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Abstract The short-chain fatty acid 
n-butyrate has recently been shown 
in vitro to specifically downregulate 
Tcell reactivity to nominal antigen 
or to alloantigen, which possibly re- 
sults from inhibition of cell cycle 
progression in early GI phase during 
antigen contact. In the present study, 
we investigated the effect of cy- 
closporin A (CyA) on the modula- 
tion of alloreactivity in human 
mixed lymphocyte culture (MLC) 
by n-butyrate. Whereas in primary 
culture, CyA additively enhanced 
inhibition of DNA synthesis by n- 
butyrate, the effect of this agent on 
secondary Tcell reactivity was 
clearly antagonized by CyA. Thus, 

specific downregulation of prolifer- 
ative responsiveness to restimula- 
tion with antigen from the original 
donor, observed in cultures pre- 
treated with n-butyrate alone, was at 
least partially prevented by the ad- 
dition of CyA to the primary cul- 
ture. Our in vitro finding indicates 
that specific downregulation of 
Tcell alloreactivity by n-butyrate 
might depend on a calcium-depen- 
dent Tcell receptor (TCR)-medi- 
ated signal sensitive to the immuno- 
suppressive action of CyA. 
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Introduction 

n-Butyrate has been described as having multiple bio- 
logical effects on various types of mammalian cells, 
such as modulation of gene expression, inhibition of 
proliferation, and induction of cellular differentiation 
[l]. This short-chain fatty acid, as well as related organic 
compounds, has also been reported to block prolifera- 
tive responses of murine or human lymphocytes to mi- 
togens [24] ,  and to suppress the proliferation as well 
as generation of cytotoxic Tcells in human primary and 
secondary MLC [5] .  Furthermore, supplementation of 
drinking water with n-butyric acid resulted in modest 
but significant prolongation of skin allograft survival in 
mice [5].  Recently, Gilbert and Weigle [6] demonstrated 
in a human HGG-specific Tcell clone that antigen con- 
tact in the presence of n-butyrate results in a state of an- 
tigen-specific unresponsiveness. Blockade of cell cycle 
progression in G,, phase during antigen contact was 

proposed to be the mechanism underlying anergy induc- 
tion in this model [6, 71. We could further demonstrate 
that beyond inhibiting T cell proliferation in primary 
MLC, pretreatment of primary cultures with n-butyrate 
also resulted in a profound state of alloantigen-specific 
hyporesponsiveness as assessed in restimulation culture, 
suggesting a possible application of this agent for toler- 
ance induction to allografts [8]. 

A series of data indicates that the immunosuppres- 
sive drug CyA might alter distinct forms of immunolog- 
ical tolerance [9]. Thus, CyA has been shown to prevent 
the induction of T cell anergy in vitro [lo-121 as well as 
in vivo [13, 141. Furthermore, this agent might interfere 
with the process of clonal deletion during thymic matu- 
ration [15-171. On the other hand, however, CyA is 
well known to induce tolerance to allografts particularly 
in rodents [18]. In addition, this immunosuppressant has 
recently been shown to enhance peripheral T cell dele- 
tion [13, 141 and to induce alloantigen-specific anergy 
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in vitro when combined with a monoclonal antibody 
against B7 [19]. 

The present study was designed to examine the im- 
pact of CyA on the modulation of alloreactivity by n-bu- 
tyrate. Our observation that CyA enhances the inhibi- 
tory effect of n-butyrate on DNA synthesis in primary 
MLC, but antagonizes specific downregulation of T cell 
reactivity as assessed in secondary culture, suggests 
that the induction of specific hyporesponsiveness by 
n-butyrate critically depends on a calcium-dependent 
TCR-triggered signal that is sensitive to the immuno- 
suppressive action of CyA. 

Materials and methods 
Primary MLC 

Human peripheral blood mononuclear cells (PBMC) were isolated 
from heparinized peripheral blood by density gradient centrifuga- 
tion on Ficoll-Hypaque (Pharmacia, Uppsala, Sweden) and resus- 
pended in RPMI 1640 supplemented with 2 mM L-glutamine, anti- 
biotics (100 U/ml penicillin and 100 yg/ml streptomycin), and 10 % 
fetal calf serum that had been inactivated at 56°C for 30 min. For 
the primary culture, 4 x lo4 PBMC from healthy volunteers were 
mixed with 4 x lo4 irradiated (6000 rad) PBMC from unrelated do- 
nors in medium with or without n-butyrate (Sigma Chemical Co., 
St.Louis, Mo.) or CyA (a gift from Dr. Wiskott, Sandoz Ltd.). The 
cultures were set up in triplicate at 37°C in a 5 % CO, atmosphere 
in round-bottomed 96-well plates. Proliferation was assessed on 
day 7 of culture. For measurement of DNA synthesis, the cultures 
were pulsed with 1 yCi [3H]thymidine 16 h prior to harvesting. In- 
corporated radioactivity was measured by liquid scintillation spec- 
trometry. Data are reported as mean cpm * SD of triplicate cul- 
tures. 

Secondary MLC 

For secondary MLC, 1 x lo6 PBMC were cocultured with an equal 
number of irradiated allogeneic PBMC in 75 x 12 mm tissue cul- 
ture tubes in the presence or absence of the above-mentioned 
agents using culture conditions as described for primary MLC. Af- 
ter 7 days of culture, the cells were washed and incubated in fresh 
medium for another 7 days. Precultured cells (3 x lo3) were then re- 
challenged with an equal number of freshly isolated irradiated au- 
tologous cells, of irradiated cells from the original donor or from 
unrelated third party donors, or with phytohemagglutinin (PHA) 
(1 yg/ml; Murex Diagnostics Limited, Dartford, UK). Secondary 
cultures were carried out in round-bottomed 96-well plates, and 
DNA synthesis was assessed on four consecutive days (days 3-6). 

Flow Cytometry 

For the determination of cell viability, cells were harvested at the 
day of restimulation, pelleted, and resuspended in PBS containing 
proidium iodide (PI) (0.1 pg/ml). After 15 min incubation at room 
temperature, the percentage of viable cells was assessed according 
to scatter characteristics and exclusion of PI using a FACScan 
(Becton Dickinson, Sunnyvale, Ca). 
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Fig.1 Effect of CyA on inhibition of T cell alloreactivity in pri- 
mary MLC by n-butyrate. DNA synthesis was assessed on day 7 
of culture. Mean cpm ? SD of triplicate cultures are depicted. The 
experiment shown is a representative of two experiments each test- 
ing two different donor combinations 

Results 

Effect of CyA on inhibition of primary alloresponses by 
n-butyrate 

In order to examine the effect of CyA on n-butyrate- 
mediated suppression of DNA synthesis in primary 
MLC, freshly isolated PBMC were mixed with irradi- 
ated allogeneic PBMC in medium containing n-butyrate 
at increasing concentrations in the presence or absence 
of CyA at various concentrations. As shown in Fig.l, 
the n-butyrate dose dependently inhibited proliferation, 
with complete inhibition at 1 mM. CyA additively sup- 
pressed proliferative alloresponsiveness in n-butyrate- 
treated cultures. 

Effect of CyA on specific downregulation of 
proliferative T cell alloreactivity by n-butyrate 

To investigate the impact of CyA on the induction of al- 
loantigen-specific hyporesponsiveness by n-butyrate, 
primary cultures were carried out in medium containing 
this agent at 1 mM in the presence or absence of CyA. 
CyA was added at 1 pg/ml, a concentration which in all 
experiments blocked primary alloresponses by more 
than 95 % (Table 1). In order to determine proliferative 
T cell responsiveness in restimulation culture, cells from 
primary cultures were washed on day 7 and incubated 
for another week in fresh medium until they were restim- 
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Table 1 Effect of CyA on the induction of alloantigen-specific hy- 
poresponsiveness by n-butyrate. The results obtained in two differ- 
ent donor combinations (A, Bj are depicted. Similar data were ob- 

Additions to Primary Percentage Secondary culture (peak proliferation) 
primary MLC 

tained in another two responder-stimulator combinations. Data are 
reported as mean cpm f SD 

culture (day 7) viability Phytohemag- Autologous Specific antigen Third party 
antigen antigen glutinin 

A 
None 
n-Butyrate 

CyA + n-butyrate 
B 
None 
n-Butyrate 

CyA + n-butyrate 

CYA 

CYA 

69254 f 11 326 
1 100 f 413 
665 f 207 
285 f 147 

43 095 f 8 695 
1975 k 405 
561 f 214 
238 f 39 

46 
42 
45 
44 

42 
48 
51 
51 

3177f1016 
2104f1077 
1016 f 651 
3710f 1729 

1575 f 756 
1597 ? 386 
967 f 706 
2 589 f 1 209 

71 632 f 7035 
10690 f 1330 
17928f 1296 
29 956 f 5 371 

20 858 f 5 194 
12041 f 4262 
23 965 f 4 241 
39585 f 1649 

30712 f 2901 
24 258 f 4 952 
22781 f 10624 
47535 f 7 106 

13673 f 3641 
12987 f 4181 
14204 f 478 
10910 f 5215 

51 580 f 3 072 
56412 f 2518 
68481 k 5 844 
52 734 f 3 650 

38 425 f 3 370 
67 952 f 1 150 
51 499 f 655 
51 008 f 7213 

ulated. To exclude non-specific toxic effects of the tested 
agents, the cells were harvested after this culture period 
and cell viability was assessed by PI staining. No signifi- 
cant reduction of cell viability was observed in cultures 
pretreated with n-butyrate, CyA, or with a combination 
of both substances (Table 1). Next, pretreated cells were 
rechallenged with freshly isolated irradiated autologous 
cells, irradiated cells from the original donor, from unre- 
lated third party donors, or with PHA (1 pg/ml). In Ta- 
ble 1, the results obtained in two representative re- 
sponder-stimulator combinations are shown. As previ- 
ously reported [8], pretreatment of primary MLC with 
n-butyrate resulted in a marked reduction of prolifera- 
tive reactivity to alloantigen from the original donor, 
whereas no such effect was observed regarding respon- 
siveness to third party antigen or to mitogenic stimula- 
tion. Compared to cultures pretreated with n-butyrate 
alone, the addition of CyA to n-butyrate-treated primary 
cultures resulted in a marked, approximately three-fold, 
increase of alloresponsiveness to the same donor in sec- 
ondary culture. In cultures pretreated with both CyA 
and n-butyrate, proliferative responses to the specific do- 
nor were clearly delayed (peaking on day 5 or 6) when 
compared to responses observed in control cultures or 
cultures pretreated with n-butyrate alone (peaking on 
day 3 or 4) and, thus, were characteristic of primary type 
alloresponses (not shown). Accordingly, as observed in 
three out of four donor combinations, in cultures pre- 
treated with both CyA and n-butyrate, specific responses 
did not achieve levels observed in primed control cul- 
tures. Furthermore, in three donor combinations, the ad- 
dition of CyA to primary MLC resulted in a significant 
decrease of reactivity to the specific donor, whereas reac- 
tivity to third party antigen or to PHA was not or only 
slightly reduced (see also Table 1). After pretreatment 
with both CyA and n-butyrate, responsiveness to the 
original donor was increased above levels observed in 
cultures pretreated with CyA alone. 

Discussion 

We have previously shown that beyond inhibition of pri- 
mary alloresponses, the short-chain fatty acid n-butyrate 
induces a state of alloantigen-specific hyporesponsive- 
ness, when added during primary contact with alloanti- 
gen [8]. In the present study, we analyzed the effect of 
the immunosuppressant CyA on n-butyrate-mediated 
inhibition of DNA synthesis in primary MLC and, fur- 
ther, on the induction of donor-specific hyporesponsive- 
ness. Here, we describe that this agent enhances sup- 
pression of proliferation in primary MLC, but clearly 
antagonizes specific downregulation of T cell reactivity 
by n-butyrate. The latter finding suggests that specific 
downregulation of T cell alloreactivity might depend 
on an active TCR-triggered intracellular signal that is 
sensitive to the immunosuppressive action of CyA. Our 
finding that in most cases CyA did not restore specific 
T cell reactivity to levels observed in primed control cul- 
tures might be explained by prevention of T cell priming 
to alloantigen in cultures pretreated with both CyA and 
n-butyrate, as supported also by the time kinetics of pro- 
liferative responses to antigen from the original donor, 
which were delayed when compared to the secondary 
type response in untreated cultures. 

CyA has been shown to inhibit a calcium-dependent 
TCR signal transduction pathway by blocking the activ- 
ity of calcineurin, a calcium- and calmodulin-dependent 
protein phosphatase, which is responsible for the de- 
phosphorylation and nuclear translocation of the cyto- 
plasmic subunit of NF-AT (nuclear factor of activated 
T cells). As a consequence, the expression of numerous 
T cell activation genes, including genes encoding cyto- 
kines, is blocked [20]. 

Besides its immunosuppressive properties, CyA has 
been shown to alter distinct forms of immunological tol- 
erance. It has also been reported that CyA prevents the 
induction of anergy in vitro [lo-121 as well as in vivo 
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[13, 141, indicating an important role of TCR-triggered 
calcium-dependent signal transduction in the induction 
of functional T cell unresponsiveness. Recently, CyA 
has been shown to inhibit the induction of binding activ- 
ity to the negative regulatory element A (NRE-A) of 
the IL-2 promotor following anergy induction in a hu- 
man T cell clone [21]. These data are in line with the 
previously suggested model, that the induction of clonal 
anergy might result from the accumulation of a TCR- 
triggered negative regulator of IL-2 gene transcription, 
that is normally diluted out by proliferation [22, 231. In 
addition, CyA has also been reported to interfere with 
other tolerance mechanisms, e. g., the blocking of intra- 
thymic clonal deletion [15-171 or the inhibition of sup- 
pressor cell mechanisms [9]. 

In contrast to its reported prohibitive effects on vari- 
ous tolerance mechanisms, a short course of CyA has 
been reported to induce by itself a state of long-term tol- 
erance to allografts in rats and in other species, which 
was attributed to the action of suppressor cells [la]. Fur- 
thermore, CyA has also been shown to increase periph- 
eral deletion of reactive T cells induced by superanti- 
gens or anti-TCR monoclonal antibody in mice [13, 
141. Recently, Van Goo1 et al. [19] demonstrated that 
CyA synergizes with blockade of costimulation using a 
monoclonal antibody to B 7-1 in the induction of alloan- 
tigen-specific anergy in freshly isolated human T cells as 
assessed at the cytotoxic effector level. These authors 
suggested that, in this model, CyA might block addi- 
tional calcium-dependent costimulatory signals and pos- 
tulated that a calcium-independent limb of the TCR sig- 
naling pathway is required for anergy induction and re- 
mains unaffected by their treatment protocol [19]. 

Pretreatment of primary cultures with CyA alone 
sometimes led to a significant reduction of T cell re- 
sponsiveness to the specific donor in secondary MLC, 
which appeared not to be a result of non-specific toxic- 
ity. This observation might fit in with a previous report 
demonstrating specific downregulation of alloantigen- 
specific T cell reactivity by CyA in murine MLC [24]. 
In addition, in human MLC, alloantigen-activated sup- 
pressor cells have been reported to be more resistant to 
CyA treatment than effector cells [25,26]. Interestingly, 
the combined addition of both CyA and n-butyrate in- 
creased specific reactivity above levels observed in cul- 
tures pretreated with CyA or n-butyrate alone, suggest- 
ing that inversely n-butyrate might interfere with the 
modulation of T cell alloreactivity by CyA. 

In conclusion, the observation that CyA antagonizes 
the induction of alloantigen-specific hyporesponsive- 
ness by n-butyrate indicates that specific downregula- 
tion of T cell alloresponsiveness by n-butyrate critically 
depends on a calcium-dependent TCR-triggered signal 
that is sensitive to the immunosuppressive action of 
CyA. Our finding further supports previous results 
showing that immunosuppression by CyA might para- 
doxically interfere with distinct strategies of tolerance 
induction, which might be of importance in the intro- 
duction of new therapeutic strategies to induce toler- 
ance to allografts. 
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