A. Salam M. Vandeputte M. Waer

# Clonal deletion and clonal anergy in allogeneic bone marrow chimeras prepared with TBI or TLI

M. Waer (⊠) · M. Vandeputte A. Salam Transplantation Laboratory, Rega Institute, Minderbroedersstraat 10, B-3000 Leuven, Belgium

**Abstract** The evolution of  $V\beta 6$ expressing  $C_3H$  ( $H_2^k$ , Thy 1.2, Mls a-) lymphocytes was investigated in  $C_3H$  recipients mice pretreated with total body irradiation (TBI) or total lymphoid irradiation (TLI) and infusion of AKR ( $H_2^k$ , Thy 1.1, Mls a+) cells. After TBI (9.5 Gy) all V $\beta$ 6+ Thy 1.2 (C<sub>3</sub>H) cells, which are capable of reacting against the MIs a antigen that like expressed by AKR mice, were deleted in the thymus and the periphery in stable bone marrow (BM) chimeras obtained by infusion of  $5 \times 10^6$  T-cell-depleted (TCD) AKR BM cells. When, in the opposite combination,  $30 \times 10^6$ C<sub>3</sub>H spleen cells were infused into TBI-treated AKR cells, all animals developed graft-versus-host disease (GVHD) with no clonal deletion and in contrast, showed an increase in V $\beta$ 6+ C<sub>3</sub>H cells. After injection of  $30 \times 10^6$  AKR BM cells into TLI-treated C<sub>3</sub>H mice no C<sub>3</sub>H cells

were detected in the thymus and only a small percentage in the periphery. Within these C<sub>3</sub>H cells  $V\beta 6+$  cells were only partially deleted and anergized as they did not respond in vitro after stimulation with Mlsa + AKR cells or anti-V $\beta$ 6 mAb. Cells suppressing anti-Mls a-reacting C<sub>3</sub>H cells were not found. After injection of  $15 \times 10^6$  AKR cells more C<sub>3</sub>H cells were found in the thymus, but only a minority of V $\beta$ 6+ cells persisted in the periphery of these animals. In conclusion in TBI-prepared chimeras only clonal deletion occurred, whereas in TLI-prepared chimeras both clonal deletion and anergy occurred in maintaining tolerance.

Key words Bone marrow chimeras Total body irradiation Total lymphoid irradiation Clonal deletion · Clonal anergy

## Introduction

Transplantation tolerance is now generally believed to be based on two major mechanisms: clonal deletion or clonal anergy. Because of the availability of monoclonal antibodies that recognize specific T cell receptors, these two mechanisms can now be differentiated from each other. The present study was undertaken to investigate which mechanism was underlying immune tolerance after bone marrow transplantation. Two different preparative regimens, both leading to stable bone marrow chimerism were compared. In the first model, mice were given T cell depleted allogeneic bone marrow cells after lethal total body irradiation. The second model involved infusion of untreated allogeneic bone marrow into recipient mice that were given fractionated total lymphoid irradiation. In both models, host type lymphocytes expressing T cell receptors directed against donor antigens were looked for in peripheral blood and lymphoid organs in order to see whether clonal deletion had occurred.

## Methods

#### Mice

 $C_3H$  ( $H_2^k$ , Thy 1.2, Mls 1a-) and AKR ( $H_2^k$ , Thy 1.1, Mls 1a+) mice were kept in conventional housing during the whole experiment.

## Irradiation

One 9.5 Gy dose of total body irradiation (TBI) or 14 Gy of total lymphoid irradiation (TLI) given in daily doses of 2 Gy were administered as described previously [1].

## Bone marrow transplantation

TBI-treated animals received  $5 \times 10^6$  T-cell-depleted (TCD) (using Thy 1.2 monoclonal antibody (mAb) and complement bone marrow (BM) cells or  $30 \times 10^6$  untreated spleen cells. TLI-treated animals were given  $15 \times 10^6$  or  $30 \times 10^6$  unmanipulated BM cells.

## Scoring of chimerism and $V\beta 6+$ cells

At various times after BM transplantation peripheral blood, thymus, spleen and lymph nodes were analysed for lymphoid chimerism using Thy 1.2 (=  $C_3H$ ) or Thy 1.1 (= AKR) mAbs and FACS analysis. By double colour FACS analysis the number of V $\beta 6$  + T cells in Thy 1.2-positive  $C_3H$  cells was determined as described previously [3].

#### Functional assays

The reactivity of remaining  $V\beta 6+$  Thy 1.2 cells was investigated in some chimeras using an anti- $V\beta 6$  induced in vitro proliferation assay as described elsewhere [6] or by measuring their proliferation after stimulation with Mls a + control AKR spleen cells. Putative suppressor cells within the chimeras were sought by adding them to a control C<sub>3</sub>H × AKR mixed lymphocyte reaction (MLR) reaction.

#### Results

Survival and chimerism after various transplantation regimens

Figure 1 shows the survival after BM or spleen transplantation. All  $C_3H$  mice were healthy and showed 100%



**Fig. 1** Actual survival of TLI-treated  $C_3H$  mice (n = 12) injected with unmanipulated AKR BM cells  $(\Box)$ , TBI-treated  $C_3H$  mice  $(n \pm 10)$  injected with T-cell depleted AKR BM cells (+) and TBI-treated AKR mice (n = 12) injected with  $C_3H$  splenocytes (\*)

survival after both TBI and infusion of  $5 \times 10^5$  Thy 1.1depleted AKR BM cells or TLI and infusion of 15 or  $30 \times 10^6$  unmanipulated AKR cells. In contrast, all TBItreated AKR mice showed clinical signs of graft-versushost disease (GVHD) (weight loss, diarrhoea, hunched back), and 50% of them died, after infusion of  $30 \times 10^6$ C<sub>3</sub>H cells. Table 1 shows the percentage of C<sub>3</sub>H (= Thy 1.2 cells) remaining in the chimeras after the various transplantation schedules.

After 9.5 Gy of TBI and injection of  $5 \times 10^6$  TCD AKR BM cells all mice became mixed chimeras (63% and 49% of C<sub>3</sub>H cells were detected in the peripheral blood and thymus, respectively, at 2-4 months after transplantation). As would be expected, the majority of cells found in mice developing GVHD after spleen infusion were of donor origin both in the periphery (92%) and thymus (86%). After TLI, the level of chimerism depended on the number of BM cells infused. When  $15 \times 10^6$ AKR were injected, host-type C<sub>3</sub>H cells were allowed to grow out sufficiently leading to 44% and 28% of C<sub>3</sub>H cells in peripheral blood and thymus, respectively, at 1-4 months after transplantation. However, when the number of donor AKR cells infused was increased to  $30 \times 10^6$ the majority of cells found in the chimeras were of donor origin with only 7% of C<sub>3</sub>H T cells in the periphery and no significant numbers of  $C_3H$  thymocytes in the thymus.

| Treatment<br>group | Inoculum                          | Percent Thy 1.2 ( $C_3H$ ) cells<br>in the peripheral<br>blood <sup>a</sup> | Percent Thy 1.2 ( $C_3H$ ) cells<br>in the thymus <sup>a</sup> | Percent of $V\beta 6 + cells$<br>in the Thy 1.2<br>population |
|--------------------|-----------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|
| 1. TBI $(n = 10)$  | $5 \times 10^6$ TCD BM cells      | 63 (±11)                                                                    | 49 (±46)                                                       | 0                                                             |
| 2. TBI $(n=8)$     | $30 \times 10^6$ spleen cells     | 92 (±15)                                                                    | 86 (±28)                                                       | 16 (±7)                                                       |
| 3. TLI<br>(n=5)    | $15 \times 10^6$ non-TCD BM cells | 44 (±23)                                                                    | 28 (±38)                                                       | 1 (±0.8)                                                      |
| 4. TLI $(n=6)$     | $30 \times 20^6$ non-TCD BM cells | 7 (±3)                                                                      | 0                                                              | 5 (±0.5)                                                      |

Table 1 Percentage of chimerism and persisting V $\beta$ 6-positive C<sub>3</sub>H cells after allogeneic BM transplantation using various regimens

<sup>a</sup> In relation to the total number of T cells (Thy 1.2 + Thy 1.1)

Table 2 Suppressor assay using control of chimeric  $C_3H$  cells as regulators in a  $C_3H \times AKR$  MLR

| Responder cells                          | Stimulator cells * | Regulator cells <sup>b</sup>                  | cpm <sup>c</sup>         | Percent suppression <sup>d</sup> |
|------------------------------------------|--------------------|-----------------------------------------------|--------------------------|----------------------------------|
| C <sub>3</sub> H control<br>spleen cells | AKR                | _                                             | $315 \pm 12 \times 10^3$ |                                  |
| C <sub>3</sub> H control spleen cells    | AKR                | Control C <sub>3</sub> H                      | $349 \pm 24 \times 10^3$ | 0                                |
| C <sub>3</sub> H control spleen cells    | AKR                | Purified chimeric<br>C <sub>3</sub> H (exp 1) | $327 \pm 10 \times 10^3$ | 0                                |
| C <sub>3</sub> H control spleen cells    | AKR                | Purified chimeric $C_3H$ (exp 2)              | $288\pm26\times10^3$     | 9                                |

<sup>a</sup> Mitomycin-treated to prevent proliferation but allowing Mls a presentation

<sup>b</sup> In vitro irradiated with 15 Gy to prevent proliferation

<sup>c</sup> Counts per minute after thymidine incorporation after a 3-day culture

<sup>d</sup> Expressed as  $\frac{\text{(cpm with control cells - cpm with experimental cells)}}{\times 100} \times 100$ 

cpm with control cells



**Fig. 2** Proliferation of control  $C_3H$  spleen cells and  $C_3H$  cells isolated from TLI-treated AKR B  $C_3H$  chimeras after in vitro stimulation for 3 days with BALB/C  $(H_2^4)$  ( $\blacksquare$ ) or AKR (Mls a+) ( $\square$ ) mitomycin-treated spleen cells. The proliferation is expressed as the increase in thymidine incorporation (cmp) as compared with the background stimulation provoked by syngeneic ( $C_3H$ ) mitomycin-treated spleen cells

Clonal deletion and clonal anergy after various transplantation regimens

As can also be seen in Table 1 TBI-prepared stable chimeras (group 1) developed complete clonal deletion of lymphocytes with anti-donor reactivity (0% of V $\beta$ 6+ cells were found in the C<sub>3</sub>H T lymphocytes). In contrast, in group 2 mice which developed GVHD an increase (16%) in V $\beta$ 6+ Thy 1.2 cells was found (normal control C<sub>3</sub>H mice had 9-12% V $\beta$ 6+ T cells).

In TLI-treated recipients clonal deletion of V $\beta$ 6+ Thy 1.2 cells was observed only to a limited extent depending on the number of donor cells infused. When a relatively low number of donor cells was transplanted (group 3), host-type C<sub>3</sub>H cells grew out, even in the thymus, and most V $\beta$ 6+ cells were deleted (only 1% were detected in the periphery). In contrast when a high number of donor cells was infused, only a low number of C<sub>3</sub>H T cells were found in the periphery, and they seemed to originate only

from peripheral proliferation as no C<sub>3</sub>H T cells were found in the thymus. These remaining  $C_3H$  T cells were not totally deleted as 5% V $\beta$ 6+ cells were left. To investigate whether these cells were anergized functional assays were performed (Fig. 2). C<sub>3</sub>H lymphocytes were purified from the spleen of TLI chimeras by treating them with Thy 1.1 (= anti-AKR) mAb and complement. These cells were then stimulated with mitomycin-treated AKR spleen cells (to investigate MIs-a-directed reactivity) or allogeneic (BALB/C) mitomycin-treated splenocytes. In contrast to control C<sub>3</sub>H cells which strongly reacted against AKR cells (even more strongly than against allogeneic BALB/C cells), C<sub>3</sub>H cells from TLI chimeras were anergic for AKR as they showed no proliferation. The somewhat lower response of TLI-C<sub>3</sub>H cells as compared with control C<sub>3</sub>H cells towards BALB/C is not surprising as long-term MLR hyporesponsiveness after TLI is well documented [7]. Also, when these  $C_3H$  cells were stimulated with anti-V $\beta$ 6 or anti-V $\beta$ 8 mAb as described elsewhere [6], they did not respond to anti-V $\beta$ 6 mAb or generally to anti-V $\beta$ 8 mAb (data not shown). In order to determine whether this anergy was mediated by suppression a suppressor assay was performed (Table 2) using purified C<sub>3</sub>H cells obtained from TLI-treated chimeras. As can be seen from Table 2, in two separate experiments no significant suppression was observed when chimeric C<sub>3</sub>H from TLI mice were added to a control  $C_3H \times AKR$  MLR as compared with control  $C_3H$  cells. Suppressor cells could thus be excluded as the reason for the anergy of the chimeric  $C_3$  cells.

# Discussion

The present study was undertaken to investigate the mechanisms underlying immune tolerance in TLI-treated allogeneic BM chimeras. For this purpose we used AKR and  $C_3H$  mice as the latter are Mls a – and their T lymphocytes express V $\beta$ 6 receptors which confer reactivity against Mls a [5]. This enabled us to determine whether  $V\beta 6+$  cells were deleted and, if persisting, whether they were anergic for Mls a. At the same time we compared the results of TLI with those obtained in mice developing either stable chimeras or GVHD after TBI. Stable chimeras obtained with TBI and infusion of TCD BM cells developed complete clonal deletion of  $V\beta 6+$  cells. This deletion occurred in the thymus as no bright-staining single positive CD4– V $\beta$ 6+ thymocytes were observed (data not shown). These results are in agreement with those of previous studies [4]. In contrast, in the GVHD

situation clonal expansion of  $V\beta 6+$  cells was observed with no clonal deletion illustrating the lack of tolerance between donor and host in this situation.

In TLI-treated animals both clonal deletion and anergy was found. When only a low number of C<sub>3</sub>H cells remained in the TLI chimeras,  $V\beta 6 + C_3 H$  cells were not totally deleted (5% persisted). We hypothesize that these  $V\beta 6+$  cells are cells that remain in the periphery after TLI, and are peripherally anergized by the injected AKR cells. Peripheral anergy of V $\beta$ 6+ C<sub>3</sub>H cells after injected of AKR cells has also been reported previously [5]. In another strain combination Field and Steinmuller [2] also found clonal anergy as a major mechanism underlying tolerance in TLI-treated chimeras. In accordance with their results, we found that the non-deleted  $V\beta 6$  + cells were anergized because they could not be stimulated in vitro with V $\beta$ 6 mAb (data not shown), nor did they proliferate significantly after stimulation with AKR splenocytes (Fig. 2). The fact that suppressor cells were not involved in anergy was apparent from the results of the experiments shown in Table 2. In their study Field and Steinmuller [2] did not investigate whether the remaining anergized cells originated from post-TLI T cells persisting in the peripheral compartment, or whether they arose from thymic emigrants. The former hypothesis seems more likely from the results of our experiments comparing TLI C<sub>3</sub>H mice injected with low  $(15 \times 10^6)$  or high  $(30 \times 10^6)$  numbers of AKR cells. When high numbers of AKR cells were injected, all thymocytes were of AKR origin (Table 1, group 4) and hence the peripheral C<sub>3</sub>HT cells were probably peripheral T cells which had survived the TLI regimen. However, when a low number of AKR cells were injected after TLI, many more C<sub>3</sub>H cells were allowed to grow out even in the thymus (28%; Table 1, group 3) and thus the peripheral  $C_3HT$  cell compartment comprised mainly thymic emigrants. As their V $\beta$ 6+ thymocytes had undergone deletion in the thymus (no  $V\beta6$  single positive CD4 thymocytes were detected, data not shown), these emigrating  $V\beta 6 - C_3 H$  cells diluted the number of peripherally anergized C<sub>3</sub>H cells (Table 1, group 3).

The importance of the persistence or absence of T cells with T-cell receptors directed against donor or host antigens is not known yet, but they may play a role in the stability of chimeras. We are presently investigating this by challenging TLI chimeras with host-type spleen cells.

In conclusion, whereas TBI-prepared stable chimeras used clonal, deletion as a tolerizing mechanism, TLItreated chimeras used both clonal deletion when T cells orginated from the thymus and clonal anergy for T cells persisting peripherally after TLI.

# References

- 1. De Ruysscher D, Sobis H, Vandeputte M, Waer M (1991) A subset of asialo GM1 cells play a protective role in the occurrence of GVHD in mice. J Immunol 146:4065-4070
- Field E, Steinmuller D (1993) Nondeletional mechanisms of tolerance in total lymphoid irradiation induced bone marrow chimeras. Transplantation 56:250-253
- Kuschnaroff LM, De Belder K, Vandeputte M, Waer M (1992) Factors involved in peripheral T cell tolerance. Transplant Int [Suppl 1]:589-593
- 4. Matsuzaki G, Yoshikai Y, Aginomoto M, Kishihara H, Nomoto K (1990) Clonal deletion of self reactive T cells at the early stage of T cell development in the thymus of radiation bone marrow chimeras. J Immunol 145:46-51
- Rammensee HG, Kroschewski R, Frangoulis B (1989) Clonal anergy induced in mature Vβ6 T lymphocytes on immunizing Mls-1 b mice with Mls-1 a expressing cells. Nature 339:541-544
- Roberts JL, Sharrow SO, Singer A (1990) Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities. J Exp Med 171:935– 940
- Strober S, Slavin S, Gottlieb M, Zan-Bar I, King DP, Hoppe RT, Fuks Z, Grumet FC, Kaplan HS (1979) Allograft tolerance after TLI. Immunol Rev 46:87-112