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Introduction

Immunosuppressive protocols have usually focused on

the manipulation of the recipient’s immune system. How-

ever, more recently, it has been shown that the allograft is

not only the target of immune activation, but also an act-

ive component in initiating an immune response [1].

The quality and immune activation of the graft prior

to transplantation is influenced by a variety of factors.

Donor age, previous diseases in addition to the individual

genetic profiles determine the physiological capacities of

the transplant [2,3]. Unspecific immune-activating pro-

cesses as a consequence of brain death and ischemia/rep-

erfusion (I/R) injury may increase the immunogenicity in

synergy with the quality of the graft.

Cadaver donor management, although not the main

focus of this review, is of major importance and has been

cited as the most neglected area of transplantation medi-

cine [4,5]. In the early days of transplantation, the import-

ance of donor maintenance and organ preservation was

underestimated. After the observation that unrelated living

donor grafts do better than HLA-matched cadaver grafts

[6], antigen-independent risk factors received more atten-

tion. The fact that transplants between identical twins

develop chronic graft deterioration also highlights the con-

tribution of nonimmunological risk factors on overall graft

function [7]. Today, up to 25% of potential donors are

deemed to be unsuitable for transplantation prior to organ

procurement [8]. Because of the ever-increasing discrep-

ancy between supply and demand, the use of nonoptimal

or expanded-criteria grafts has dramatically increased with

currently 12% of kidney grafts coming from expanded cri-

teria donors [9,10]. These organs have limited functional

reserve and an increased susceptibility to ischemia, which,

in turn, increases immunogenicity and predisposes to

delayed graft function (DGF) as well as increased rates of
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Summary

Many studies have shown a strong association between initial graft injury and

poor long-term graft outcome. Events initiated by unspecific immune-activa-

ting processes including brain death and ischemia/reperfusion injury occurring

prior to transplantation reduce graft functionality and amplify the host

immune response. These events may be particularly relevant for less than opti-

mal grafts with reduced resistance to unspecific injuries. Several approaches to

ameliorate immune activation of the graft by treating the donor or the graft

have been studied. While various substances have been shown to have protect-

ive effects in experimental transplantation, only a few drugs have been tested

clinically and have demonstrated beneficial effects. We review the results of

experimental and clinical studies on donor or graft immunomodulation prior

to transplantation and analyze the evidence to support clinical application of

these strategies.
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acute and chronic rejection [9,11–13]. For the extended cri-

teria donors, the discard rate is even worse, with 40% of

kidney grafts being discarded prior to organ procurement

[14]. The increasing utilization of marginal grafts increases

the need for more advanced donor management and spe-

cifically for measures to enhance the graft’s resistance to

inflammatory damages [15].

Graft activation and immunogenicity

Many studies have shown a strong association between

organ quality, nonspecific damages prior to transplanta-

tion and poor long-term graft outcome [16–20]. Poor

organ quality and cellular injury prior to transplantation

increase the risk for DGF, acute, and chronic rejection

while potentially preventing tolerance induction [17,21].

In addition, the initiation of the rejection process may

also be activated by the injured graft itself [22]. The most

important determinants of graft survival are the age of

the donor, brain death, and I/R injury [23].

Reduced capacities to cope with cellular stress and acti-

vated antigen-presenting cells (APC) may contribute to

an immune activation in organs from elderly donors

[11,24,25]. Gene expression profiles demonstrated altera-

tions with increasing age, however exceptions in those

patterns also point toward the importance of ‘biological’

aging [3].

Kidney grafts from living donors have a significantly

prolonged long-term graft survival compared with cadav-

eric organs from brain dead donors [6]. Clinical studies

showed that the gene expression profile in kidneys from

brain-dead donors is different compared with grafts

obtained from living donors [29–32]. While most of the

upregulated genes in cadaveric kidneys were related to

inflammation, redox state, metabolism, cell-cycle regula-

tion, and protein modification cytokine profiles of liver

transplant recipients were different in cadaveric grafts

compared with grafts from living donors [31–33].

After brain death, a series of neural, hormonal, and

molecular changes occur, resulting in cellular stress and

inflammatory response [26,27]. These events lead to

reduced cell defense mechanisms and increased graft im-

munogenicity inducing a host alloimmune response even

in the absence of nonself antigens. It is hypothesized that

the initial injury initiates allograft rejection by activating

complement and coagulation pathways, recruiting inflam-

matory cells, promoting trafficking of dendritic cells

(DCs) into the allograft, inducing the expression of major

histocompatibility complex (MHC) molecules and costim-

ulatory signals, as well as regulating T-cell differentiation

[28]. The initial graft injury associated with brain death,

the harvesting procedure, and consequences of I/R limit

the function of ‘marginal grafts’ even more [9,13,34].

Relationship between innate and adaptive graft
recognition

Traditionally, recognition of alloantigens and triggering of

the immune response to the allograft have been associated

with the adaptive immune system and mediated by anti-

gen-specific T- and B cells. The innate immune system,

composed of monocytes, macrophages, neutrophils, eos-

inophils, and natural killer (NK) cells, was believed to be

important in protecting the host against infectious agents

rather than being involved in specific immune responses.

These cells express semi-specific receptors [Toll-like

receptors (TLRs)] that recognize ligands (e.g. lipopolysac-

charides, teichoic acids, double stranded RNA, etc.)

present on a broad range of pathogens, called pathogen-

associated molecular patterns [35]. These receptors acti-

vate transcription factors such as NF-jB and induce the

expression of inflammatory genes [36]. However, recent

studies have shown that the innate immune system also

recognizes allogenic and xenogenic grafts through TLRs

[37].

Interactions between the innate and adaptive immune

response may be implicated in the association of ischemia

reperfusion injury with acute and chronic rejection [38].

It has been shown that the innate immune response has a

major influence on the adaptive immunity by enhancing

T-cell priming [35]. The innate immune system produces

cytokines and chemokines that are critical for the traffick-

ing of activated T cells. Some cytokines and chemokines

produced in response to allografts are not detected in iso-

grafts, implying a more specific response [39–41]. Com-

plement receptors have been found on T cells, B cells and

APCs, which may represent a link between innate and

adaptive systems. Activation of complement, an unavoid-

able event after transplantation, increases graft immuno-

genicity possibly by opsonization of graft cells and

enhancement of antigen presentation, which increases the

incidence of rejection [42,43].

Toll-like receptors and downstream mediators are

thought to link innate and adaptive immunity. TLRs

expressed on APCs may regulate co-stimulatory signals

and cytokine production, which, in turn, modulate the

strength of the adaptive immune response [44]. Mice

lacking MyD88, a protein that mediates most TLRs sig-

nals, demonstrated an impaired Th1 response and were

unable to reject minor-mismatched skin allografts [45].

On the other hand, the innate system also depends on

the adaptive immune system. It has been shown that T

cells are required for macrophage activation [37] while

the adaptive immune response can enhance the innate

inflammatory response. Recombination activating gene

(RAG) knockout mice lacking adaptive immunity still

have a strong immune response briefly after cardiac trans-
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plantation. The expression of innate immunity markers

was greatly amplified in the allogenic, but not in syngenic

group emphasizing that innate immunity is activated or

enhanced by alloantigens [46]. Along the same line, it has

been shown that NK cells have different responses

depending on the microenvironment [47].

However, the host immune response is not only

dependent on cells classically thought of as being part of

the innate and adaptive immune response. All cells in the

graft but especially DCs are able to initiate an immune

response. Parenchymal cells are not just targets of the

alloresponse, but also play an active role in the rejection

process. Stimulated by inflammatory conditions initiated

after brain death, the harvesting procedure and amplified

by I/R injury, parenchymal cells can overexpress MHC

antigens, produce inflammatory cytokines and adhesion

molecules, and finally undergo apoptosis. Under those

circumstances, these cells can also express MHC class II

antigens [27,48].

Activation of DCs in this scenario is of particular rele-

vance for the increase in graft immunogenicity [49,50].

Solid and cellular grafts contain DCs in an immature

stage [51]. There is an increasing body of evidence show-

ing that DCs are activated by ‘danger signals’, substances

produced by distressed or injured cells (DNA, heat-shock

proteins, inflammatory cytokines, breakdown products of

cellular membrane, etc.) [22]. This initial injury provides

the maturation signals that DCs need to migrate and

induce T-cell activation [52]. When DCs mature in the

presence of inflammatory signals, they increase the

expression of class I and II MHC antigens and costimula-

tory molecules, thus increasing the production of cyto-

kines and amplifying the immune response. In addition,

when donor DCs die in the recipient’s lymph nodes, they

can cross-prime antigens through the indirect pathway of

allorecognition [53–57].

Rationale of donor treatment

Minimizing initial cellular stress and damage associated

with an inflammatory immune response may impact the

overall need for post-transplant immunosuppression

while increasing the availability of organs for transplanta-

tion [5,27,58,59]. The time between the diagnosis of brain

death and organ harvesting, as well as the storage period,

could be used to prevent or minimize graft immune acti-

vation. Donor therapy may be particularly relevant for

the transplantation of extended criteria grafts, which are

less apt to cope with cellular stresses [13,60,61]. Experi-

mental studies from our group have demonstrated that

the treatment of old donors with immunosuppressive

agents significantly improved kidney graft function long

term [62,63].

Strategies of donor treatment

Various strategies have been used for donor/graft treat-

ment. Those include pharmacotherapy (immunosuppres-

sive, anti-inflammatory and chemotherapy drugs,

cytokines, vasoprotective agents, monoclonal antibodies,

and antioxidants), irradiation [gamma or ultraviolet (UV)

irradiation of the graft], cell transfer experiments (bone

marrow cells, blood, splenocytes, DC, and lymphocytes),

temporary controlled-warm ischemia (ischemic precondi-

tioning), and gene therapies (liposomes and virus vec-

tors). These approaches were accomplished either by

treating the graft itself during perfusion or cold storage

or by treating the donor prior to graft procurement.

Treating the donor has the advantage of preserved cel-

lular metabolic pathways, while most pharmacological

agents are inactive or insoluble in hypothermic preserva-

tion solutions. In addition, poor permeability of mem-

branes and inhibited active transport mechanisms in

hypothermic conditions may compromise drug access

[64,65]. Similarly, genetic modification of organs is lim-

ited as viral vectors have a very limited transfection rate

under these conditions [66].

Machine perfusion preservation with hypothermic per-

fusion provides the best quality and longest preservation

of kidney grafts [67]. It has been postulated that it redu-

ces the accumulation of toxic substrates and free radical

formation on reperfusion, thus minimizing the conse-

quences of I/R injury. Continuous perfusion permits, in

theory, also the use of normothermic solution, which is

more appropriate to promote active graft modulation.

When cell metabolism is maintained, both pharmacologi-

cal agents and viral vectors are more efficient in promo-

ting protection. Normothermic organ preservation may

be particularly advantageous when utilizing marginal

grafts [68,69]; however, there are many obstacles to be

overcome before normothermic preservation will be

applied routinely in the clinical settings.

Gene transfer strategies have the advantage of selective

delivery of molecules with immunomodulating activity to

the graft itself. Experiments on gene therapy using antia-

poptotic genes [Bcl-2, Bcl-xL, A20, and HO-1 (heme

oxygenase-1)], Th-2 cytokines (IL-10, TGFb-1), antioxi-

dants (superoxide dismutase, iNOS), donor MHC class I

and II antigens, genes blocking costimulatory signals (e.g.

CTLA4Ig), and recombinant ligands genes have prolonged

graft survival in rodent models [70].

After brain death, there is a progressive deterioration of

the graft. The extent of the initial graft injury is associ-

ated with the strength of the immune response and fur-

ther graft damage [21,71]. Therefore, preservation

therapies should be initiated immediately after the confir-

mation of brain death and prior to occurrence of further
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immune activation, in order to block the vicious cycle of

injury and increased immunogenicity. In most experi-

mental and clinical studies, the time frame between treat-

ment and organ retrieval has ranged from 2 to 18 h. A

maximum survival-prolonging effect was obtained with

an interval of 6 h between treatment and organ retrieval

[72].

There are several nonexclusive theories to explain the

beneficial effects of donor treatment. Those include the

elimination of highly antigenic cells, the reduction of

the overall antigenicity of all cells in the graft by inter-

fering with cell markers and expression, modifications of

the spatial conformation of antigens or their release into

the recipient circulation, a drug ‘carry-over’ effect and an

optimization of microcirculation [72]. Most approaches

to treat donors have focused on immunomodulation of

the graft by depletion or modulation of APCs, and/or

cytoprotection to increase the resistance to unspecific

injuries.

Donor immunomodulation

Modulation of DCs

The most frequent approaches to deplete grafts from DCs

include gamma irradiation, cytotoxic drugs, photosensi-

tizer + UV radiation, and antilymphocyte antibodies.

Donor or graft treatment of endocrine allografts for a

selective elimination of DCs can result in indefinite allo-

graft survival in immune-competent recipients [73].

However, results on solid organ transplantation show less

impressive results following DC depletion. There is some

evidence that DC function may be necessary for the

development of tolerance induction as it can induce regu-

latory T cells. It has been shown that low-dose UV B pre-

treatment of human islets may reduce immunogenicity by

reducing the expression of costimulatory molecules (e.g.

ICAM-1 and B7) on DCs [74]. Immunosuppressive drugs

have different effects on DCs [54,75–78]. Calcineurin

inhibitors seem to have little effect on DC maturation,

although inhibiting allostimulatory capacity and cytokine

production. Steroids and vitamin D analogs affect all sta-

ges of DC maturation and their function. In our own

experimental studies, we were able to demonstrate that

donor treatment for the induction of HO-1 was associ-

ated with reduced donor-specific DCs in all recipient

compartments [79].

An increasing number of experiments using genetic-

ally engineered DCs that constitutively express IL-10,

TGF-b, FasL, or CTLA-4Ig have been reported. One

study demonstrated a single adenovirus administration

carrying the gene of CTLA4-Ig to the donor 24 h prior

to transplantation associated with an indefinite graft

acceptance [80].

Donor cytoprotection

Graft cytoprotection maintains cellular functionality and

reduces graft immunogenicity at the same time. Potential

candidates include antioxidants, membrane stabilizers,

and antiapoptotic molecules. The most investigated

approach is the modulation of the HO-1 system.

Many reports have shown beneficial effects of HO-1 in

transplantation. HO-1 induction may potentially reduce

I/R injury, inflammation, apoptosis, allo-mediated cell

toxicity, and graft-versus-host disease (for a comprehen-

sive review, see ref. 81). HO-1 overexpression has been

shown to increase the viability of grafts after a prolonged

cold storage in a series of transplant models [82–85].

HO-1 overexpression also enhances intracardiac expres-

sion of antiapoptotic proteins Bcl2 and bag1 [83] and

prevents expression of adhesion molecules on endothe-

lium [86]. In addition, accelerated transplant arterioscler-

osis, the main manifestation of chronic rejection, has

been inhibited by the induction of HO-1 expression [86].

Most experimental models inducing HO-1 have used

metalloproteins (FePP and CoPP) or gene therapy. CO, a

by-product of HO-1 metabolism, has been shown to

reproduce the protective effects of HO-1 in many trans-

plantation models [87–90]. It has the advantages of being

active and penetrating the cell membrane in cold temper-

atures. Bilirubin and biliverdin, down-stream products of

the HO-1 metabolism, have also been also associated with

protection against I/R injury [91].

Limitations of donor pretreatment strategies

Gene therapy, although very selective, is frequently lim-

ited by low transfection rates, transient gene expression,

and a potential immune activation because of viral-vec-

tors [66,70]. The ‘one-for-all’ principle does not apply for

donor pretreatment. Some drugs use organ-specific path-

ways and toxicity levels may show organ specificities.

While dopamine treatment was associated with improved

results following kidney transplantation, similar effects

could not be observed following liver and heart transplan-

tation. Side effects may have included mesenteric spasms

and reduced mitochondrial redox states [92,93].

Clinical studies

Most clinical studies exploring donor therapy were single-

center, uncontrolled, and have not investigated the impact

on long-term outcome [94–99]. Methylprednisolone has

been used in several clinical studies. Guttmann et al.

[100] showed that kidney recipients of cadaver donors

treated with high doses of cyclophosphamide, methyl-

prednisolone, and methotrexate had better renal function
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and showed the reduced frequencies of early and late

rejection episodes. In another series, the same author

showed that grafts treated with methylprednisolone and

cyclophosphamide were superior to those obtained from

untreated donors, showing 5-year graft survival rates of

66% vs. 53% [96]. Treatment of brain-dead donors with

methylprednisolone 250 mg i.v. bolus followed by

100 mg/h until laparotomy resulted in significant

decreased expression of pro-inflammatory cytokines com-

parable to levels observed in grafts from living donors

[33]. Other clinical studies showed that high-dose admin-

istration of methylprednisone to brain-dead donors

improved oxygenation and significantly increased the

recovery of lung grafts [101]. However, not all studies

demonstrated beneficial effects following donor steroid

therapy [102–104].

In clinical liver transplantation trials, prostaglandin I2

(Epoprostenol) application has been shown to reduce the

levels of transaminases post-transplantation. Proposed

mechanisms of protection include splanchnic vasodilata-

tion, decrease of protease and free oxygen radical release,

improvement in sinusoidal perfusion, and reduction in

leukocyte adherence [105].

Recently, multi-drug treatment strategies of cadaver

donors have been proposed. This treatment is based on

the administration of the so-called ‘Papworth cocktail’

consisting of methylprednisolone, insulin, tri-iodothyro-

nine, arginine, and vasopressin in association with

intense cardiovascular monitoring and was associated

with a significant increase of organs procured and trans-

planted per donor [106,107]. Two independent clinical

studies demonstrated the beneficial effects of catecholam-

ines including dopamine application for the protection

of kidney grafts. While kidney graft survival had

improved significantly, liver graft survival had not

improved and heart transplants showed a trend toward

reduced transplant survival [108–110]. In addition to

their hemodynamic effects, catecholamines may be

effective by modulating cytokine production, adhe-

sion molecules expression, and up-regulation of HO-1

[111–114].

Conclusions

Graft quality and immunogenicity determine, at least in

part, the success of organ transplantation. The graft is not

only the target, but may also direct the host immune

response. Indeed, innate and adaptive immune responses

act in concert and can be influenced by donor treatment.

Although various experimental studies have shown the

benefits of donor treatment, clinical results remain scarce.

Clearly, donor treatment offers the opportunity to

increase the amount of organs available for transplanta-

tion and may ameliorate the immune response (Fig. 1).

Most clinical experiences are based on single-center,

noncontrolled, nonrandomized studies and lack long-term

results. Prospective randomized multicenter trials are

necessary to gain clinical experience. Organ specific differ-

ences and early markers of unspecific injuries need to be

considered.

Early intervention/

+
+ +

I/R

AgePrevious
diseases

Brain death

donor/graft
treatment

Activation of heat shock proteins
Alteration of protective genes

Toll-like receptors (TLR)

Immunogenicity (DC‘s)
Innate immunity

Adaptive immune response

Clinical consequences

Reduced long-term 
graft functionDGF Acute Rejection

Specific modulation/
immunosuppressionFigure 1 Potential interaction of donor

factors with the innate and adaptive

immune response to an allograft. Donor

treatment may reduce the immuno-

genicity of an organ transplant, amelior-

ate the incidence of DGF and acute

rejection, and improve long-term graft

function.
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