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miR-559 polymorphism rs58450758 is linked to breast cancer
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ABSTRACT

Background: MicroRNAs (miRNAs) participate in gene regulation and the control of cancer-
related mechanisms such as apoptosis, invasion and differentiation. Single nucleotide poly-
morphisms (SNP) of the miRNA encoding genes may influence the development of cancer. We
hypothesized a link between miR-559 SNP rs58450758 and breast cancer.

Materials & methods: Bioinformatics analyses were performed to predict the miR-559 target
genes and the effect of the rs58450758 SNP on the stem-loop structure. A total of 129 breast
cancer cases and 153 controls were genotyped using PCR-RFLP.

Results: The recessive genotype (TT) was more common among breast cancer patients (23.3%)
than among controls (2%). The non-dominant genotypes (CT+TT) were associated with breast
cancer in patients (OR 3.62; 95% Cl, 1.95-6.69; p < 0.0001). Bioinformatics analyses suggested
that rs58450758 changes miR-559 secondary structure and forms new DICER sites in the pre-
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miRNA.

Conclusion: The miR-559 rs58450758 variant is linked to breast cancer.

Introduction

Breast cancer, is the most frequent non-skin cancer in
women and leads to half a million deaths in the world
each year [1-3]. Despite the well-known environmen-
tal risk factors, genetic defects can significantly contri-
bute to predisposition to breast cancer [4,5].

MicroRNAs (miRNAs) are single-stranded molecules
~22 nucleotides in length. Biogenesis begins with the
synthesis of pri-miRNA, stem-loop structure being
cleaved by the complex composed of DROSHA and
DGCR8 [6]. This miRNA precursor (pre-miRNA) is
exported to the cytoplasm and is further processed
by DICER into an miRNA duplex. Translational repres-
sion or degradation of mMRNA occurs when miRNA
binds to the RNA-induced silencing complex (RISC)
[7]. They can inhibit the expression of mMRNA by bind-
ing to the 3’ UTR region [8] (Figure 1). miRNAs control
several cancer-related mechanisms, including differen-
tiation, apoptosis, migration and invasion [9,10].
Several studies suggest that miRNAs play key roles in
many types of cancers, including breast cancer [11].

A single nucleotide polymorphism (SNP) is the most
frequent genetic variation and may occur every
100-300 bases [12]. Some studies have revealed that
SNPs could increase the incidence of breast cancer
[13,14]. Since miRNAs are small functional units, single
base changes (i.e. SNPs) in both the precursor elements
and mature miRNA sequences may drive the evolution
of new miRNAs by changing their biological function
and affecting their interaction with their target mRNA

[15,16]. A connection between structural changes and
ectopic expressions has been indicated for miRNA and
the diagnosis and incidence of breast cancer [17]. One
study demonstrated that miR-559 interacts with
a target sequence in the 3-UTR of ERBB2 and plays
a major role in carcinogenesis [18]. In light of these
studies, we hypothesized a link between miR-559
rs58450758 and the incidence of breast cancer using
both in silico and molecular genetic techniques.

Methods and materials

In an in-silico analysis, breast cancer microarray profiles of
miR-559 were acquired from the Gene Expression
Omnibus (GEO) database [19]. The GSE31309 dataset of
48 patients with early stage breast cancer and 57 disease-
free individuals served to compare miR-559 expression
[20]. Molecular interaction networks of miR-559 and its
targets were visualized by ‘miRTargetLinkHuman’ which
represents experimentally validated interactions [21]. The
effect of this variation on stem-loop structure was ana-
lysed using the ‘ViennaRNA’ Web Services. This online
server assesses RNA secondary structures and minimum
free energy (MFE) using the partition function (pf) algo-
rithm of McCaskill [22]. The ‘PHDcleave’ website was
employed to predict DICER processing sites in pre-
miRNA of human, based on the pre-miRNA sequence
using Support Vector Machine (SVM) model [23].

In a clinical study we recruited 129 newly diagnosed
patients with breast cancer and no previous history of

CONTACT SS Shahangian @ Shahangian@guilan.ac.ir; Z Salehi @ geneticzs@yahoo.co.uk e Department of Biology, Faculty of Sciences, University of

Guilan, Rasht, Iran
© 2019 British Journal of Biomedical Science


http://orcid.org/0000-0001-9861-4702
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/09674845.2019.1683309&domain=pdf&date_stamp=2020-01-08

30 e F BAHREINI ET AL.

Figure 1. The biogenesis of miRNA. (see text for details)

cancer or prior radiation therapy or chemotherapy.
Prognostic factors and clinic-pathological variables,
including lymph node involvement, histology, epider-
mal growth factor receptor status and hormone recep-
tors (progesterone and oestrogen receptors) were
obtained from medical records. The 153 control subjects
were chosen randomly from healthy women who
underwent regular health check-ups at hospitals and
clinics and who had a negative personal or family history
of cancer. Women with liver, cardiovascular, kidney or
metabolic disease and participants who reported other
types of malignancy were excluded. The two groups
were matched for age: mean [SD] 489 [15.8] in the
cases and 50.1 [16.4] in the controls (P = 0.59). All
procedures performed in studies involving human par-
ticipants were in accordance with the ethical standards
of the institutional and/or national research committee
and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.
Genomic DNA was extracted from 500ul blood sam-
ples using Triton X-100. DNA concentration and purity
were evaluated by NanoDrop 1000 spectrophotometry
(NanoDrop Technologies; USA). The extracted DNA
was stored at —20°C until use. For genotyping
rs58450758, polymerase chain reaction-restriction frag-
ment length polymorphism (PCR-RFLP) was used.
Amplification of the fragment of this SNP used F-5'
TATTGCTCTCTTCCCCAG 3’ and R-5' GTTCCGTCACACTATT
CA3' primers. Each reaction mixture comprised 2.5ul of
extracted DNA, 5ul of Tag DNA polymerase Master Mix
Red (Ampliqon; Denmark), 0.5 uM of each primer (forward
and reverse) and 1.5ul of purified water (Kimia Tehran;
Iran). After an initial denaturation step (94 °C for 5 min),
samples were subjected to 30 rounds of PCR at 94 °C for
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30 sec, 59 °C for 40 sec, 72 °C for 40 sec with a final
extension time of 5 min for 72 °C followed by a 4 °C
hold cycle amplifying a 610bp fragment. The PCR pro-
ducts were analysed by 1% agarose gel electrophoresis in
1X Tris-Borate-EDTA buffer at 100V and stained using
RedSafe Nucleic Acid Staining Solution (20,000x%; Boca
Scientific; USA). PCR products were digested by 2ul of
restriction enzyme Taal (HpyCHA4Ill; #ER1361, Thermo-
Fisher Scientific; USA) for 3h at 65 °C in order to detect
allelic variations. After digestion with Taal, the amplicon
was cut into 464 and 146 bp fragments in the presence of
the Callele, but the T allele remained undigested (610bp).
Digested PCR products were separated on 2% agarose
gel, stained using RedSafe and visualized under UV illu-
mination. All assays were blind and conducted by two
researchers without knowledge of the control or case
status. For quality control, 5% of samples were randomly
repeated with 100% concurrence.

MedCalc statistical software (version 14.8.1; Ostend,
Belgium) was used for statistical analysis. The statistical
significance of differences between patients and control
cases was calculated by the Pearson’s x> test. The odds
ratio (OR) and 95% confidence interval (Cl) were also
calculated. A value of p < 0.05 was considered statistically
significant.

Results

The expression of genomic blood miR-559 in patients
with breast cancer were significantly lower than in
the healthy controls in the GSE31309 dataset
(p < 0.001). The associations between miR-559 and
its target genes were explored using the
‘mirTargetLink’ software. Among 189 target genes
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Figure 2. (a) Network interaction between miR-559 and genes; 5 interactions with strong evidence (green) and 184 interactions
with weak evidence (blue) which are associated with the breast cancer incidence. Predicted secondary structure of human mir-559
with either (b) C allele and (c) T allele (n.79C >T), Minimum free energy (MFE) for rs58450758-C and rs58450758-T was calculated
—60.19 and —61.73 kcal/mol, respectively. Predicted DICER processing sites in pri-mir-559 with either (d) allele C and (e) allele T.
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Figure 3. RFLP analysis of the miR-559 rs58450758 polymorphism. Lanes 1 and 2: two fragments of 464 and 146 bp for CC
(homozygous). Lanes 3 and 4: three fragments of 146, 464 and 610 bp for CT (heterozygous). Lanes 5 and 6: undigested PCR
products of 610 bp for TT (homozygous). M: molecular size marker.

Table 1. Genetics of miR-559 SNP in cases and controls.

Patients Controls OR
Model N(%) N(%) (95%Cl)
Codominant genotype
c/C 87(67.4%) 135(88.2%) 1.00
(@2) 12(9.3%) 15(9.8%) 1.24 (0.55-2.77)
7T 30(23.3%) 3(2.0%) 1551 (4.59-52.40)°
Dominant genotype
c/C 87(67.4%) 135(88.2%) 1.00
CUT+T/T 42(32.6%) 18(11.8%) 3.62 (1.95-6.69)°
Recessive genotype
aC+ T 99(76.7%) 150(98.0%) 1.00
7T 30(23.2%) 3(2.0%) 15.15 (4.50-50.99)°
Over-dominant genotype
C/C+T/T 117(90.7%) 138(90.2%) 1.00
(@2) 12 (9.3%) 15(9.8%) 0.94 (0.42-2.09)°
Alleles
C 198(76.7%) 300(98%) 1.00
T 30(23.3%) 6(2%) 523 (3.12-8.83)°

p = 0.59, Pp<0.0001, “p = 0.88. OR = odds ratio, Cl = confidence interval.

of miR-559, ERBB2, MTA1, MTA2, CCND1 and ULK1
were found to have strong association with breast
cancer. Bioinformatics predictions using (ensemble.
org) web server confirmed that rs58450758 is located
in the stem-loop structure of miR-559. It also showed
that the frequency of this SNP is 0.21. The rna.tbi.
univire.ac.at/cgi.bin server was used to predict the
effect of this polymorphism on secondary structural
changes in miR-559. This webserver represented that
this polymorphism changes the secondary structure
of miR-559 (Figure 2(a,b)). ‘PHD CLEAV' showed that
this SNP creates new DICER sites in a sequence of
pre-miR599 (Figure 2(c,d)). Altogether, bioinformatics
analyses provide supporting evidence that miR-559
polymorphism (rs58450758) could be associated with
breast cancer.

We evaluated the genotype data of 153 female
controls and 129 female patients with breast cancer
(Figure 3). In the cases, 91 (70.5%) had ductal carcinoma,
38 (29.5%) had lobular disease. Tumour size was <5 cm in
41 (31.8%), =5 cm in 88 (68.2%) whilst tumour stage was
0-1l'in 44 (34.1%) and II-IV in 85 (65.9). Lymph nodes were
involved in 87 (67.4%) women. HER2 status was positive in
35 (27.1%), negative in 94 (72.9%), oestrogen receptor
status was positive in 82 (63.6%) and negative in 47
(36.4%), whilst progesterone receptor status was positive
in 92 (71.3%) and negative in 37 (28.75).

The observed genotypes and allele frequencies with
their estimated ORs are summarized in Table 1. In a codo-
minant model, the T/T genotype was found more fre-
quently among breast cancer patients than among
controls, and in a dominant model, the C/T + T/T



genotypes were associated breast cancer. The homozy-
gous T/T was significantly more common among women
with breast cancer. In a recessive model, a significant
difference in the T/T genotype frequency was found
among patients. The T allele was more frequent in breast
cancer.

Discussion

miR-559 (rs58450758) SNP was determined in 129 breast
cancer patients and 153 population-matched controls.
We found a significant association for the miR-559
rs58450758 TT genotype with an increased risk of breast
cancer. Studies on multiple SNPs and the incidence of
breast cancer have shown the association between these
two phenomena. These findings are similar to the result of
this study; however, there have been studies showing no
relation between this SNP and breast cancer [24-27].

MiRNAs are known to regulate several genes and
down-regulation of their expression has been shown in
many cancers, including breast cancer [28-30]. Studies
have demonstrated the links between over-expression of
ERBB2 (human epidermal growth factor receptor 2; HER2)
and invasion of tumour cells, the development of breast
cancer through several intracellular signalling pathways,
including the Janus kinase/signal transducer [31-33].

Studies have also demonstrated that structural changes
in MiRNA caused by a SNP or other mutations alter their
designated function and bring about defects in the trans-
lation of targeted transcripts [34]. Several studies have
reported significant associations of SNPs in miRNAs,
including miR-27a, miR-196a2 and miR146a, and the risk
or incidence of breast cancer [35,36]. Meshkat et al. sug-
gested that functional SNP in miR-146a would lead to
breast cancer survival by affecting the HER2 status [37].
Yang et al. suggested that the decreased expression of
miR-559 correlated with tumour size in patients with glio-
blastoma multiforme [38]. Bioinformatics analysis suggests
that miR-559 may play a relevant biological role in the
regulation of HER2 expression by interacting with the 3’-
UTR of HER2 mRNA [39].

The results of the present study also predict the effect
of rs58450758 on miR-559 molecular structure. The miR-
559 rs58450758 is located in the coding region of the pre-
mMiR-559 hairpin in the stem-loop structure. This variant is
located in miR-559 3p site, but since the miR-559 3p strand
is unstable, this strand acts as the passenger strand after
the DICER cut-off activity and then degrades. In silico
analysis indicates that rs58450758 changes the secondary
structure of miR-559 and, in the secondary structure, cre-
ates new cleavage sites for DICER. As shown in Figure 2d,
one of the new cleavage positions is in the 34™ nucleotide
of the pre-miRNA. If DICER cleaves the pre-miRNA in this
position, the produced mature miRNA consists of 19
nucleotides and the miR-559 is made up of 21 nucleotides.
The truncated miR-559 likely has less stability and, there-
fore, a shorter half-life; thus, probably for people with this
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mutation, miR-559 probably does not function properly.
‘GEO’ analysis showed that miR-559 is down-regulated in
breast cancer patients. Based on our bioinformatics analy-
sis, miR-559 down-regulation could increase the risk of
breast cancer.

Some limitations need to be considered when the
results are analysed. Firstly, this study was restricted to
a single racial/ethnic group, and we acknowledge that
there may be differences in this SNP in the breast cancer
characteristics of different populations which should be
further investigated. Secondly, this study included 129
breast cancer patients and 153 control subjects, and so an
expanded study using a larger patient and control popula-
tion is required. Finally, just one potentially functional SNP
of miRNA was researched, which did not cover all variants.
To verify the effect of rs58450758 SNP on the secondary
structure of miR-559, further studies are needed.

This work represents an advance in biomedical
science because it shows a link between the incidence
of breast cancer and the miR-559 (rs58450758) SNP.

Summary Table

What is known about this subject:
« MiR-559 interacts with a target sequence in the 3'-UTR of ERBB2 and
plays a major role in carcinogenesis.
« There is an association between alteration in miRNA expression, and
breast cancer prevalence.
« Structural changes of miRNAs in response to structural miR-SNPs could
result in abnormalities in their function.
What this paper adds:
« Bioinformatics analysis showed that rs58450758 polymorphism
changes the secondary structure of miR-559
« 'PHD CLEAV' web server showed that this SNP creates new DICER sites
in a sequence of pre-miR599.
« C/T + T/T genotypes of the variant rs58450758was significantly asso-
ciated with breast cancer.
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