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Abstract The uptake of hyaluronic 
acid (HA) was used to assess pres- 
ervation damage to sinusoidal en- 
dothelial cells (SEC) during cold 
storage and subsequent normother- 
mic reperfusion of rat livers. After 8, 
16,24, and 48 h storage in Univer- 
sity of Wisconsin (UW) solution, 
livers were gravity-flushed via the 
portal vein with a standard volume 
of cold UW solution containing 
50 pg/l HA. The effluent was col- 
lected for analysis of HA, aspartate 
aminotransferase (AST), and lac- 
tate dehydrogenase (LDH). The 
mean uptake of HA at 0 h was 
59.1 YO t 4.6 % (mean f SEM). Af- 
ter 8 h of storage, HA uptake was 
similar (55.5 % rt 7.3 YO), whereas 
after 16 h of storage it was reduced 
to 34.7 % k 5.8 Yo. At 24 and 48 h of 
storage, no uptake of HA was found. 
In a second series of experiments, 
livers were stored in UW solution 
and subsequently reperfused for 
90 min with a Krebs-Henseleit solu- 
tion (37 "C) in a recirculating system 

containing 150 pgfl HA. Following 
8 h of storage, 34.6 % f 8.0 YO of the 
initial HA concentration was taken 
up from the perfusate. After 16 and 
24 h of storage, no uptake of HA 
was found. The results of this study 
indicate that damage to SEC occurs 
progressively during storage, lead- 
ing to zero uptake of HA by the rat 
livers at 24 h of cold ischemia time. 
Additional reperfusion injury to the 
SEC was demonstrated by the re- 
duced ability of the SEC to take up 
HA following normothermic reper- 
fusion. The uptake of exogenous 
HA in preserved livers, used as a 
tool to assess SEC injury, enables 
the detection of early preservation 
damage. 
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In trod uction 

Preservation injury in liver grafts is the result of events 
taking place in the liver during cold storage and subse- 
quent normothermic reperfusion. Several studies have 
shown that the endothelial cells lining the liver sinusoids 
are an important site at which damage in cold-preserved 
livers occurs [3,18,21]. Damage to these sinusoidal en- 
dothelial cells (SEC) gives rise to microcirculatory dis- 
turbances and adherence of leukocytes and platelets, ul- 

timately leading to microvascular perfusion failure and 
decreased graft function [6, 201. Parameters that indi- 
cate damage to SEC may, therefore, be helpful in assess- 
ing preservation injury in liver grafts and in estimating 
the resulting viability after transplantation. 

Purine nucleoside phosphorylase (PNP), an enzyme 
primarily localized in the SEC, has been proposed as a 
marker of SEC injury [14, 19, 24, 261. In a previous 
study, we showed a gradual release of PNP into the vas- 
cular system of the liver with progressive cold ischemia 



447 

time (CIT). There was a simultaneous release of param- 
eters of liver parenchymal cell damage such as aspartate 
aminotransferase (AST) and lactate dehydrogenase 
(LDH) [27]. 

This study deals with the ability of SEC to take up ex- 
ogenous hyaluronic acid (HA) conferred through the 
vascular system of the liver during cold storage and sub- 
sequent reperfusion. H A  is a high molecular weight gly- 
cosaminoglycan produced by connective tissue and syn- 
ovial membranes throughout the body. It enters the cir- 
culation from the lymphatic system and is specifically 
taken up and degraded by endothelial cells of the liver 
sinusoids [7,9,11,12,28]. Several studies have reported 
clinical significance of elevated serum H A  concentra- 
tions in liver disease [ S ,  81 and in monitoring function 
of a liver graft following transplantation [2,23,25]. We 
investigated the use of the uptake of exogenous HA as 
a parameter reflecting function of SEC during cold stor- 
age and subsequent reperfusion in preserved rat livers. 

In this study, we used two different models. In a first 
series of experiments, rat livers were cold-flushed with 
University of Wisconsin (UW) solution and stored for 
up to 48 h at 4°C. Uptake of H A  by the SEC was as- 
sessed by measuring the H A  in the effluent after re- 
peated cold flushes of the liver with a standard volume 
of UW solution containing HA. In a second series of ex- 
periments, the livers were stored for 8, 16, and 24 h at 
4°C in UW solution and subsequently reperfused with 
a recirculating Krebs-Henseleit solution containing H A  
under normothermic and oxygenated conditions. SEC 
function was assessed by determining the clearance of 
HA from the perfusate. In addition, AST and LDH 
were measured in the perfusate as parameters of paren- 
chymal cell injury, and cell death was assessed using the 
trypan blue exclusion test [3]. Tissue damage in the liv- 
ers was further evaluated via electron microscopy and 
enzyme histochemical methods for the demonstration 
of 5'-nucleotidase (5'-NT) and LDH [13]. The activity 
and localization of 5'-NT has been shown to be a sensi- 
tive marker for cell injury in rat livers [15,16]. 

Materials and methods 
Animals and preparation of livers 

Inbred female Wistar rats, weighing 250-280 g, were anesthesized 
with pentobarbital sodium (50 mgikg) intraperitoneally. Before 
cannulating the portal vein, the rats were heparinized (10 units/ 
100 g) via a tail vein. The livers were flushed in situ via the portal 
vein with 40-50 ml cold (2'4°C) UW solution (DuPont Pharma- 
ceuticals, The Netherlands). Before excision of the liver, the supra- 
hepatic caval vein was cannulated with a plastic catheter (8 Fr; 
Baxter, Trieste, Italy) in order to collect the effluent. The cut end 
of the infrahepatic caval vein was ligated. 

Hyaluronic acid (HA) uptake during cold storage 

After in situ wash-out and excision, the livers were immediately 
gravity-flushed (0 h) with a standard volume of cold UW/HA solu- 
tion (4"C, 15 cm H,O) via an 8 Fr plastic catheter fixed into the 
portal vein. The standard flush volume of the UW/HA solution 
consisted of 7 ml UW solution and 50 pg/ml HA (range 47-55 
pgiml). H A  was obtained from rooster comb (M 1.3 10E6, Sigma, 
St. Louis, Mo., USA). The effluent was collected and analyzed for 
HA content, AST, and LDH. HAwas measured using a radioactiv- 
ity binding assay (detection limit - 5 pg; Pharmacia Diagnostics, 
Uppsala, Sweden). The test is based on the use of specific HA 
binding proteins (HAPB) isolated from bovine cartilage. HA re- 
acts with lZ'I-labelled HAPB in solution. The unbound '''1 - 

HAPB is then quantitated by incubation with HA covalently cou- 
pled to sepharose particles of small size and low density. Separa- 
tion is performed by centrifugation followed by decanting. The ra- 
dioactivity bound to the particles is measured in a gamma counter 
and the response is inversely proportional to the concentration in 
the sample. The total time needed is about 2 h. The uptake of HA 
by the liver was expressed as the percentage of the initial HA con- 
centration remaining in the effluent. 

Gravity flushes were repeated at 8,24, and 48 h of cold storage 
using the same standard flush volume containing HA. In an addi- 
tional series of experiments (n = 3), rat livers were stored for up 
to 16 h and gravity-flushed. 

In control experiments, standard flushes of livers were per- 
formed without adding HA to the flush solution at 24 and 48 h of 
cold storage. The effluent was collected and examined for passive 
release of HA. 

Since heparin is a known competitive ligand for the HA recep- 
tor on SEC, and since the rats were heparinized prior to excison 
of the liver, the heparin content in the effluent was examined. Hep- 
arin was measured with the anti-Xa test (Coatest, KabiVitrum, 
Amsterdam, The Netherlands) [4]. 

In additional experiments (n  = 4), livers were gravity-flushed at 
0 and 24 h, without intermittent flushes at 8 or 16 h, to evaluate a 
possible effect of saturation for uptake of HA by SEC. 

HA uptake during reperfusion following cold storage 

Following in situ wash-out and hepatectomy, livers were stored for 
8 (n = 6), 16 (n = 3) or 24 h (n = 3) in UW solution. Subsequently, 
the livers were placed in a perfusion cabinet [22] at 37°C and re- 
perfused with 200 ml recirculating Krebs-Henseleit solution 
(144 mM Na+  , 6.0 mM K +  , 127.4 mM H,PO,-, 1.2 mM MgSO,, 
24.0 mM HCO,-, 1.3 mM CaCl,), pH 7.4, containing 0.5 % bovine 
serum albumin (Boseral, Organon Teknika, Boxtel, The Nether- 
lands). H A  was added to the perfusate, resulting in an average 
HA concentration of 150 pg/l (120-163 pg/l). The mean perfusate 
flow was 20 ml/min. The perfusion pressure did not exceed 15 cm 
H,O. The perfusate was saturated with O,:CO, (95 %:5 Yo). The 
first 10 ml of the effluent containing the UW solution remaining 
in the vascular system was drained before the liver was perfused 
via recirculation. Perfusate samples of 3 ml were collected at 0, 
15, 30, 60, and 90min of reperfusion, for determination of HA, 
AST, and LDH. Uptake of HA by the liver was expressed as the 
decrease in percentage of the initial H A  concentration in the per- 
fusate. 
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Histology and enzyme histochemistry 

At the end of each experiment, the livers were perfused with 50 ml 
UW or Krebs-Henseleit solution (50 ml) containing 200 pM trypan 
blue (Serva, Heidelberg, Germany). Histological examination was 
performed in biopsies obtained from the left lateral lobe of livers 
at 48 h (n = 6) of cold storage and after 90 min of reperfusion fol- 
lowing 8 ( n  = 3), 16 (n = 3), and 24 h (n = 3) CIT. For enzyme his- 
tochemistry, biopsies of 5 mm3 were taken, chilled in liquid nitro- 
gen, and stored at -70°C. The morphological appearance was stud- 
ied by examining architectural pattern, size, and shape of hepatic 
cells and liver sinusoids. 5’-Nucleotidase activity was detected in 
unfixed cryostat sections of the tissue samples using the lead salt 
method [15]. The activity of LDH was localized by incubating sec- 
tions according to the tetrazolium salt procedure, as described pre- 
viously [13]. At the end of separate experiments, livers were in- 
fused with McDowell fixative (4 % formaldehyde/l % glutaralde- 
hyde in 100 mM cacodylate buffer, pH 7.4) via the portal vein (per- 
fusion fixation technique). Then the livers were minced into small 
pieces and processed for electron microscopy by rinsing in the 
same buffer, postfixating in 1 % OsO,, dehydrating, and embed- 
ding in epoxy resin. Ultrathin sections (30-70 nm thick) were con- 
trasted with lead citrate and uranyl citrate and studied with a Zeiss 
EM -10 c transmission electron microscope. 

Statistical analysis 

Results are expressed as mean values k SEM. The data were ana- 
lyzed with Student’s t-test; P values below 0.05 were considered 
statistically significant. 

Results 

At the end of the initial wash-out using 40-50 ml UW 
solution, the effluent was completely clear, indicating 
that the liver was free of blood. Heparin, a known com- 
petitive ligand for the H A  receptor on endothelial cells, 
could not be demonstrated in the effluent (results not 
shown). 

In control experiments (n  = 3), in which no HA was 
added to the standard flush volume of UW solution, 
the concentration of HA in the effluent of livers stored 
for 24 h was below the detection level ( - 5 pg/l) of the 
radiometric assay for HA. After 48 h of storage, the 
HA concentration in the effluent had increased to 
7.8 pg/l (range 5.0-10.0 pg/l). 

HA uptake during cold storage 

At 0 h (Fig. l),  the mean HA concentration in the efflu- 
ent was 40.9% +4.6%, indicating that 59.1 % of the 
HA contained in the standard flush volume was taken 
up by the liver. After 8 h of storage, the mean percent- 
age of HA uptake was 55.5 YO * 7.3 %, which is statisti- 
cally not significant from the uptake at 0 h, indicating 
an unaltered capacity of the SEC to take up HA. After 
24 h of cold storage, however, no uptake of H A  could 
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Fig. 1 Ability of SEC to take up H A  from the influent in relation to 
cold ischemia time. Rat livers (n = 6) were flushed with 7 ml UW 
solution (4OC) containing H A  (50 pg/l). Uptake of HA was calcu- 
lated as the difference in HA concentration between influent and 
effluent, and expressed as the percentage of the HA concentration 
in the influent 

be demonstrated [the concentration of HA in the efflu- 
ent was 105.7 YO * 12.6 YO, which is significantly higher 
( P  = 0.0018) than the concentration at 8 h of storage]. 
In fact, a higher concentration of HA was found in the 
effluent than was present in the standard flush volume, 
presumably due to passive release of HA from injured 
SEC. 

Because the SEC apparently lost their ability to take 
up HA between 8 and 24 h of storage, additional exper- 
iments were performed with livers that were stored for 
16 h. At 16 h (n = 3), the remaining concentration of 
HA was 65.3 YO f 5.8 YO, which means an uptake of 
34.7 YO, suggesting a gradual loss of SEC function be- 
tween 8 and 24 h of storage (Fig. 1). 

When livers were exclusively flushed at 0 h and 24 h 
of CIT (without intermittent flushing of the liver), no 
uptake of HA was found in livers stored for 24 h, indi- 
cating that the inability of SEC to take up HA was not 
the result of saturation of SEC with HA. 

Figure 2 shows a gradual increase in AST and LDH 
activity in the effluent, indicating progressive+ parenchy- 
mal cell damage. After 48 h of storage, the amount of 
AST (in units) in the effluent showed an 11-fold in- 
crease (from 0.07 k 0.002 U at 0 h, to 0.77 f 0.2 U after 
48 h of CIT). The amount of LDH (in units) concomi- 
tantly showed a sevenfold increase (from 0.50 f 0.1 U 
at 0 h, to 4.1 f 0.4 U at 48 h of CIT). 
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Fig.2 The amount (units) of parenchymal enzymes, AST and 
LDH, released into the liver effluent. Rat livers (n  = 6) were stored 
for up to 48 h at 4 "C and flushed at intervals with cold UW solution 
(7 ml). Enzyme levels (mean k SEM, n = 6) increased gradually up 
to 48 h of cold ischemia time 

HA uptake during reperfusion following cold storage 

Figure 3a shows the decrease in H A  concentration in 
the effluent during 90min of reperfusion of livers 
using normothermic Krebs-Henseleit solution con- 
taining HA (150 pg/l). After 8 h of storage (n = 6), 
34.6 YO f 8.0 % of the initial concentration was taken 
up by the liver at the end of reperfusion. After 16 h 
(n  = 3) and 24 h (n  = 3) of storage, no uptake of HA 
could be demonstrated during the 90-min reperfusion 
period. 

Figure 3 b shows the release of AST (in units) in the 
perfusate. During 90-min reperfusion following 8 h of 
storage, AST in the perfusate increased from 0 U to 
2.56 k 0.3 U. Following 16 h and 24 h of storage, AST in- 
creased from 0.26 U to 9.20 f 0.8 U and from 0.14 U to 
5.94 f 2.5 U, respectively. These values are significantly 
higher than the amounts measured immediately after 
cold storage. In none of the three groups, i.e., after 8, 
16, and 24 h of storage, did the concentration of LDH 
in the perfusate increase significantly during reperfu- 
sion (results not shown). 

Morphology and enzyme histochemistry 

Table 1 summarizes the morphological and enzyme his- 
tochemical findings of rat livers during cold storage and 
subsequent reperfusion as assessed semiquantitatively. 
Histological examination revealed a normal architec- 
ture of the liver lobule and hepatocytes with normal 
size and shape for up to 16 h of storage. After 24 h of 
storage, liver tissue was swollen and hepatocytes ap- 
peared circular. After 48 h of storage, liver parenchyma 
were severely damaged. 

100 

90 

E 80 
9 

7 0  

60 

0 

a 

10 l2 1 

7- 1- ~~ 1 I I I I 

0 15 30 45  60 75 90 

Reperfusion time (min) 

0 15 30 45  60 75 90 

b Reperfusion time (min) 

Fig.3 a Uptake of HA by rat livers following 8 (V-V), 16 (W-H), 
and 24 (A-A) h of cold storage. The livers were reperfused for 
90 min at 37 "C with 200 ml Krebs-Henseleit solution containing 
150 pg/l of HA. H A  uptake was expressed as the percentage of 
the initial concentration of HA in the perfusate at 0 h. b Release 
of AST (in units) during 90 rnin of reperfusion at 37°C with 
200 ml Krebs-Henseleit solution following 8 (V-V), 16 (W-W), 
and 24 (A-A) h of cold storage 

After 8 h of storage, the localization of 5'-NT at bile 
canalicular and sinusoidal plasma membranes had al- 
ready changed into a diffuse form and the activity in 
periportal areas was decreased (Fig.4a). Hardly any 5'- 
NT activity could be detected in livers after 24 h of stor- 
age. After 90 min of reperfusion following all periods 
of storage investigated, 5'-NT activity in livers was com- 
pletely lost. In contrast, localization of LDH activity re- 
mained essentially unaltered in livers stored for up to 
16 h. Only slight changes were observed after 24 h of 
storage (Fig. 4 b). During reperfusion, remarkable de- 
creases in enzyme activity were observed in pericentral 
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Table 1 Semiquantitative scoring of histological and enzyme his- 
tochemical features of rat liver tissue during cold ischemia and 
after 90 min of subsequent reperfusion (+++ high, ++ moderate, 
+ low, 0 absent) 

Storage time After 90 min 

8 h  1 6 h  24h 48h 8 h  1 6 h  24h 

of reperfusion 

~ ~ ~ ~ ~ 

Morphological 
evidenceoftissue 0 + ++ +++ +++ +++ +++ 
damage 
5'-NTactivity ++ + 0 0 0 0 0 
LDH-activi ty +++ +++ ++ + + + + 
Trypan blueuptake 0 0 0 + ++ +++ +++ 

areas after periods of storage longer than 16 h (F ig .4~) .  
No trypan blue-positive nuclei were found in any biop- 
sies up to 24 h of storage. At 48 h of storage, some try- 
pan blue-positive nuclei in SEC and hepatocytes were 
observed. However, after reperfusion following 8 h of 
storage, trypan blue-positive nuclei in SEC and hepato- 
cytes were observed, and this phenomenon became 
even more prominent after 24 and 48 h of storage and 
subsequent reperfusion. 

Figure 5 shows an electron micrograph of a rat liver 
sinusoid and surrounding liver parenchymal cells after 
24 h of cold storage. Endothelial cells were generally 
present, but the endothelial lining was frequently inter- 
rupted and blebs were observed in the sinusoidal lumen. 
Intracellularly, organelles seemed to be intact. In liver 
parenchymal cells, no signs of severe damage, such as 
presence of flocculent densities in mitochondria, were 
found. 

Discussion 

Rat livers flushed with Euro-Collins solution and stored 
for more than 8 h are not viable when transplanted, al- 
though no marked hepatic cell damage is evident mor- 
phologically [21]. This observation led to the notion 
that damage to other liver cells is responsible for the 
loss of graft viability during preservation. Ultrastruc- 
tural examinations have shown that SEC are the pre- 
dominant site at which critical preservation injury in liv- 
ers occurs [3, 211. SEC have been suggested to be the 
specific target for cold ischemic injury, whereas during 
warm ischemia the damage is mainly located in hepato- 
cytes [17]. SEC may be damaged by the combination of 
ischemic injury during storage and the injury sustained 
during reperfusion. The efficacy of UW solution for 
long-term preservation of liver grafts is based on sup- 
pression of hypothermia-induced cell swelling and pro- 
tection of the microvasculature of the liver [20, 301. In 
view of the widespread application of UW solution in 

clinical liver transplantation, this solution was used in 
the present study to assess SEC injury in preserved liv- 
ers. 

A unique feature of H A  is that it is specifically taken 
up and metabolized by SEC in the liver. Therefore, the 
ability of the liver to take up H A  reflects the functioning 
of SEC, and this characteristic was used in our study to 
assess preservation injury in livers during cold storage 
and subsequent reperfusion. The uptake of HA is recep- 
tor-mediated with high affinity (Kd = 6 x lo-") com- 
bined with fluid-phase endocytosis [29]. The clearance 
capacity is estimated to be about 10-20 mg/day per kg, 
with a high reserve capacity (up to 30mglday per kg 
[lo]. Studies with radioactive-labeled H A  have shown 
that after binding to SEC, it is rapidly endocytosed and 
degraded into lysosomes to D-glucuronic acid and N- 
acetylglucosamine [28,29]. 

Based on these data, we added HA to the preserva- 
tion solution in a concentration of 50 pg/l, which is ap- 
proximately 1.5 times the physiological concentration 
in serum. In the reperfusion experiments, HA was added 
to the recirculating medium in a concentration of 
150 pg/l. A possible saturation effect, as a result of re- 
peated flushes, was not responsible for the lack of up- 
take of H A  after 24 h of storage because no uptake of 
H A  was found after 24 h of storage when the preceding 
standard flushes were omitted. 

When flushing livers with a preservation solution and 
measuring H A  in the effluent, different processes con- 
tributing to the amount of HA in the effluent should be 
taken into account, namely, passive leakage of H A  out 
of SEC as a result of cell damage and production of 
H A  by hepatic fibroblasts or Ito cells. The latter is of 
no relevance for the present experiments since the sug- 
gested production process only starts after a lag phase 
of several days [l]. The passive release of H A  into the 
effluent was considered to be insignificant because the 
levels of endogenous HA in the effluent after 48 h of 
storage were just above the detection level of the radio- 
metric H A  assay used. 

In the cold storage model, the results demonstrate 
that after 8 h of ischemia, the function of SEC was unaf- 
fected; i. e., uptake of H A  was similar to that at 0 h. Af- 
ter 24 h and 48 h of storage, no uptake of H A  could be 
detected, suggesting abolished SEC function. In an ad- 
ditional series of experiments, it appeared that after 
16 h of storage, the ability of the livers to take up H A  
was still present, although decreased, indicating that is- 
chemic injury to the SEC is a gradual process. Parenchy- 
mal cell damage during storage was marked by a contin- 
uous increase in hepatocellular enzymes (AST and 
LDH) released into the effluent with increasing periods 
of storage. 

In the reperfusion model in which livers were recir- 
culated with normothermic Krebs-Henseleit solution 
for 90 min, uptake of H A  was only detectable when the 
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Fig.4 a Localization of 5’-nucleotidase activity in rat liver after 
8 h of cold ischemia time (CIT). Activity was diffusely localized 
and had disappeared in periportal areas. b Localization of LDH 
activity in rat liver after 24 h of CIT. Rather normal activity was 
found in both periportal and pericentral areas. c Localization of 
LDH activity in rat liver after 90 min of reperfusion and after 16 h 
of CIT. Enzyme activity was decreased in pericentral areas 
Fig.5 Electron micrograph of a sinusoid in the rat liver after 24 h 
of cold storage without reperfusion. Frequent interruptions of the 
endothelial lining were seen. Hepatocytes did not appear to be 
damaged and cell organelles such as mitochondria and endoplas- 
mic reticulum remained intact ( x 9,000) 
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preceding storage time was not longer than 8 h. Hence, 
whereas SEC function persisted after 16 h of storage, 
no uptake of HA was found during the 90 min of subse- 
quent reperfusion. These findings show that SEC injury 
during storage occurs as an ongoing process, and that 
during reperfusion, additional damage is superimposed. 
During reperfusion, AST, but not LDH, was signifi- 
cantly enhanced in the effluent. 

The light microscopic findings are in agreement with 
the parameters for damage to SEC and hepatocytes. 5’- 
NT can be used as a sensitive parameter for ischemic 
damage of plasma membranes of liver parenchymal 
cells. The storage time at which this damage is observed 
is similar to the period at which SEC malfunctioning 
starts (i.e., after 8 h of storage). Therefore, this enzyme 
histochemical parameter may also be a useful tool in 
predicting the function of the SEC. The decrease in 
LDH activity in hepatocytes after 24 h of storage and 
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