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Etiology and pathophysiology of chronic 
transplant dysfunction 

Abstract Chronic transplant dys- 
function (CTD) is the predominant 
cause of late graft failure. The com- 
mon histopathological feature in all 
transplanted organs is intimal hy- 
perplasia accompanied by organ 
specific lesions. The knowledge 
about CTD is incomplete, and there 
is no therapy to prevent or treat it. 
This review describes the current 
knowledge on the etiology of CTD, 
with emphasis on kidney trans- 
plants, and postulates a pathophysi- 
ologic route through which CTD 
may develop. 
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The problem of chronic transplant dysfunction 

Since it was first shown in 1954 that successful trans- 
plantation of a healthy kidney could completely rehabil- 
itate an individual with renal failure, transplantation of 
several organs has become an increasingly successful 
medical treatment for patients with end-stage organ 
failure. In 1998, in the Eurotransplant area alone, more 
than 3000 kidneys, 750 hearts, about 1000 livers, 230 
lungs, and about 100 pancreas from cadaveric donors 
were transplanted [9]. Worldwide, 56 intestinal trans- 
plantations were performed in 1996 [70]. The short- 
term results after clinical organ transplantation have im- 
proved progressively. This is principally due to refine- 
ments in tissue typing, advancements in organ preserva- 
tion, operative techniques and ancillary care, more ef- 
fective immunosuppressive agents, and better monitor- 
ing after engraftment. For example, one year survival 

of cadaveric kidneys has increased from approximately 
50 % by the end of the 1960 s, to about 85 % nowadays 
1671, and for living-related kidneys from 80% to 

Despite improving early results, however, it has be- 
come clear that clinical transplantation has not achieved 
its goal as a long-term treatment. For the period beyond 
one year, the annual rate of graft loss has changed less 
since the beginning of the experience. The half-life of 
cadaveric kidney allografts, for instance, has remained 
consistent at 7.5-9.5 years, although the latest United 
States Renal Data System (USRDS) data suggest that 
half-life of first cadaveric kidney grafts is improving 
(Figure 1) [68, 1461. Similarly, the half-life beyond the 
first year of heart transplants is 10.5 years [146]. Other 
organ transplants generally show comparable results, 
with exception of the liver, which shows more favour- 
able long-term results [lo, 981. 
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(CTD) is the most 
important, single cause of late graft deterioration and 
failure. Kidney graft loss is in 35%-58% due to CTD 
[53], more than 70 % of lung allografts had CTD 5 years 
post-transplantation [166]; more than 50 % of the heart 
transplants had severe coronary arteriosclerosis at five 
years [222,231]; and about 9-26 % of graft loss of liver 
transplants was due to CTD [l ,  14,1941. Moreover, a sig- 
nificant number of functioning grafts is lost due to death 
of the recipient. There is still no treatment to inhibit or 
prevent CTD, and a conclusive therapeutic strategy is 
not within hand’s reach since its etiology and patho- 
physiology are poorly known. 

Definition of chronic transplant dysfunction: 
functional and histopathological characteristics 

CTD is a phenomenon in solid organ transplants dis- 
playing a gradual deterioration of graft function months 
to years after transplantation, eventually leading to 
graft failure, and which is accompanied by characteristi- 
cal histological features. Clinically, CTD in kidney 
grafts manifests itself as a slowly progressive decline in 
glomerular filtration rate, usually in conjunction with 
proteinuria and arterial hypertension [150]. In heart 
transplants, CTD presents itself with congestive heart 
failure, acute infarction, arrythmias and, most dramati- 
cally, as sudden death [63]. The diagnosis of liver CTD 
should be based upon clinical evidence of chronic liver 

disease consisting of persistent enzyme abnormalities, 
elevated bilirubin, diminished synthesis of protein and 
blood clotting factors [46, 601. Intractable diarrhoea 
and weight loss are the accompanying symptoms in in- 
testinal transplants with CTD [191]. 

The cardinal histomorphological feature of CTD in 
all parenchymal allografts is fibroproliferative end- 
arteritis [2]. The vascular lesion affects the whole length 
of the arteries in a patchy pattern. There is concentric 
myointimal proliferation resulting in fibrous thickening 
and the characteristic ’onion skin’ appearance of the in- 
tima in small arteries [2]. Other findings include endo- 
thelial swelling, foam cell accumulation, disruption of 
the internal elastic lamina, hyalinosis and medial thick- 
ening, and presence of subendothelial T-lymphocytes 
and macrophages [91]. In addition, a persistent focal 
perivascular inflammation is often seen. Although inti- 
ma1 hyperplasia is very specific for CTD, the diagnosis 
of CTD in biopsies of allografts is frequently based on 
other, less specific abnormalities, since intimal hyper- 
plasia is very patchy and affects mainly arteries larger 
than those seen in biopsies. 

In addition to vascular changes, kidneys undergoing 
CTD also show interstitial fibrosis, tubular atrophy and 
glomerulopathy. Chronic transplant glomerulopathy - 
duplication of the capillary walls and mesangial matrix 
increase - has been identified as a highly specific feature 
of kidneys with CTD [196]. Less specific lesions are 
glomerular ischemic collapse, tubular atrophy, and in- 
terstitial fibrosis. Furthermore, peritubular capillary 
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Table 1 Risk factors for CTD 
Alloantigen specific factors Non-alloantigen specific factors 
~~ 

Histoincompatibility Ischemia 
Acute rejection episodes Brain death 
Suboptimal immunosup- 
pression Infection 
Non-compliance Hyperlipidemia 
Anti-donor antibodies Hypertension 

Age 
Gender 
Race 
Size 

basement splitting and laminations are associated with 
late decline of graft function [136]. The criteria for his- 
tological diagnosis of CTD in kidney allografts are inter- 
nationally standardised in the BANFF scheme for Re- 
nal Allograft Pathology [195]. 

Until now, such typically functional and histological 
changes of allografts are often diagnosed as ‘chronic re- 
jection’. However, the designation ‘rejection’ presumes 
a host alloimmune responsiveness to be basis for these 
changes. Since there are indications that non-alloim- 
mune mediated factors involved in organ transplanta- 
tion can cause similar functional and histopathological 
changes, calling the whole process chronic rejection is 
not satisfactory. As long as the result - dysfunction and 
characteristic histological changes - cannot be exclu- 
sively attributed to an alloimmune-mediated pathway, 
it is recommended to name the process CTD, leaving 
any causative factor out of consideration. 

Etiology of chronic transplant dysfunction 

In 1963, Porter et a1 reported four human cadaveric kid- 
ney allotransplants in which striking obliterative vascu- 
lar lesions developed a few months after transplantation 
[158]. All patients had experienced early episodes of 
acute rejection, and the subsequent vascular lesions 
were thought to have an immunological basis. These 
cases suggested that the process of allograft rejection 
can evolve from early acute cellular infiltration of the 
engrafted organ to a more chronic process, ultimately 
resulting in intimal arterial thickening, with interstitial 
fibrosis. However, to the present day the cause of CTD 
remains ill defined. Two working hypotheses are pro- 
posed to understand the process: 1) the phenomenon 
leading to CTD is the result of an ongoing host alloim- 
mune response. 2) Non-alloimmune responses-to-inju- 
ry, such as ischemia, can cause or aggravate the process. 

Alloantigen-specific factors 

Several data indicate that CTD is the result of the recip- 
ient’s immune response to incompatible donor tissue 
antigens. In this view, the relationships between the fol- 
lowing identified risk factors and CTD all reflect an al- 
loimmunologic mechanism: l )  Histoincompatibility, 
2) Acute rejection, 3) Suboptimal immunosuppression/ 
non-compliance, and 4) Anti-donor specific antibodies. 
Antigenic disparity in humans between donor and host 
is associated with the occurrence of CTD, as demon- 
strated in kidney, heart, and lung transplant studies. 
Long-term graft survival appeared to be strongly corre- 
lated with the degree of histocompatibility matching be- 
tween donor and recipient [67,89,146,194,214]. Cadav- 
eric kidneys with zero HLA-mismatches have a half-life 
of 13.2 years compared to 7.0 years in grafts with six-al- 
lelic mismatches [146]. Interestingly, some large unicen- 
tre studies are unable to demonstrate the benefit of his- 
tocompatibility matching for the development of CTD 
in kidneys and hearts, independently of the effect of 
acute rejection [88]. It is presently unclear whether 
matching directly affects the development of CTD or 
whether this results from a decreased incidence of acute 
rejection episodes [20,38,155,193]. 

Graft survival studies from uni- and multicentres 
alike show a strong correlation between acute rejection 
episodes and the lifespan of a graft [115,125,147,224]. 
For instance, Matas et a1 [125] showed in a group of 278 
cadaver kidney graft recipients that a single rejection 
episode in the first post-transplant year reduces the esti- 
mated graft half-life from 33 years to 22 years, whereas 
multiple rejections or a single rejection after the first 
year decreases the half-life to less than 5 years. Several 
retrospective analyses of organ grafts with CTD demon- 
strate that acute rejection is strongly related to the de- 
velopment of CTD in all types of organ transplants [17, 
28, 57,88,105,101,195]. Basadonna et a1 reported that 
in a cohort of 205 cadaveric renal transplant recipients, 
the incidence of biopsy-proven CTD was 0 YO in the 109 
patients without acute rejection, 36 YO in the 69 patients 
with an acute rejection within the first 2 months after 
transplantation ( P  < 0.001), and 63 Y in the 27 patients 
with acute rejection 60 days after transplantation 
( P  < 0.001) [45]. Other clinical studies have corroborat- 
ed and refined these findings: The onset, frequency, 
and severity of an acute rejection episode are indepen- 
dent risk factors for CTD [19,57,204,224]. Acute rejec- 
tions with complete functional recovery do not have a 
deleterious effect on the long-term outcome [39, 2261, 
whereas an increased baseline serum creatinine level af- 
ter treatment of an acute rejection episode is associated 
with CTD [92, 1471 In addition, the vascular type of 
acute rejection appears to be a stronger risk factor for 
the occurrence of CTD than interstitial rejection [223]. 
Experimental studies in kidney-, heart-, and lung trans- 
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plantation models confirm these clinical observations 
[86,90,141,232,233,235]. Nonetheless, acute rejection 
is not a prequisite for CTD: patients may also develop 
CTD without prior acute rejection episodes [41,45,54]. 
Reviewing the literature, it can be stated that at present, 
acute rejection is the most consistently identified clini- 
cal risk factor for the occurrence of CTD. 

A low dose of maintenance Cyclosporine (CsA) 
medication in some clinical studies has been associated 
with CTD [6,194,177], but not in others [68]. At 5 years 
post-transplantation, the percentage of recipients who 
were free of CTD as demonstrated by biopsy was 86% 
for those using CsA > 5 mg/kg per day versus 77 % for 
those on < 5 mg/kg per day [6]. Additional evidence 
that CTD may be related to inadequate immunosup- 
pression was provided by the histopathological studies 
of Isoniemi et a1 [96]. They found that CTD-lesions 
were less apparent in patients given protocols of triple- 
versus double-dose immunosuppressive therapy. Exper- 
imentally, we and others have demonstrated that in the 
rat aortic allograft model, both high dose CsA as well 
as other immunosuppressive agents were able to pre- 
vent the inflammatory response, and concomitantly in- 
hibit the generation of intimal lesions during the 4- 
weeks follow-up period [65,103,199]. However, in man 
it would be impossible to maintain high doses of immu- 
nosuppressants on the long-term, because of the associ- 
ated toxic side effects [203]. 

Noncompliance also indicates that CTD may result 
from inadequate immunosuppression [24,51,217]. In a 
study by the Minneapolis group, 34% patients were 
noncompliant, and this was associated with late deterio- 
ration of graft function [124]. 

Many studies have shown that following transplanta- 
tion, the majority of patients produce antibodies [49,75, 
99, 121, 122, 149, 154, 165, 168, 192, 2021. Both, pre- 
formed antibodies reactive against donor tissue, and an- 
tibodies produced after transplantation against HLA 
class I antigens and against tissue, (endothelial cells, 
smooth muscle cells) are found. A correlation between 
antibodies and CTD, however, is not consistently found 
[45, 49, 54, 58, 90, 149, 166, 1791. No difference in pan- 
el-reactive antibody levels was found between those of 
patients whose grafts were still functioning, versus those 
of patients who lost their graft due to CTD [59, 1791 
Likewise, Hosenpud et a1 found no differences in the 
presence of IgM antibodies against endothelial cells of 
kidney grafts with or without CTD [90]. Other investi- 
gators, however, observed significantly more anti-donor 
reactivity against both HLA class I and I1 in sera of pa- 
tients with biopsy-proven CTD in kidneys (94.4 YO) 
than in sera of patients with a normal functioning graft 
(12.8%) [144]. In 70% of the liver allografts with CTD, 
patients had non-HLA anti-smooth muscle and anti-nu- 
cleus antibodies, which were not present in patients with 
a healthy liver transplant [77]. 

Experimentally, Paul et al demonstrated IgG anti- 
bodies against the glomerular and tubular basement 
membrane, the mesangial cell, and endothelial cell anti- 
gens in sera of rats with a kidney allograft with CTD, 
whereas such antibodies were not found in sera from an- 
imals that had received a syngeneic graft [85, 1511. In 
other experimental models of CTD, the presence of an- 
tibodies was noted in areas with intimal hyperplasia 
[64,78]. 

Non-alloantigen associated factors 

In the late 1980-ies, attention was redrawn to the fact 
that in the pre-immunosuppression era even human kid- 
ney transplants between identical twins developed late 
morphological changes. Two-thirds of these kidney iso- 
grafts developed glomerular lesions between 2 months 
and 16 years post-transplantation, which were classified 
as a recurrence of the original disease, glomerulonephri- 
tis [69]. Two of these grafts with glomerular lesions de- 
veloped in a later stage additional vascular lesions. It 
was also suggested that such changes observed in human 
renal isografts might have been a consequence of the 
transplantation injury per se [42]. Nowadays, surgical in- 
jury and other, non-alloimmune specific factors related 
to the donor and the graft have been associated to the 
development of CTD [54, 104, 2201. These risk factors 
include: ischemia, brain death, viral infections, hyperlip- 
idemia, hypertension, age, gender, race, and the amount 
of functional tissue. 

In clinical transplantation it is still unclear if ischemia 
participates in the development of CTD. While some 
studies reported that prolonged cold ischemia reduces 
graft survival [38, 67, 2181, others found no correlation 
[153, 1551. For instance, the UNOS registry showed 
that preservation for > 24 hours significantly impaired 
late kidney graft survival rates compared to cold is- 
chemic times between 0-24 h [67]; In cardiac trans- 
plants, a prolonged ischemic time was a risk factor for 
transplant arteriosclerosis [ 131. Experimental transplant 
studies have demonstrated that ischemia per se can 
cause CTD-like lesions in the absence of allogenicity 
[225]. We [104], and others [220] have demonstrated 
that rat kidney isografts develop the same functional 
and morphological changes as allografts, including vas- 
culopathy, albeit over a much longer time interval. 
These changes appeared to be triggered mainly by is- 
chemia. Similarly, on the long-term, syngeneic aorta 
and heart transplants develop intimal hyperplasia, in 
which the degree of intimal hyperplasia correlates with 
the duration of the ischemia period [178,227]. Nonethe- 
less, it is much less clear whether the length of the is- 
chemic period plays a role in the onset of CTD in allo- 
grafted organs. While Hayry’s group showed that in re- 
nal allografts a cold ischemic time of 60 min led to in- 
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creased intimal proliferation and glomerulosclerosis, 
compared to kidneys subjected to 30 min cold ischemia 
[236], in heart and aortic allografts the duration of the 
cold ischemic period did not have an influence on the 
degree of CTD [8, 101,2271. 

It has also been suggested that in allografts the effect 
of ischemia on CTD is indirect by predisposing for acute 
rejection. Organ grafts with prolonged cold ischemia or 
with delayed graft function experience more often an 
early acute rejection episode than grafts that functioned 
immediately [72,73,145,188,218]. We showed that, fol- 
lowing 24 h of cold ischemia, increased numbers of 
CD4+ cells and macrophages infiltrated the kidney 
grafts, compared to non-ischemic controls. Importantly, 
ischemic grafts still showed significantly increased num- 
bers at one year post-transplant. Histologically, these 
grafts showed more glomerulopathy and intimal hyper- 
plasia than non-ischemic controls [104]. These data pre- 
sume a direct effect of ischemia on long-term outcome. 

The striking divergence in clinical long-term results 
between kidney grafts from cadavers and those from liv- 
ing-related and unrelated donors [212], has drawn atten- 
tion to the health of an organ before procurement. The 
hypothesis has been put forward that brain death acti- 
vates surface molecules on peripheral organs via cyto- 
kines. In brain death donors, increased serum cytokine 
levels are found before organ procurement [161]. In ex- 
perimental models of brain death, peripheral organs 
show increased endothelial cell activation [87,208] and 
a more accelerated tempo of acute rejection in organs 
from brain dead animals is observed [160,229]. The rel- 
evance for CTD still has to be proved. 

While infection with cytomegalovirus (CMV) has 
shown to be related to CTD in cardiac-, liver-, and lung 
transplantation [71, 105, 108, 128, 1431, its association 
with CTD in kidney transplants is not yet clear. A multi- 
variate analysis on risk factors for CTD performed on 
675 renal allograft recipients showed no difference in 
the incidence of CMV infection in patients who did or 
did not loose their grafts to CTD [122]. Experimentally, 
CMV infection has been identified as promotor of 
CTD in aorta, kidney and heart transplants [110, 111, 
2351. CMV infection directly affects intercellular adhe- 
sion molecule-1 (ICAM-1) expression on endothelial 
cells, [159, 2341 and induction of MHC class I1 antigens 
is observed, together with a prolonged and increased 
acute cellular infiltration of T cells and macrophages 
[109]. 

Hyperlipidemia is a controversial risk factor for al- 
lograft arteriosclerosis [18, 52, 1801. The relevance of 
hyperlipidemia in animal transplant arteriosclerosis 
models has also been a matter of controversy [3, 7, 48, 
56,133,2111. 

Systemic hypertension in clinical kidney and heart 
transplants is associated with CTD [30, 148, 157, 1621. 
In heart transplant recipients, hypertension was associ- 

ated with an earlier onset of CTD [162]. In renal al- 
lograft recipients, hypertension is a common event 
(75 %), although its role as a causative factor or a conse- 
quence of renal dysfunction is difficult to define since a 
vicious circle is created where the worsening of one pa- 
rameter leads to the worsening of the other [163]. Ex- 
perimental studies showed that systemic hypertension 
accelerates CTD in kidney allografts [106], whereas an- 
tihypertensive drugs inhibited the progression of chron- 
ic allograft dysfunction [22]. Similarly, in rat aortic 
transplants, hypertension was associated with a signifi- 
cant increase of intimal thickness, whereas ACE-inhibi- 
tion was able to decrease systolic blood pressure by 
30 YO, and concomitantly reduce intimal lesions by 40 YO 
[134]. 

Donor age is a controversial risk factor. Some investi- 
gators have found that grafts from donors over 60 years 
of age are associated with poorer survival rates [33,79, 
1231. Cardiac transplants from an older aged donor had 
an earlier onset of CTD [23,40]. 

In male recipients, solid organ grafts appeared to be 
more vulnerable for the development of CTD. In cardi- 
ac allografts, the onset of arteriosclerosis was earlier in 
males than in females [40] and the prevalence of CTD 
was reported to be higher in male- than in female recip- 
ients: 30% versus 50% free of coronary artery disease 
at 5 years ( P  = 0.01) [129]. The UNOS Transplant Reg- 
istry reported a similar observation for kidney grafts 
[67]. Experimental studies have corroborated these ob- 
servations: In rat syngeneic aorta transplants, female 
gender protects against myointimal hyperplasia [59]. 
This gender effect could reflect oestrogen. Oestrogen 
protects against cardiovascular disease, and it has been 
demonstrated that oestradiol effectively inhibits trans- 
plant arteriosclerosis in experimental models [32, 116, 
1751. 

Long-term survival of cadaveric renal transplants ap- 
peared to be related to race: Five-year graft survival 
rates were 66 YO for Asians, 61 % for Caucasians and 
Hispanics, and 47 YO for Black recipients [loo]. Black re- 
cipients of heart transplants developed CTD earlier 
than non-blacks [40]. The absence of the Duffy antigen 
Receptor for Chemokines on erythrocytes in African 
Americans seems an important risk factor for the devel- 
opment of CTD [44]. 

A risk factor reserved to the kidney is the contribu- 
tion of reduced numbers of nephrons to the progression 
of CTD. In non-transplant models in the rat, it is well es- 
tablished that kidneys with significantly reduced num- 
bers of nephrons, such as in the ‘remnant kidney model’, 
develop glomerulosclerosis, tubular atrophy, and inter- 
stitial fibrosis in response to an increased workload of 
the remaining nephrons, i. e. hyperfiltration [142, 1861. 
In a chronic kidney allograft model, Heemann et a1 
demonstrated that reduction of renal mass led to earlier 
onset of CTD and shortened survival. Moreover, iso- 
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grafts and non-transplanted, ablated kidneys having 
only 1/6 of total mass experienced proteinuria in the 
same tempo as allografts, whereas 2/6 or 3/6 nephrec- 
tomized native and isografted kidneys had negligible 
damage [83]. Thus, the reduction of functioning renal 
mass accelerated the changes characteristic for CTD, 
and after a substancial reduction, hyperfiltration plays 
an overriding role in further deterioration [117]. None- 
theless, in clinical kidney transplantantion, the signifi- 
cance of a mismatch between donor nephron supply 
and functional metabolic demand of the recipient in 
the development of CTD is unclear. Poorer survival of 
grafts from very young, elderly, black, or female donors, 
compared to grafts from donors aged 15-55, non-black 
or from male donors has been ascribed to hyperfiltra- 
tion damage [25]. None of these CTD-prone conditions, 
however, are uniformly found. Miles et a1 did not find 
that the donor kidney size was different in patients who 
lost their graft due to CTD compared with the kidney 
size of patients with stable function [135]. Others did 
not see differences in CTD between pediatric kidney re- 
cipients and adult-kidney recipients either [5]. Paired 
pediatric kidney transplantation did not improve renal 
function compared to small single pediatric kidneys 
[164]. 

Pathophysiology of chronic transplant dysfunction 

As already outlined, CTD is characterized by morpho- 
logical evidence of destruction of the transplanted organ 
[191]. The common denominator of all parenchymal or- 
gans is the development of intimal hyperplasia. Wheth- 
er the parenchymal changes with fibrosis occurs second- 
arily to gradual arterial insufficiency and ischemia, or if 
they develop from ungoing subclinical host immunolog- 
ical attacks or other factors, remains undefined. 

Immunohistochemistry of allografts with CTD has 
shown that T cells and macrophages are the predomi- 
nant graft-invading cell types, with an excess of CD4+ 
over CD8’ T cells [4, 47, 50, 82, 104, 176, 191, 1981. In- 
creased expression of adhesion molecules (ICAM-1, 
VCAM-1) [77, 1141, and MHC antigens [81, 1141 are 
seen in allografts with CTD. Also, complement and im- 
munoglobulin deposits are seen in areas with intimal hy- 
perplasia [77, 78, 90, 1141. Little consistent information 
is available on the expression of growth-regulating fac- 
tors and their receptors in organ transplants with CTD. 
An increased TGF-P expression, however, is frequently 
found [152,185,206]. 

The histologic lesions, including intimal hyperplasia, 
the infiltrating cells, upregulated adhesion molecules, 
and cytokines in organ transplants with CTD do not 
necessarily reflect an alloimmune-mediated response. 
As already mentioned, syngeneic transplants, ischemia- 
or mechanically-injured organs also show cell infiltra- 

tion, upregulation of cytokines and develop CTD-like 
lesions [104, 220, 2271. Notwithstanding, the develop- 
ment of the lesions occurs much more rapidly in allo- 
grafts, suggesting that alloimmune responses play a 
role [104]. The most consistent clinical risk factor ‘acute 
rejection’ also indirectly indicates that an alloimmune 
response is involved in CTD and suggests that CTD is, 
for the main part, the result of insufficient immunosup- 
pression. More evidence to support this hypothesis 
comes from experiments that have demonstrated that 
pretransplant immunizations with donor splenocytes ac- 
celerate CTD [41], whereas manipulations aimed at in- 
duction of tolerance delay the process [36, 1871. In the 
following subparagraphs, we suggest the route through 
which a graft may develop CTD. 

Initial response-to-injury 

Endothelial cell activation 

The specific adhesion of cells to other cells or to particu- 
lar tissues is a basic function of cell migration and recog- 
nition. Under normal conditions, contact between leu- 
kocytes and vascular endothelium is random if both 
cell types are inactive and at rest, the cells touch vessel 
walls indiscriminately. In organ transplantation, the en- 
dothelial cells are activated by ischemia, surgical manip- 
ulation, and reperfusion injury, events inherent to the 
procedure. After ischemia and reperfusion, endothelial 
cells produce oxygen free radicals predominantly via 
the xanthine-oxidase pathway, which in vitro activate 
and damage the cells [21]. Upon activation, the endo- 
thelial cells retract and release increased amounts of 
the cytokines IL-1, IL-6, IFN-y, TNF-a, the chemokines 
IL-8, macrophage chemoattractant protein (MCP)-1. 
macrophage inflammatory protein (M1P)-la and MIP- 
lp, colony stimulating factors, and multiple growth fac- 
tors such as, platelet derived growth factors (PDGF), in- 
sulin growth factor-1(IGF-1), transforming growth fac- 
tor (TGF)-P, and pro-thrombotic molecules (tissue fac- 
tor, plasminogen activator inhibitor). This secretion en- 
hances migration of neutrophils, monocytes/macro- 
phages and T lymphocytes to the site of injury [27]. 
The release of cytokines also leads to upregulation of 
adhesion molecules on the vascular endothelium [27, 
621. The proinflammatory cytokines IL-1 and TNFa in- 
duce the expression of the adhesion molecules P- and 
E-selectin on the endothelium [167, 2301, by which cir- 
culating leucocytes begin to adhere via binding to their 
surface carbohydrates [112, 127, 1971. Leucocytes are 
then triggered by the chemokines released by the endo- 
thelium, which causes upregulation of the affinity of 
the P,-integrin receptors LFA-1 and MAC-1 on their 
surface. This enables a permanent adherence of leuco- 
cytes to the endothelial adhesion molecules ICAM-1 
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and VCAM-1 [118], the expression of which is induced 
by the released cytokines IL-1P, IFNy, TNFa [26,156]. 
Activated complement also plays a role in the adhesion 
of neutrophils and monocytes to endothelium [16]. Fi- 
nally, extravasation of leucocytes occurs to the extracel- 
lular matrix and graft tissue, presumably facilitated by 
activated complement [209, 2291 and oxygen-free radi- 
cals that increase the permeability between endothelial 
cells [94]. The first cells that infiltrate the graft are neu- 
trophils. They further aggravate the inflammatory re- 
sponse through release of oxygen-free radicals and in- 
flammatory mediators, including platelet activating- 
like factors and leukotrienes. Direct evidence that oxy- 
gen free radicals, adhesion molecules, and neutrophils 
play a role in the pathogenesis of CTD is shown by inter- 
ference studies [29, 107, 2101. One recent study, for in- 
stance, revealed that carotid allografts from donor mice 
deficient in ICAM-1 had a 52 % reduction of intimal hy- 
perplasia compared to controls [183]. 

In addition to the increased expression of adhesion 
molecules on the endothelium, after reperfusion of a 
transplanted organ, a dramatic upregulaton of MHC 
class I and I1 antigens on the endothelium occurs [37, 
931, which appears to be induced by release of cytokines 
IFN-y, TNF-a and TNF-/3 [74,181]. Alterations in tissue 
density of MHC class I1 antigens are likely to influence 
the alloimmune response against the tissue [76]. Paren- 
chymal cells are also activated after ischemia. In non- 
transplanted kidneys, MHC class I and I1 antigens are 
upregulated on the tubular epithelium [93,189]. Epithe- 
lial cells in lung autotransplants showed a mild expres- 
sion of MHC class I1 after cold ischemia [181]. 

CD4' T-lymphocytes infiltrate ischemic allografts, 
isografts and non-transplanted organs [ l l ,  93, 104, 
2201. In addition, T cell associated cytokines, such as 
IFN-y and TNF-a are produced [93] and blockade of 
the C28-B7 costimulatory pathway decreased early in- 
flux of T cells and expression of T cell associated cyto- 
kines [207]. We showed that cyclosporine was able to 
overcome the deleterious effects of ischemia in synge- 
neic transplants with a concomitant decrease in infil- 
trating CD4' T-cells [104]. The role of CD4' T-lympho- 
cytes in ischemia has been elegantly demonstrated. In 
a liver ischemia model, CD4' T cell deficient mice had 
significantly less hepatic damage [236]. This response 
to ischemic injury is initially independent from alloge- 
nicity: Heemann et al have demonstrated that the pat- 
tern of cellular infiltration and cytokine expression in 
both syngeneic and allogeneic cardiac grafts was similar 
if not identical within the first 48-72 h after engraft- 
ment [84]. Thus, as result of the transplant procedure, 
a complete network of cytokines is already activated, 
even before allogeneic reactions develop. Some pre- 
transplant conditions of both donor and recipient, as 
discussed in the etiology section, appear to aggravate 
this initial injury. 

Alloimmune response 

The recognition of histoincompatible MHC alloanti- 
gens will provoke an alloimmune response. Class I anti- 
gens, constitutively expressed on nucleated cells, inter- 
act with CD8' cells, and class I1 antigens, constitutively 
expressed on lymphoid cells and inducible on endothe- 
lial cells, macrophages and fibroblasts are recognised 
by CD4' cells. Intact foreign MHC molecules on donor 
cells may be directly recognised by T cells, either in 
combination with an allopeptide or a selfpeptide, which 
results in an exceptionally strong immune response. 
Frequencies of T cell precursors that respond to alloan- 
tigens are 10-100 fold higher than for other nominal an- 
tigens [182]. In draining lymph nodes and spleen, allore- 
active T-cells recognise donor MHC indirectly, present- 
ed by self-MHC molecules on recipient antigen present- 
ing cells [190]. 

In allorecognition, the MHC antigen is bound to the 
T cell receptor. For activation of T-cells, costimulatory 
pathways as the CD28 receptor on T cells with its ligand 
B7, and CD40 with its T-cell based ligand, CD40L are 
mandatory for the promotion of T-cell effector function 
and proliferation. The adhesion molecules ICAM-1, 
VCAM-1 and LFA-3 have also been shown to co-stimu- 
late T cell activation. Once the CD4' T cell is activated, 
a cascade of events amplifies the alloimmune response: 
Secreted IL-2 leads to clonal proliferation of alloreac- 
tive cells and stimulates CD8' T cells to develop into 
mature cytotoxic effector cells. Release of cytokines 
such as IFNy and TNFa may further increase the ex- 
pression of adhesion molecules, and MHC antigens on 
the endothelium, smooth muscle cells and parenchymal 
cells. IFNy is also responsible for the activation of mac- 
rophages, which together with CD8' cells are cytotoxic 
to the graft cells, leading to acute graft failure, when no 
immunosuppressive intervention is given to prevent or 
to overcome this CD4' T-cell mediated alloimmune re- 
sponse. 

Despite inhibition of T cell activation by cyclospo- 
rine, FK 506, or anti-112 monoclonal antibodies, these 
therapies do not prevent the development of CTD in 
clinical transplantation, probably due to too low doses 
of these drugs. In experimental models, continuously 
high doses of cyclosporin A or blockade of CD28/B7 
and CD40KD40L costimulatory pathways decrease 
early infiltration and almost completely inhibit intimal 
hyperplasia in murine aortic and cardiac allografts [65, 
171,199,2051. Evidence that the CD4' Tcell is involved 
in the genesis of intimal hyperplasia is elegantly exem- 
plified by Shi et al: Carotid allografts in mice that were 
genetically deficient for the CD4 + T cell developed in- 
timal thickening to only 40% of that seen in controls 
[184]. 
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Anti-donor specific antibodies 

The cytokines IL-4, IL-6, and IL-10 released by activat- 
ed CD4’ cells are growth- and differentiation factors 
for B cells. Activation of B cells may result in matura- 
tion into plasma cells with allospecific antibody produc- 
tion. Since immunoglobulin, complement, and antigen- 
antibody complexes have been found in areas of intimal 
hyperplasia [15, 170, 2161, humoral activity has long 
been thought to be primarily responsible for CTD. A re- 
cent finding of upregulated immunoglobulin J chain in 
arteriosclerotic lesions suggests the presence of IgM- or 
IgA-producing plasma cells in such grafts [31]. Donor- 
specific antibodies are found against HLA antigens, en- 
dothelial cells, mesangial cells, glomerular and tubular 
basement membrane, smooth muscle cells and the nu- 
cleus [99,201]. 

The precise significance of antibody deposition that 
mitigates over time, as shown in many animal models 
[64, 77, 781, remains to be established. In experiments 
with SCID mice, which lack T and B cell mediated cellu- 
lar responses, passive transfer of anti-donor specific an- 
tibody was sufficient to produce graft arteriosclerosis 
with a perivascular mononuclear cell infiltrate in long- 
standing cardiac allografts [174]. While some investiga- 
tors found that the degree of intimal hyperplasia aortic 
and cardiac allografts in mice recipients with a defect 
of humoral antibody production was comparable to 
that seen in immunocompetent mice [34], Russell et a1 
showed that cardiac allografts in B cell deficient mice 
did not develop fibroproliferative arteritis [173]. These 
investigators also demonstrated that in two donor-recip- 
ient mice combinations in which anti-donor antibodies 
are generally undetectable, intimal fibrosis was uncom- 
mon, whilst these recipients became capable of produc- 
ing fibrous lesions in allografted hearts when given 
anti-donor, class I antibody [173]. Similarly to Russell’s 
report, Shi et al showed that CD4’ cells, humoral anti- 
bodies and macrophages together were necessary for in- 
timal hyperplasia in a mouse carotid allograft model. 
Arteries allografted into mice, deficient in both T cell 
receptors and humoral antibody, showed almost no neo- 
intimal proliferation, whereas those grafted into mice, 
deficient only in humoral antibody, developed minimal 
intimal hyperplasia [184]. 

The mechanism by which antibodies contribute to 
CTD is rather speculative. One recent study has shown 
that anti-HLA antibodies, when attached to their HLA 
class I antigen on cultured endothelial cells, induce in- 
creased gene expression of bFGF receptor and ligand 
binding, and a 4-6 fold cell proliferation, as it does for 
smooth muscle cells [go]. Marsh et a1 hypothetized that 
IgG induces the accumulation, differentiation and sub- 
sequent cytokine production by intimal macrophages 
via crosslinking of FcyR thereby preventing apoptosis 
of monocytes. FcyR crosslinking induces the production 

of MCP-1 and IL-8, which can promote both macroph- 
age and lymphocyte accumulation [119,120]. 

Chronic response-to-injury 

It is not clear why this response to the initial injury does 
not disappear over time, as seen in normal healing pro- 
cesses. In allografts, it is conceivable that the alloanti- 
gens are responsible for an ongoing cellular and/or hu- 
moral response. T cells decline to relatively low num- 
bers as the process enters its chronic phase, they and 
their products may continue to provide a persisting low 
grade immunological response and ongoing subclinical 
injury to the graft’s endothelium and parenchyma over 
time [221]. Since there is a continuous supply of donor 
allopeptides processed and presented by host profes- 
sional APCs (dendritic cells, macrophages, B cells), 
self-MHC restricted T cells may perpetuate a chronic al- 
loimmune response. Suciu-Foca and collaborators dem- 
onstrated a persistent allopeptide reactivity in patients 
developing CTD [35, 2011. The continued alloimmune 
recognition in long term graft recipients is evidenced 
by the presence of graft reactive cytotoxic T splenocytes 
in long term recipients of cardiac allografts. Anti-donor 
specific antibodies may also maintain a chronic alloim- 
munologic injury: Donor reactive alloantibodies in the 
recipient’s circulation have been demonstrated long- 
term after engraftment [149,228]. 

The significance of donor alloantigens on ‘non-pro- 
fessional’ antigen presenting cells, like the endothelial 
cells for T cell recognition is unclear. An indication that 
donor MHC class I and I1 antigens play a role in the 
chronic phase has recently been obtained. Carotid allo- 
grafts from donor mice deficient in MHC I1 molecules 
showed a reduction of intimal hyperplasia formation of 
33 %, primarily due to a reduction in smooth muscle 
cell accumulation [183]. The absence of such a continu- 
ous alloantigeneic stimulus in syngeneic transplants 
might explain the much more rapid development of 
CTD in allografts. 

Thus, the strength of the initial trigger, the length of 
the trigger, and the presence of additional factors, and 
under which alloantigens, determine the onset and the 
pace of progress of irreversible chronic lesions 

Macrophages 

Activated T cells produce, amongst others, the cytokine 
RANTES (Regulated upon activation, normal T cell ex- 
pressed and secreted), a macrophage chemoattractant 
[137]. Other cytokines, such as IL-8, MCP-1 and osteo- 
pontin released by interstitial cells and smooth muscle 
cells are chemotactic for macrophages as well. Upregu- 
lated adhesion molecules contribute to their localisation 
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in areas of injury. Macrophages invade the graft and be- 
come activated by IFN-y. The continuous presence, the 
activated state, and the upregulation of macrophage as- 
sociated cytokines in long-term allografts with CTD 
and, in other chronic diseases, with fibrotic features, 
suggest a pivotal role for the macrophages [12,172,198]. 

The importance of macrophages was demonstrated 
by the prevention of CTD by treatment with gammalac- 
tone, a synthetic inhibitor of macrophage activity, in a 
rat renal allograft model [12], and by the observation 
that carotid allografts in mice deficient in macrophages, 
developed only slight intimal hyperplasia [184]. Activat- 
ed macrophages produce a number of cytokines includ- 
ing TNF-a, IL-lP, PDGF, bFGF, and TGF-P. This per- 
petuates and amplifies the fibrogenic signals. 

Cytokines and growth factors 

Cytokines and growth factors play an important role in 
the chronic phase. They have profound effects on cells 
of the graft and on the immune system. Cytokines and 
growth factors are pleiotropic, with biological effects 
on many cell subpopulations, are, furthermore, regulat- 
ed via autocrine, paracrine or systemic pathways, and 
there is a great deal of redundancy in the cytokine net- 
works. The advent of the transgenic and knock-out tech- 
nology has allowed dissecting of the molecular pathways 
causally involved in allograft arteriosclerosis [200]. No 
cytokine has been unequivocally identified as specific 
to alloimmune response. 

The redundancy of the cytokine system has been 
stressed by gene knockout technology: IL-4 is not neces- 
sary for the development of graft coronary arterioscle- 
rosis, nor does its absence appear to augment the devel- 
opment of vascular lesions. In addition, TNFa-R1 defi- 
ciency in either donor heart or recipient does not abro- 
gate the development of graft arteriosclerosis [140]. 
The increased expression of TGF-PI has been linked to 
transplant arteriosclerosis both by clinical and experi- 
mental studies, and transfection of TGF-/3 to the kidney 
led to increased accumulation of the extracellular ma- 
trix and glomerulosclerosis [95]. Interestingly, cardiac 
allografts in TGFP, deficient recipients developed sig- 
nificantly more intimal hyperplasia than controls [102]. 

In 1989, IFN-y has already been postulated by Libby 
et a1 to play a central role in CTD because of its effects 
on T cells and macrophages, as outlined above [113]. 
The availabilty of IFN-y deficient mice permitted this 
group to test critically the contribution of IFN-y to the 
development of CTD [138, 1391. Cardiac allografts in 
IFN-y deficient mice developed only minimal or no 
transplant arteriosclerosis as compared to controls. In 
addition, similar results on graft arteriosclerosis were 
found after the administration of IFN-y neutralizing an- 
tibody in normal rats. 

Chronic remodelling 

The process eventually becomes irreversible, but the pe- 
riod in which this occurs is variable: Retransplantation 
of allogeneic kidney grafts back into the original donor 
strain prevents CTD, when the retransplant is perform- 
ed within 12 weeks, but not after this period [219]. In 
aorta- and cardiac allografts Mennander et a1 and Izu- 
tani et a1 reported a much shorter time interval after 
which intimal hyperplasia continues, when the graft 
was transplanted back into the donor strain [97,132]. 

Smooth muscle cells 

Once the endothelial cells are injured, the secreted cyto- 
kines, i.e. IL-1, PDGF, IGF-1, TGF-P and bFGF, and 
metabolic products such as prostaglandin, nitric oxide, 
and oxidized low-density lipoproteins induce smooth 
muscle cell (SMC) proliferation, as reviewed by Ross 
[169]. Activated T cells and macrophages, often in close 
anatomical association with the replicating SMC, pro- 
duce also a whole wealth of these factors. Platelets de- 
posited along the injured vascular wall contribute by se- 
creting PDGF, EGF, TGF-/3 and tromboxane-A,. When 
SMC migrate to the intima, they transform their pheno- 
type from ‘contractile’ to ‘secretory’ and the cells be- 
come capable of replication [169, 2151. In addition, 
SMC can produce many of these growth factors and 
may generate similar autocrine or paracrine loops of 
stimulation for cell replication, as seen in ‘classical’ ath- 
erosclerosis [169]. These factors also may modulate ex- 
tracellular matrix synthesis, angiogenesis, and leucocyt 
adhesion. Moreover, activated SMC can express MHC 
class I and I1 and may act as antigen presenting cells. 
Numerous drugs inhibit SMC proliferation, and some, 
such as angiopeptin, have been shown to be of benefit 
in organ allografts [55,130,131]. 

Extracellular matrix 

As the endothelium is damaged, the underlying extra- 
cellular matrix can become activated and act as costimu- 
lator for leucocytes to facilitate recruitment and ex- 
travasation. For instance, exposed collagens and fi- 
bronectin may act as costimulators for activated CD4’ 
T-cells [43, 1261. After activation by antigens, T cells 
synthesize heparanase, which facilitates migration 
through tissue [61]. The cleavage of heparan sulphate 
by this enzyme also activates and releases fibrogenic 
growth factors, such as basic fibroblast growth factor in 
the extracellular matrix [66]. TGF-P, produced by the 
activated T cells and macrophages, stimulates the pro- 
duction of ECM molecules and inhibits the matrix de- 
grading enzymes. The thickening of basal membranes, 
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such as that of the pericapillary and glomerular endo- 
thelium in the transplanted kidney, interstitial fibrosis 
and sclerosis, and in intima hyperplasia smooth muscle 
cell proliferation is accompanied by excessive synthesis 
of connective tissue proteins. 

Conclusion 

CTD is currently the main cause of late graft failure. It is 
usually associated with previous acute rejection epi- 

sodes, although several non-alloantigen-associated fac- 
tors, like ischemia, hyperlipedimia, and hypertension 
may enhance the process. We propose that the process 
leading to CTD in allografts begins at the time of graft 
retrieval, is enhanced by ischemic injury, which pro- 
vokes an alloimmune response to the endothelial cells, 
the extracellular matrix and parenchyma. An ongoing 
alloimmune response, in which several non-alloimmune 
factors may interfere, eventually leads to irreversible le- 
sions of the graft. 
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