Such an approach is possible in live

donor transplantation, but not in the deceased donor set-

ting (including the majority of thoracic organ transplants

– with the exception of the relatively small numbers of

living donor lobar [lung] transplants). In this regard,

several strategies have been evaluated to develop matur-

ation-resistant DCs, with perhaps the most robust being

pharmacologic treatment in vitro.

Manipulation of DCs to generate regulatory DCs

One potential solution to the problem of the inflamma-

tory environment and the risk of DC maturation is to

manipulate DCs in vitro to produce maturation-resistant,

immature DCs or ‘alternatively activated’ DCs with stable

tolerogenic properties. Strategies aimed at this goal have

utilized various biologic agents [including ultraviolet B

radiation, the cytokines IL-10, TGF-b, and the chimeric

fusion protein CTLA4-Ig and pharmacologic agents

(including corticosteroids, cyclosporine, rapamycin,

mycophenolate mofetil, vitamin D3, and prostaglandin

E2)] to confer tolerogenic properties on DCs ([74] and

[75] and Tables 3 and 4). Of these various strategies,

pharmacologic manipulation stands out as a safe, often

predictable and clinically applicable option. To date,

many conventional immunosuppressants and a wide vari-

ety of other pharmacologic agents with known immuno-

regulatory effects have been investigated for their impact

on DC generation and function (reviewed in [74,75]; for

a compilation of recent reports, see also Table 4).

Cyclosporine (CsA) has been shown to inhibit maturation

and allostimulatory capacity of mouse myeloid DCs, by

inhibiting NF-jB translocation. CsA also impairs IL-6

and -12 production by DCs, and DC-triggered production

of IFN-c, IL-2 and IL-4 by T cells in the bi-directional

DC-T-cell system [76]. By contrast, human monocyte-

derived DCs appear resistant to the inhibitory effects of

CsA on DC maturation and allostimulatory capacity.

Similarly, another calcineurin inhibitor, FK506 (tacroli-

mus) has been reported to have heterogenous effects on

DC maturation, depending on the stimuli used to trigger

DC maturation [74]. FK506, however, consistently

Table 3. Effect(s) of biologic agents on DCs.

Agent Species DC subset DC phenotype

T-cell

stim

DC/T-cell

cytokines

DC

depletion Refs

Alemtuzumab/campath Hu MoDC/pDC/ MDC 0 50–100% [88–90]

ALG Hu MoDC fl 25–50% [78]

ATG Hu MDC/ pDC 100% [78,91]

CD200Ig/anti-CD200R M pDC/BMDC fl IDO [92,93]

CMR-44* Hu LC fl >97% [94]

CTLA4Ig Hu/M CD8a+DC/pDC/CD19+DC fl IDO [95–97]

IL-10 Hu/M MoDC/BMDC/MDC† flCM, MHC I and II fl flIL-1b,

IL-6, IL-12,

TNFa

[98]

TGF-b Hu/M MoDC/BMDC/ MDC

LC

flCM, MHC II

›CM, MHC II

fl
›

[99]

*Mouse IgM mAb reactive to human DC.

†Immature DCs only; mature DCs exposed to IL-10 retain a stable phenotype.

›, enhancement/upregulation; fl, suppression/reduction; 0, no major effect; ALG, antilymphocyte globulin; ATG, antithymocyte globulin; BMDC,

bone marrow-derived dendritic cells; CM, classic co-stimulatory molecules; Hu, human; IDO, indoleamine 2,3-dioxygenase; LC, Langerhans cells;

MDC, myeloid dendritic cells; MoDC, monocyte-derived DC; M, mouse; pDC, plasmacytoid DC; ‘blank’: not tested.
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inhibits T-cell allostimulatory capacity of both mouse and

human DCs, irrespective of their maturation status [74].

Glucocorticoids inhibit LPS- or CD40L-induced DC

maturation and DC production of IL-12 and TNFa. DCs
exposed to dexamethasone fail to prime Th1 cells effi-

ciently, and repeated stimulation of T cells with these

DCs generates IL-10-producing Treg cells. Hackstein et al.

[69,77] have recently shown that rapamycin (RAPA)

inhibits mouse BM-derived DC maturation and T-cell

stimulatory capacity both in vitro and in vivo. RAPA-

treated DCs are poor producers of the inflammatory

cytokines IL-12 and TNFa, and render T cells hypo-

responsiveness to further donor-specific Ag stimulation

when infused into mice. These effects of RAPA on DCs

appear to be partially related to downregulation of surface

IL-4 receptor expression. Similar changes in phenotype

and function have been reported regarding RAPA-treated

human monocyte-derived DCs [78]. Also, in recent work,

we have demonstrated that RAPA treatment does not

block alloAg uptake by DCs nor impair their in vivo

homing to T-cell areas of secondary lymphoid tissue [69].

Furthermore, a single infusion of RAPA-treated, donor-

splenocyte lysate-pulsed DCs results in significant prolon-

gation of murine cardiac allograft survival – an effect that

was augmented by a short, post-transplant course of

immunosuppression (FK506). Significantly, repeated infu-

sion of RAPA-treated, donor-lysate-pulsed DCs lead to

indefinite heart graft survival in 40% of recipients. This

effect was associated with donor-specific T-cell hypo-

responsiveness induced via both the direct and indirect

pathways.

In addition to these immunosuppressant agents, several

other pharmacologic agents with anti-inflammatory prop-

erties (e.g. vitamin D, aspirin, and N-acetyl cysteine) tar-

get DC function [74]. However, the advantage of using

the aforementioned classic immunosuppressive agents to

‘program’ regulatory DCs lies in the fact that this

approach provides a relatively safe passage into preclini-

cal, and potentially, clinical trials, as these agents cur-

rently constitute the mainstay therapy for graft rejection.

Thus, administration of regulatory DCs in the setting of

conventional immunosuppression would not require a

Table 4. Newly reported effect(s) of pharmacologic agents on DCs*.

Agent Species

DC

subset

DC Ag

uptake DC phenotype

DC/T-cell

cytokines

T-cell

stim Refs

Cyclosporine A Hu MDC pDC + flCD80, CD83, MHCII ›IL-4 flIFNc fl [100,101]

Cilomilast† M BMDC flTNFa, IL-12 0 [102]

Dexamethasone Hu/M PB/CB MoDC/ pDC + ›CM, CD14, CD123,

MHC II flCD83

›IL-4, IL-10, TNFa,

IL-6 flIL-2,

IFNc� IFNa

fl [101,103,104]

FK778‡ Hu MoDC flCM, CD83, MHC II flIL-12 fl [105]

FTY720 Hu/M MoDC/BMDC 0 0 › IL-10 flIL-12 fl/0 [106,107]

JM34§ Hu MDC flCD83, MHC II › IL-10 flIL-2 fl [108]

Rapamycin M BMDC + flCM, MHC II flIFNc, IL-2 TNFa,

IL-12

fl [69,102]

Resveratrol– M BMDC + flCM, MHC II flIL-2, IL-12 fl [109]

Sanglifehrin A Hu MoDC – 0 0 [110]

Tacrolimus Hu MoDC flCM, CD83, MHC II ›IL-4 flIFNc fl [101]

Tetrahydro-4-aminobiopterin** M BMDC flMHC II flTh1 fl [111]

Triptolide†† Hu MoDC + flCM, MHC II › CD14 fl [112]

Vincristine‡‡ Hu MoDC 0 ›IL-10 flIL-12 fl [113]

Vitamin D3 and analogues Hu/M MoDC/BMDC flCM, MHC II ›› CD40 [114,115]

*Not intended to be comprehensive – updated from reviews by Hackstein and Thomson [74] and Adorini et al. [75] and contains only recently

published information.

†Oral selective phosphodiesterase IV inhibitor.

‡Leflunomide-metabolite derivative.

§Carboxamide compound.

–Natural polyphenol found in grapes and grape products.

**Tetrahydrobiopterin analog, inhibitor of all nitric oxide synthase isoenzymes.

††Purified diterpene triepoxide from the traditional Chinese herb Tripterygium wilfordi.

‡‡Antineoplastic cancer therapeutic agent.

+ or ›, enhancement/upregulation; ) or fl, suppression/reduction; 0 or �, no major effect.

BMDC, bone marrow-derived dendritic cells; CB, cord blood; CM, classic costimulatory molecules; Hu, human; M, mouse; MDC, myeloid dendritic

cells; MoDC, monocyte-derived DC; PB, peripheral blood; pDC, plasmacytoid DC; ‘blank’: not tested.
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dramatic departure from current clinical strategies, and in

addition, those immunosuppressive agents may further

promote retention of the regulatory DC phenotype. Based

on these studies, it is becoming increasingly evident that

regulatory DC administration (or in vivo targeting strat-

egies), most likely in combination with other pharmaco-

logic and biologic agents, can play a significant role in

the suppression of acute and chronic allograft rejection.

The question is whether we are ready to apply DC ther-

apy in the clinic.

Are regulatory DCs ready for the clinic and if so,
where do we start?

The goal of preclinical research is to develop diagnostic

and therapeutic tools/protocols to improve patient care.

The decision as to when to translate small or large animal

work to the clinic must be made weighing the evidence

suggesting a possible beneficial effect versus the risk and

magnitude of side effects, as well as the urgency of need

for clinical improvements to enhance patient outcomes.

Support for the clinical translation of regulatory DC ther-

apy in transplantation can be found in DC vaccine trials

for cancer. The first report of a clinical study utilizing a

DC vaccine was published in Nature Medicine in 1996

[79]. Subsequently, more than 1000 patients have received

DC vaccines in an attempt to promote immunity to tum-

ors. Most of these studies have utilized myeloid DCs gen-

erated from monocytes, or alternatively CD34+ cells.

Monocytes are readily accessible in peripheral blood, and

myeloid DCs are easily generated from monocytes [80].

Although there were pitfalls in design in many of the

early trials, testing of DC immunotherapy in cancer has

generally proven to be safe, with minimal side effects, and

has been found to be effective in some patients (even

though most patients had late-stage, advanced cancer)

[80]. Some of the early DC vaccine trials utilized imma-

ture rather than mature DCs without untoward effects

(indeed, this was the impetus for the previously discussed

landmark paper of Dhodapkar et al. [73], in which effec-

tor T-cell function was silenced in two human subjects

in an Ag-specific manner by s.c. administration of

Ag-pulsed immature DCs, resulting in induction of

Tregs). Although investigators have suggested that more

preclinical work is needed prior to larger clinical cancer

immunotherapy trials, it has been suggested that well per-

formed, phase 1–2 studies with quality control measures

and appropriate clinical and immunologic outcomes

should proceed [80].

Certainly, there is much to be learned about optimiza-

tion of human regulatory DC therapy for clinical organ

transplantation. Variables such as cell dose, single versus

multiple doses (and frequency), and route of administra-

tion (although the i.v. route seems the most appropriate

for promotion of tolerance) need to be evaluated. Donor

hematopoietic cell infusion via i.v. injection has been well

tolerated in our experience of BM cell infusion following

organ transplantation [81,82] and vaccine trials for cancer

therapy [80]. Optimal timing of cell therapy relative to

transplantation remains an important issue and warrants

further preclinical investigation. In addition, the import-

ance of DC stability/viability and specific migratory pat-

terns in vivo postinfusion are key factors that require

further analysis. Given the relative permissiveness of small

animal models to tolerance induction and possible species

differences in DC biology, many of these questions may

not be fully answered until phase 1–2 trials are initiated

in human transplant recipients. It is the opinion of the

authors that we are not far from that position. Cell ther-

apy (platelet transfusion, BM cell infusion, islet cell trans-

plantation, DC vaccines, and others) has a very good

safety record [83,84] and in the setting of a patient popu-

lation with significant need, the potential benefits may

justify the risks. Our own work in this regard continues

in a preclinical nonhuman primate model. Recently, we

have generated regulatory DCs from rhesus monkeys by

vitamin D and IL-10-conditioning of monocyte-derived

cells. These cells, that express low levels of surface MHC

and costimulatory molecules, are poor stimulators of allo-

geneic T cells in vitro and are resistant to maturation

induced by a potent pro-inflammatory cytokine cocktail

(IL-1b, TNFa, IFNc, IL-6, PGE2) (Fig. 2). Their potential
to induce Ag-specific T-cell hyporesponsiveness suggests a

regulatory DC-generating strategy that, coupled with con-

ventional immunosuppressant cover, could improve out-

comes in clinical organ transplantation (i.e. reduce

dependence on chronic immunosuppressive drug ther-

apy). These cells are currently being evaluated for their

ability to regulate alloimmune responses in vivo and their

ability to affect organ allograft survival.

An obvious patient population to which regulatory DC

therapy could apply is live-donor organ allograft recipi-

ents with kidney the most prevalent organ transplanted in

this manner. Our proposed strategy would require DC

generation (from circulating blood monocytes) with

modification of these cells to render them stably

immature and i.v. administration of the DCs in advance

(7–14 days) of transplantation under steady-state

conditions.

In conclusion, there are strong indications that regula-

tory DCs can play a role in clinical organ transplantation.

As we contemplate the introduction of this therapy in the

clinic, we find encouragement in the safety of human DC

vaccines and reassurance in the knowledge that this ther-

apy can be introduced in the context of current immuno-

suppressive strategies. As discussed by Mirenda et al. [8],
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prospective infusion of mobilized regulatory DCs (i.e.

with G-CSF [85–87]) or regulatory DCs propagated from

blood pheresis product (Fig. 2) into graft recipients, fol-

lowed by conventional immunosuppression cover, with

the goal of inducing immunoregulation, is applicable in

the clinic – albeit in the context live donor transplants.

Further exploratory work with regulatory DCs given at

the time of transplant and/or subsequently is needed to

ascertain the efficacy/applicability of regulatory DCs in

the context of deceased donor (heart and lung) transplan-

tation. Well-designed phase 1–2 studies with appropriate

safety, as well as immunological monitoring, may not be

far off.
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