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Organ xenografting between rodents: 
an evolutionary perspective 

Abstract Rejection times of heart Key words Xenotransplantation, 
xenografts in several donor-reci- 
pient combinations including the gui- 
nea pig, rat, hamster, and mouse are 
examined in light of the paleonto- 
logical history of rodents and the 
resulting phylogenetic distances be- 
tween taxa. This multidisciplinary re- 
view at the molecular, chromosomal 
and morphological levels suggests 
that xenograft rejection time is in- 
versely proportional to the time 
divergence or phylogenetic distance, 
and that the binomial terminology 
concordant/discordant does not re- 
flect the amplitude of phylogenetic 
distances. 

rodents . Rodents, xenotrans- 
plantation . Phylogenetic distance, 
xenotransplantation 

Introduction 

The use of rodents for research in xenografting can pro- 
vide valuable information about the mechanism and 
prevention of organ xenograft rejection and may have im- 
plications for xenotransplantation in humans. 

The most frequently used rodents are the guinea pig, 
the rat, the white mouse, and the hamster. According to a 
recent review of 148 publications [4], the large majority 
reported the use of rats (86 articles) as recipients of grafts 
from guinea pigs (20 articles), hamsters (S8), or mice (8), 
or that of mice (SO of the 148 articles) as recipients of 
grafts predominantlyfrom rats (43 articles). Only 12 of the 
148 publications reported the use of guinea pigs (7) or 
hamsters ( 5  articles) as recipients. 

In five of these donor-recipient combinations - guinea 
pig-to-rat [1, 14,33,59,63,81], harnster-[28,30,35,36,53- 
SS,S7,61,71,72] or mouse-[S7]-to-rat, and rat-[9, 10,57, 
71, 72, 741 or hamster-[57]-to-mouse - the fate of heart 
xenografts was studied. It was found that they are rejected 

more rapidly in the hamster-to-rat, mouse-to-rat, and 
hamster-to-mouse donor-recipient combinations than in 
the rat-to-mouse combination [S7] (Table 1). In the gui- 
nea pig-to-rat combination [l, 14,33,59,63,8lk rejection 
is even more rapid, occurring after a few minutes. The sur- 
vival of kidney [19,56], liver [S9,71/1 and lung [67] xeno- 
grafts has also been studied. As previously observed with 
liver allografts in hypersensitized rats [31], liver xeno- 
grafts are less rapidly rejected than heart xenografts [S9, 
71,801. 

Histological examination of the rejected heart grafts 
differs between the three main donor-recipient xeno- 
geneic rodent combinations. Vascular lesions are very in- 
tense in the guinea pig-to-rat combination [14, 25, 481, 
with massive interstitial hemorrhage and intravascular 
platelet aggregates. No interstitial cellular infiltration is 
seen. Immunofluorescence shows rat IgM [S2] and C3 [S9] 
deposits. In the hamster-to-rat combination, severe endo- 
thelial damage is seen with irregular accumulation of neu- 
trophils around blood vessels, but with little interstitial 
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Table 1 Rejection time of heart xenografts in five donor-recipient 
combinations of rodents 

Donor-recipient Heart xenograft Reference 
combinations rejection time 

Guinea pig-to-rat 15.8 + 8 min ~ 9 1  
Hamster-to-rat 4.0 + 1.0 days [301 
Mouse-to-rat 4.1 & 1.1 days [301 
Hamster-to-mouse 4.9 + 1.1 days [301 
Rat-to-mouse 7.5 * 1.1 days f301 

hemorrhage and without lymphocytic infiltration [45]. 
Immunofluorescence shows no deposits of immunoglo- 
bulin, C3, or fibrinogen [64]. In the rat-to-mouse combina- 
tion, moderate endothelial damage is seen and lympho- 
cytic interstitial infiltration is prominent [65]. In the gui- 
nea pig-to-rat combination, the mechanism of rejection is 
clearly humoral and involves primarily natural IgM anti- 
bodies directed against guinea pig xenoantigens [1, 14,24, 
33, 56, 57, 681 and complement activation. Through the 
classical or alternate pathway [24,57, 691, the prominent 
role of complement is suggested by the prevention of re- 
jection using complement depletion by cobra venom fac- 
tor [1] or the use of soluble complement receptor type 1 
[52]. In the hamster-to-rat combination, the absence of 
natural rat cytotoxic anti-hamster antibodies [28,30, 36, 
49,551 is challenged by the recent demonstration of a low 
level of natural anti-hamster xenoantibodies in the rat 
using flow cytometric cross-matching [64]. The relative ef- 
ficacy of the inhibition of antibody production [28,36,45], 
the failure to obtain long-term heart graft acceptance 
using anti-CD4 and anti-CD8 monoclonal antibodies and 
cyclosporin [6], and the ability of nude rats to reject heart 
grafts as rapidly as normal rats [41, 701 also suggest a 
prominent role of humoral factors. In the rat-to-mouse 
combination, the role of cell-mediated rejection is sup- 
ported by the efficacy of anti-thymocyte globulins [63] or 
cyclosporin [65] and the absence of rejection of rat skin 
grafts by nude mice [47]. However, some recent data also 
suggest a possible role for very low level natural anti- 
bodies [2]. 

Such differences between animals that all belong to the 
order of Rodentia [2, 12, 17, 18, 21, 26, 44, 621 are better 
understood from an evolutionary perspective. 

Systematic position of the animals within the order 
of Rodentia 

The domestic guinea pig (Cavia porcellus) belongs to the 
superfamily of the Cavioidae, where it is grouped together 
with capybara. All of these rodents, which are exclusive to 
South America, are grouped with many others under the 
more general term of Caviomorpha. Caviomorphs, along 
with Phiomorphs (African spiny and mole rats; Old World 
porcupines), belong to the great morphological suborder 

Hystricognathi and have a so-called hystricomorphic skull 
structure. 

The rat (Rattus rattus), mouse (M.  mimidus ) ,  and 
hamster (Mesocricefus auratus) belong to another sub- 
order, the Sciurognathi, and are sciuromorph rodents 
(superfamily Muroidea). The rat and mouse belong to the 
Murinae subfamily which, with ten or so other sub- 
families, make up the Muridae family. The hamster be- 
longs to another subfamily, the Cricetinae. 

Phylogenetic relationships 

Relationships between rodents were originally based on 
anatomy and tooth features [12, 17, 18, 21,26,37-39,44, 
51, 75, 761 by trying to establish step-by-step ancestor- 
descendant ties within a geological framework. New stu- 
dies along cladistic lines were first undertaken in the 1970s 
[42,46,66] and these led to a multidisciplinary review of 
phylogenetic relations in rodents [44] (Fig. 1). Studies 
involving morphology [32], molecular biology [15,27,79], 
and cytogenetics [73] have since provided new data and 
sometimeschallenged what was thought tobe a well-estab- 
lished classification, in particular with regard to the place of 
Caviomorphs within rodents and mammals [15,27,29,73]. 

Fossil record 

Caviomorphs are found in paleontological records from 
the lower Oligocene in Patagonia, 33 million years ago 
(Myr). Two hypotheses have been put forward to explain 
the origin of South American Caviomorphs [43, 501. On 
the basis of anatomical features, the structure of the inner 
ear [40] and the relationship between parasites of the Af- 
rican and South American forms, Lavocat [38] suggests 
that the group originated in Africa and emigrated to South 
America before the Oligocene, at a time when the Atlantic 
Ocean was narrower, drifting on tree trunks torn from the 
banks of great African rivers, or along the land bridges 
that may have remained in place until the Oligocene. In 
contrast, Wood [77] claims that Hfstricognath rodents 
originated in Asia and emigrated first to North America 
and then to South America, a view that can be debated. 

Thus, the great divide between Caviomorphs and Mu- 
roidea goes back much further on the time scale, to well 
over 33 Myr. All of the molecular, chromosomal and mor- 
phological data confirm the great divergence between 
Caviomorphs and African Hystricognaths resulting from 
over 33 million years of independent evolution from a 
common ancestor that passed down many characteristics. 

The dichotomy between rats-mice (Muridae) and 
hamsters (Cricetidae) is put between 35 and 16 Myr by 
paleontology and between 19.1 and 16.5 Myr by molecu- 
lar biology. If the mouse is taken as a reference, the closest 
species is undeniably the rat, for which the divergence 
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Fig. 1 Provisional scenario of the diver- 
sification of the rodents, including strati- 
graphic record and possible phylo- 
genetic relationships [13,17,44, P. Mein 
and J. Michaux, personal communica- 
tions] ( R  Rat and mouse, H hamster, 
G guinea pig) 
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evaluated by paleontological data lies at between 12 and 
8 Myr and around 10 Myr by molecular data. 

Distances between rodent species used for research 
in xenografting: a discussion 

In addition to inner ear structure and in spite of important 
chromosomal differences [2S, 731, numerous features 
shared by African and South American Hystricognaths 
support monophyly of the group and, thus, point to a clear 
grouping of Cavia, Rattiis and Cricetus in the same mono- 
phyletic group. These features include: (1) anatomical 
features of the skull [22,23,32,50,78] and carotid artery 
branching [S], (2) amino acid sequences of a and /?herno- 
globin chains [60], (3) immunological data [58] and ribo- 
nuclease [S], and (4) eye lens protein a-crystallin A [34]. 

However, analysis of protein sequences recently led 
Graur et al. [27] to the conclusion that the guinea pig may 
be genetically closer to humans than to the reference 
myomorph (rat, mouse, or hamster). This conclusion was 
based upon the notion that the rates of evolution of vari- 
ous molecules are highly uneven and often particularly 
rapid in rodents [16, 341. In fact, among mammals, the 
greatest differences in nonrepetitive DNA rates of change 
are those occurring between hominoid primates and 
murid rodents. Taking a base of 10 Myr for the separation 
between Raftus and Mils, mitochondrial DNA evolution 
rates of 4.8%-9.7% per Myr are observed, which is at 
least three times more than those in primates (2% per 
Myr) or other mammal groups [15]. Using the same analy- 
tical method described by Graur et al. [27], which is based 
upon the comparison between two rodent suborders, a 
reference order (primate or artiodactyl) and an outgroup 
(e. g., chicken), a comparison of RNA nucleotide sequen- 
ces of the 12s mitochondrial ribosome was made that also 
challenged the traditional monophyletic conception with 
the suborders of Sciurognaths and Hystricognaths separ- 
ated from other orders of mammals [3]. However, the 
choice of very remote out-groups, such as the chicken, 
which contain information on very different hierarchical 
levels (class, order, family, species, individual), may strong- 
ly bias the interpretation of divergences among closely 
related species. Divergences observed at one level cannot 
suitably be used for handling problems of divergence at 
another level as undue weight isgiven to convergence, that 
is, similarities which, as in the area of isoenzymes [7], do 
not stem from inheritance from a common ancestor. It 
is, therefore, indispensable to use an out-group that is 
phylogenetically far closer to the groups tested. 

The important point is that evolution does not occur 
identically across various levels of organization of life 
[20]. Evolution of the middle ear is virtually nil in Hystri- 
cognaths while chromosomal formulae evolve vastly. On 
the molecular level, the eye lens protein a-crystallin A 
shows a slow cytochrome c type evolution that is far 

slower than that of hemoglobin, myoglobin, and pancre- 
atic ribonuclease. The study of crossreactions of antial- 
bumin precipitins reveals that the guinea pig and the rat 
have not acquired great divergences in terms of albumin 
[58]. On the contrary, the divergence is perhaps important 
for molecules such as proteins of the complement system, 
transferases, membrane glycoproteins or glycolipids, 
which are particularly involved in xenograft rejection. 

From morphology and particularly molecular biology 
studies, it is obvious that the guinea pig, rat, white mouse, 
and hamster differ by unequal genetic distances. 

It can be seen from a comparison of graft rejection time 
with the time divergences of the four types of rodents stu- 
died here that phylogenetic distance seems inversely pro- 
portional to graft rejection time, at least in muroids 
(Table 1). This observation adds to that made by Calne 
[ l l ]  that rejection of an organ xenograft is probably re- 
lated to immunological divergence, the reflection of phy- 
logenetic divergence. It led to the concept of concordant 
or discordant xenogenic donor-recipient combinations, 
depending on whether rejection time was close to that of 
an allograft or, on the contrary, very rapid. 

The extreme rapidity of the rejection time of a guinea 
pig-to-rat heart xenograft reflects the divergence ob- 
served at the genetic and morphological levels. 

~~ ~ ~ 

Perspectives for xenotransplantation in humans 

Beginning with the shortest distance and going on to the 
longest one, global relative phylogenetic distances be- 
tween humans and other mammals create the following 
ranking order: (1) chimpanzee, (2) baboon, (3) pig, rat, 
and guinea pig. However, in order to determine their 
genetic distances appropriately, comparative molecular 
analyses of the six taxa taken as a whole should be done. 

Understanding that divergence between humans and 
other mammals depends upon each type of molecule and 
its evolutionary rate, it is interesting to observe that for a 
and /?hemoglobin chains [60], humans are at anequal dis- 
tance from rodents and pigs, but thyt for amino acid se- 
quences of eye lens protein a-crystallin A [34], humans 
are closer to rodents than to pigs. From the perspective of 
xenotransplantation in humans, this provocative observa- 
tion could raise some interest in the largest caviomorph of 
South America, the cabiai or capybara (Hvdrochoerzu 
hydrochoerus), an animal the size of a pig and presently 
farm-raised for food requirements. Recent experiments 
(J. Cardoso, unpublished data) have shown that human 
natural hemagglutinating antibodies react less strongly to 
capybara red blood cells than to pig red blood cells. 
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Conclusion 

Comparison suggests that between rodents the heart 
xenograft rejection time is inversely proportional to the 
time divergence, also called phylogenetic distance, be- 
tween the four types studied (guinea pig, hamster, rat, 
mouse). This overall coherence should not conceal the 
fact that divergence can vary considerably from one level 
of organization to another. On the other hand, it suggests 
that the binomial terminology concordant/discordant, 

which is useful for practical reasons to classify organ xeno- 
graft rejection, does not properly reflect the variety and 
amplitude of the phylogenetic distances between species. 
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