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Introduction

Many biomedical scientists are involved in the generation of
numerical or descriptive data derived directly from human
body tissues. For haematologists, the data generated may be
the number of red and white blood cells in a sample of
venous blood, while for biochemists the data may be the
level of glucose in that blood sample. Microbiologists may
collect data on which particular microbes are present in a
sample of sputum from a patient with a lung problem, and
histologists may study lung tissues from that patient: the
data they handle may determine the presence or absence of
cancer. Data may not only be at a single time point, as in
some cases we are interested in how a molecule (perhaps
cholesterol) changes as someone undergoes a change in
their diet and lifestyle.

In biomedical science – and, indeed, in almost all branches
of science – information can be described as one of two types.
Quantitative data are information that have been assigned a
directly measurable numerical value. Examples of this are
height, weight, age, red blood cell count, temperature, serum
potassium, or perhaps the proportion or percentage of
patients with a particular problem (e.g., an infection, a risk
factor or a cancer) or a particular ABO blood group. In almost
all cases, the value of the data is defined not by an individual
but by an objective observation or scale, itself often derived
from a machine. Qualitative data, on the other hand, are
information gathered and analysed primarily as words
(singly or in phrases), possibly in narrative form or with
descriptive quotations. The proponents of qualitative
research quite reasonably argue that not all information can
or should be reduced to a number. For example, how can one
reasonably quantify (place a numerical value on) someone’s
attitudes or opinions, such as a belief, fear or love?
Qualitative data are often obtained from people in surveys,

interviews or observations, generally from a validated or
structured questionnaire. An alternative would be to observe
and record verbal or written comments from a defined focus
group. However, as the vast majority (if not all) of the
information collected and presented to the biomedical
scientist will be quantitative, we focus on these types of data.

The purpose of this document is to provide a broad
overview of the issues surrounding data handling and
statistical analysis as it applies to biomedical science. We will
explore the different ways in which data can be described
and analysed, and consider issues that relate to best practice
when handling data. 

Quantitative data

Broadly speaking, almost all quantitative data fall into one of
two types: that which is categorical and that which is
continuous. Categorical data fits into one of any number of
discrete boxes or categories – there are no ‘in betweens’. An
example of this is the number of men and the number of
women in a particular group. Another example is children.
In real life, you cannot have a fraction or proportion of a
child, only whole numbers. This concept can be extended to
more than two discrete groups. For practical purposes,
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almost all people belong to one of four ABO blood groups
(A, B, AB and O). Microbiologists can say with a good degree
of confidence that an organism (e.g., methicillin-resistant
Staphylococcus aureus [MRSA]) is present or absent – there
should be no in-between. Immunologists can say ‘yes’ or ‘no’
to the presence of antibodies to microorganisms and
whether or not a patient with rheumatoid arthritis is
seropositive or seronegative. Histopathologists will tell us
that a tissue either is or is not invaded by a cancer, while
cytologists report the presence or absence of certain
abnormal cells. 

Continuous data include factors such as height, weight,
blood pressure, and just about all haematology and
biochemistry results (e.g., the number of red and white
blood cells and levels of triglycerides and sodium in the
serum). The data, consisting of individual numbers, can be
described by almost any figure in a given range (e.g., age,
which can be anywhere between 0 and 100 years plus). The
presentation and analysis of continuous data is more
complex than if the data were categorical. When the data are
continuous we need to consider three aspects: the central
point or tendency, the variance, and the distribution.

Central point 
The most important statistical aspect of data that has a
continuous distribution is the central point. Some statistician
prefer to use the word ‘tendency’ (which may seem rather
inexact) instead of ‘point’, which is not unreasonable as
there are actually two such values within a single data set –
the average value and the middle value. These two different
central points are the mean and the median, respectively. We
obtain the mean point of a set of data simply by adding up
all the data and then dividing by the number of individual
data points. So, when we talk about an ‘average’ we are
often referring to the mean. An alternative way of arranging
a set of numbers is to list them in rank order (i.e., from the
lowest to the highest). If we do this, the data point in the
middle of the entire series is the median. So, the median
value is arrived at by a completely different set of rules than
is the mean value. Thus, each set of data has both a mean
and a median. Sometimes they are the same number (or are
very close together), but in other data sets they may be very
different.

Variance 
A second important concept in a set of data is its variance.
This index gives us information such as the highest and
lowest points in a particular group of data, and the extent to
which the data cluster tightly around the central point of the
mean or the median. If it is tightly clustered, the data are said
to have low variance: if more diverse (spread out), it has
high variance. We use one of two particular measures of
variance depending on the nature of the central point (the
mean or the median). When we use the mean, we use
standard deviation to describe the variance. However, when
using the median then the variance is described in terms of
the inter-quartile range. 

The standard deviation (SD) provides an idea of the
degree to which the data are clustered close about the mean
value or are more spread out (i.e., the variance). For example,
in a data set with a mean of 100 and a SD of 20, perhaps two-
thirds of the data points lie within one SD either side of the
mean (i.e., between 80 and 120). However, we can go further,

and often find that nearly all the data points (about 95% of
them) are between 60 (i.e., the mean minus two SDs) and 140
(i.e., the mean plus two SDs). However, if another data set
has a similar mean of 100 but a much smaller SD (e.g., 8) 
then 95% of the data points should range between 84 (i.e.,
100 minus 16) and 116 (i.e., 100 plus 16). So, a small SD tells
us that the set of data is tightly clustered near to the mean,
and when the SD is large it means that the data are more
spread out. The mean and SD of the first data set is described
as 100 (20), although some (erroneously) use the notation
100±20. Similarly, the second data set can be written 
as 100(8). Figure 1 illustrates this concept.

The second method of describing variance, the inter-
quartile range (IQR), is derived from the data points that are
one-quarter and three-quarters of the way into the complete
data set when it is ranked from lowest to highest. So, starting
from the lowest point, and working our way up, after we
have looked at a quarter (i.e., 25%) of the data points, we
have the 25th percentile. Continuing to work up the data set,
the half-way point (i.e., after we have looked at half [50%] of
the data points) is the 50th percentile (i.e., the median – as
we have arrived at the middle of the data set). Continuing
up the rank, after we have seen 75% of the data points, we
have arrived at the 75th percentile. Finally, the highest value
is the 100th percentile, as we will have assessed all (100%) of
the data points. The IQR, like the SD, also gives us an idea of
the spread of the data. We would write a summary of this
type of data of the median and IQR as 77 (49–148). Note that
the median value here (77) is certainly not in the middle of
the IQR of 49 to 148. Clearly, 77 is much closer to 49 than it is
to 148, and this fact is an important feature of these types of
data. However, the data set 77 (70–100), with the same
median, has a much smaller spread (range) of data points
than the set 77 (49–148). 

Distribution 
We bring the concepts of the central point and variance
together to describe the distribution of a set of data. The vast
majority of data in biomedical science are generally of a
normal distribution, and include many laboratory and
physiological indices such as haemoglobin, albumin, height
and body mass index. This distribution may be described as
‘bell shaped’. An important component of data with a
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Fig. 1. Variance. Pattern A and pattern B both have the same
central point value of about 95. However, the two patterns have very
different variances – pattern A (lower) covers a much greater range
(from about 65 to 120) compared to pattern B (upper), which runs
from 90 to about 98. So, in both cases the mean is 95, but the SD
of pattern A is 9, while the SD of pattern B is only 2.
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normal distribution is that we take the mean to be the central
point of the data set. When data are normally distributed,
the mean and median are close together (e.g., 26.6 and 27),
and the SD is far smaller than the mean (e.g., 100[20]). Figure
2 provides an illustration of a data set that is normally
distributed. Data that has a non-normal distribution is less
common, perhaps the best example from biochemistry being
levels of serum triglycerides in a healthy population, and
from physiology the duration of a pregnancy. These types of
data may also be described as ‘skewed’. An important
characteristic of data with a non-normal distribution is that
the mean and the median are always far apart (e.g., a mean
of 35.8 and a median of 25), so that the average of the dataset
is not the middle point. Furthermore, when data are non-
normally distributed, the SD is often quite large compared to
the mean. Thus, a mean (SD) of 60 (45) is very likely to be of
non-normal distribution. So, in these cases we use the
median to define the central point and the IQR to define the
variance. These points are illustrated in Figure 3.

The nature of the distribution is important because it is
needed to be able to apply the correct statistical test to the
data, or decide if a particular result from a particular patient
warrants attention. Choice of the wrong statistical test may
lead to an incorrect answer. Broadly speaking, there are a
few simple rules about whether or not data are distributed
normally or non-normally. If the SD is much smaller than
the mean then the data are very likely to have a normal
distribution (e.g., a mean of 100 with an SD of 15). However,
if the SD is large compared to the mean (e.g., 100[90]), then
the data are very likely to be distributed non-normally. The
question, therefore, is how much smaller does the SD have
to be compared to the mean for it to be normally distributed?
A frequently cited rule of thumb is generally about a third.
So, if the SD is up to a fifth of the mean (as above), a normal
distribution is expected. If the SD exceeds the mean then the

distribution is unquestionably non-normal.
If the mean and median are close together, the data are

likely to be normally distributed (e.g., mean 26.6 and median
27 [a difference of only 1.5%]). However, if the mean and
median are far apart (e.g., 35.8 and 25 [a difference of 43%])
then the data are very likely to be non-normally distributed.
A big problem with these two methods is that they work
very well only for data where the nature of the distribution
(e.g., mean 34, SD 2.5) is reasonably obvious and/or you have
a great deal of experience. Fortunately, all good statistical
software packages have programs that determine
distribution. Details of these statistical packages will be
presented in Part 2 of this article, to be published in the next
issue of BJBS.

Analysis and interpretation of data

Biomedical scientists use scientific methods to understand
disease processes with a view to providing a diagnosis and
then monitoring treatment. For many, this will be to
compare the pathology result from an individual whose
health status is unclear with that from a group of individuals
we know to be healthy. Other studies (possibly in research)
may compare data from a group of individuals (e.g., with a
particular complaint, symptom or frank disease [often
referred to as the cases]) with that from another group
generally considered to be free of the problem (the controls
– hence, a case-control study). In both types of analysis, the
control group provides the normal or reference range.
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Fig. 2. Data distributed normally. This shows the distribution 
of a set of data arranged as a series of columns (histograms). The
‘height’ of each histogram (described as the frequency on the vertical
Y axis) depends on the number of data points in each particular
histogram. A ‘tall’ histogram has more data points than a ‘short’
histogram. The data (on the horizontal X axis) run from the lowest
of 65 to the highest of 120, with a central point value of about 95. 
The tallest histogram column (with a value of about 95) is roughly 
in the middle of the entire set of data, with roughly an equal number
of histogram columns above (nine columns to the right) and below
(eleven columns to the left) the highest column. This means that we
can be fairly confident that the data are distributed normally, even
without knowledge of the mean and SD. However, we can safely
predict that the mean value is about 95.

Fig. 3. Data distributed non-normally. This set of data has some
aspects in common with the data in Figure 2. The data are
presented as histogram columns and the ‘height’ of the histogram 
is also related to the number of data points present. However, many
other differences are present. Perhaps the most obvious is that the
‘tallest’ histogram is not in the centre of the set of histograms, but is
over to the left hand side. The data values run from zero on the left
to 500 on the right, although the computer software that drew this
plot has taken the X axis to 1000. The most crucial aspect of this
dataset is that, unlike the normally distributed data set in Figure 2,
there is only one histogram to the left of the tallest histogram, but
nine histograms to the right. Therefore, we can say that the data are
skewed to the left. This means that we can be fairly confident that
the data are distributed non-normally. Other analyses, such as the
size of the SD compared to the mean, or the difference between 
the mean and median values, would be needed to confirm this.
Nevertheless, we can predict with a reasonable degree of confidence
that the median value is around 50.
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Reference range
We need to know about distribution so that we can
accurately determine if there is a statistically significant
difference between different sets of data, or if the result from
a particular individual is abnormal when compared to a
large number of healthy persons. Illustrating the former, the
blood pressure of one group with mean (SD) of 156 (25)
mmHg is clearly different from that of another group of 132
(21) mmHg. Indeed, this difference of about 18% seems large
and so may be significantly different. However, precise
statistical tests must determine whether or not such a
difference does not merely ‘seem’ significant but is
genuinely statistically significant. 

A second ‘need to know’ about the distribution of an index
is in the ability to define a particular result from a certain
individual (e.g., a patient with a serum triglyceride result of
2.1 mmol/L) as normal or abnormal. This is important as a
high level may indicate a particular syndrome, the presence
of a particular disease, or an increased risk of a heart attack.
In this case we need to compare the triglyceride level from
that individual with the results of the same test from a large
number of people we know to be healthy. Data from this
large group make up what is called the reference range. We
need to know the distribution of triglyceride data in this
healthy population in order to be able to make a judgement
about whether or not a result from an individual is within or
outside this reference range.

Let us suppose that 100 healthy people (referred to as the
sample size) provide overnight fasting blood for a
triglyceride test, and that the results have a non-normal
distribution, with 95% of the results lying between 0.5
mmol/L and 1.9 mmol/L. Under these conditions the result
for the individual in question (2.1 mmol/L) only just exceeds
the top of this reference range, and so may possibly require
additional investigation. However, if the reference range has
a normal distribution, it will provide different values that we
would consider to be healthy (e.g., between 0.8 mmol/L and
1.5 mmol/L). If so, the result from the individual patient of
2.1 mmol/L is of greater significance because it is much
higher than the top of the reference range and so may have
significant clinical repercussions.

Hypothesis, sample size and power
A key step in research is to be able to describe what it is you
want to find out in terms of a question, and then turn it into
a statement, generally called an hypothesis. Indeed, much of
the research process is called hypothesis testing. People with
an interest in heart disease may ask “Does the cholesterol
level in one group differ from that in another group?” This
can be turned into a formal hypothesis statement such as
“the mean cholesterol level of one group is 0.5 mmol/L
higher than that in a different group”. Other researchers
may form their hypothesis as “the mean systolic blood
pressure of a group of patients will be reduced by 10 mmHg
if they regularly take a particular drug”. Once the hypothesis
has been formed, a precise mathematical calculation is
required to determine how many people (the sample size)
are to be recruited in order to ensure that any findings are
reliable – this is couched in terms of power. If a study is
underpowered (i.e., has not recruited sufficient people – the
sample size is too small), then the difference in levels of
cholesterol between the two groups, although seeming
large, may not be significantly large. A statistician should be

consulted at an early stage to define the correct number of
subjects to be recruited (i.e., to perform a power calculation).
A general rule of thumb is the equation ‘significance =
difference x power’. What this means in practice is that a
large difference between two data sets many not be
statistically significant because of low power (i.e., the sample
size is too small).

Probability
It is a well-established fact that normal, healthy adult men
are taller than normal, healthy adult women. But this may
not be the case in all populations; for example, women who
have grown up with high levels of growth hormone are very
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Fig. 4. Correlation. a) Relationship between height and weight. 
b) Relationship between weight and age. c) Relationship between
age and distance run. See legend to Table 1 for an explanation.
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coincidental in only 1 in 200 (i.e., 0.5%), which means that
the chances of the effect being real are 199 in 200 (i.e., 99.5%).
Thus, a probability of one in 200 gives P=0.005, a result that
is considerably less (10 times less) than 0.05. Overall, the
smaller the P value, the greater is the likelihood that the
difference is real and not due to chance.

Analysis of data from an individual

Is a serum total cholesterol result of 6.1 mmol/L of concern?
This depends on the age, gender and some other health issues.
But an initial question may be “Is this result within the
reference range?” As discussed, the reference range is
composed of results from hundreds or even thousands of
supposedly healthy people (e.g., blood donors). Using the
example of cholesterol, we would expect data from a large pool
of healthy people (e.g., 400) to have a normal distribution, 
with a mean of perhaps 4.5 mmol/L and an SD of maybe 
0.5 mmol/L. As already described, an important component
of the relationship between the mean and SD of a normally
distributed index such as cholesterol is that the results from
95% of those people (i.e., about 380) will lie between 3.5 and
5.5 mmol/L – these numbers being derived from the mean
value plus two SDs and the mean value minus two SDs. 

The figure of 95% of the data points (as opposed to, for
example, 70% or 80%) is chosen because it is most likely to
provide representative and reliable information. So, if 95%

likely to be taller than men who have grown up with low
levels of growth hormone. Despite this, at the practical level,
we can predict that the average height of even a small group
of men is likely to be taller than the average height of a
similar sized group of women. However, statisticians use the
word probability (abbreviated to P) to give a more scientific
and secure basis to this likelihood. In this setting, we are
keen to establish whether or not a difference in two sets of
data is genuinely due to, for example, a pathological process,
or is due simply to chance. 

Statisticians have developed a consensus which says that
we are prepared to accept a difference as real if the
probability of it being a real effect (i.e., not due to chance) is
greater than 95% (i.e., 19 times out of 20). We express 95% in
the decimal form as 0.95. So, in accepting that there is a 95%
probability that the difference is real, then we also accept
that there is a 5% (i.e., one out of 20) probability that the
difference could be coincidental – that is, due to chance. We
express 5% in decimal form as 0.05. Hence, our requirement
is for P to be less than 0.05 (i.e. P<0.05). It follows that if
P=0.06 (i.e., we have a likelihood of 94% that the difference
is genuine), we do not consider this to be of sufficient
reliability, and so describe it as statistically not significant.

It follows that if the chance of an effect being spurious is
only 1 in 10 (i.e., P=0.1) then this difference is not statistically
significant because 0.1 is greater than 0.05. What would be
even more significant would be if a difference is so large that
the probability of such a difference being spurious or
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Subject Height (metres) Weight (kilograms) Age (years) Distance run (metres)

1 1.56 70 43 6100

2 1.23 65 56 5200

3 1.70 72 29 6900

4 1.81 84 59 4800

5 1.46 72 34 7100

6 1.50 70 56 4800

7 1.59 66 45 4500

8 1.66 79 72 3700

9 1.70 74 56 5100

10 1.48 69 45 4800

11 1.85 88 67 4200

12 1.66 75 55 5250

Table 1. Correlation. Consider these data from 12 people: their height, weight, age and
distance that they can run in a certain fixed time period such as 30 minutes.

By plotting the height and weight for each person, a graph is 
obtained (Fig. 4a). Because the two indices have a normal
distribution, Pearson’s method is used. In doing so, r=0.85 
is obtained, which indicates a strongly positive relationship. 
It also happens that this is statistically significant (P=0.001). 

Similarly, a plot of each person’s weight against their age (Fig. 4b)
also gives the impression that as someone’s age increases, so does
their weight. Indeed, the correlation coefficient for these data is
r=0.56, which would normally be quite respectable. However, the
probability that these data are a true reflection of the relationship
between age and weight just fails to reach statistical significance 
as P=0.06 (i.e., the likelihood of a difference being genuine is ‘only’
94%). It is very probable that the addition of three or four more data
points to this set, with little change to the correlation coefficient,

would reduce the P value (e.g., to P=0.045) and so would be
significant purely because of the increased power. This is because the
strength of the probability = difference (r value) x power (sample size).
It follows that a sample size of 12 in this case may not be large
enough, and so the analysis is underpowered. 

The relationship between age and the distance run is presented in
Figure 4c. Analysis points to an excellent correlation coefficient where
r=0.87, slightly better than the relationship between height and weight.
Indeed, the probability that these data truly reflect a real association is
highly significant, with P<0.001 (i.e., greater than 99.9%). However, as
the relationship is inverse, we have to place a minus sign before the
correlation coefficient (i.e., r = –0.87). If all the data points were to be
found on a straight line, the correlation coefficient would be –1. In
practice, however, this is almost never found in biomedical science.



Analysis of data from two groups of individuals

In looking at data from two groups of individuals, we apply
different statistical tests depending on the nature of the data
and what hypotheses we are testing. 

Continuously-variable data from 
two different groups of subjects
It is accepted that total cholesterol data are normally
distributed, and so data would be presented as mean and
SD. The correct test to use in this case is Student’s t-test. If
the data from one group of perhaps 30 persons is 5.9 (0.7)
mmol/L, and that for a different group of 30 is 5.1 (0.6)
mmol/L, then by applying the t-test we get a P value of 0.025.
The power calculation (giving a sample size of 30 persons
per group) will ensure that this number of subjects is large
enough to provide confidence that the result will be reliable.
The P value of 0.025 is less than our cut-off point of P<0.05,
so we can say with confidence (i.e., P=0.975, or 97.5%) that
the difference is statistically real and is not spurious. By
contrast, serum triglycerides have a non-normal distribution
and would be presented with a median and IQR. Such data
would be analysed by the Mann-Whitney U test. If the
results for the first group is 1.7 (1.2–2.8) mmol/L, and the
second is 1.1 (0.9-1.6) mmol/L, then application of the Mann-
Whitney U test would give a probability value of P=0.002.
This is a highly significant difference, as we can say that the
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of the results from this population are within two SDs either
side of the mean, what about the remaining 5%? There are
likely to be as many at the bottom end of the scale as at the
top end of the scale, and in our example it means that 10
people will have a cholesterol level below 3.5 mmol/L, and
another 10 will have a result over 5.5 mmol/L. It is important
to point out that these people are not immediately
considered to be in ill-health. 

So, given the above criteria, a serum cholesterol of 6.1
mmol/L is certainly above the top of the reference range of
3.5 to 5.5 mmol/L. But is this person in ill-health? This we
cannot say as more details are needed before we give the
individual a potential diagnosis, which in this case would be
hypercholesterolaemia. Certainly, we feel that the individual
should be made aware of this high cholesterol result and
generally instructed on the risk factors for atherosclerosis
and their contribution to heart attack and stroke. Although
the cholesterol result of 6.1 mmol/L may be markedly raised
compared to the normal range, it is generally inappropriate
to say it is ‘significantly’ raised in the statistical sense of the
word. However, it is possible to define the exact probability
that a single laboratory result is outside the normal range,
but this analysis is complex and is beyond the scope of this
document. We reserve the use of expressions such as
significance and probability for situations in which there is a
different mode of analysis, such as that of data from groups
of individuals or sets of data.

Level of creatinine (mmol/L)

Patient number Before the drug After the drug Difference

1 150 126 –24

2 225 196 –29

3 176 168 –8

4 166 172 +6

5 145 140 –5

6 226 196 –30

7 189 168 –21

8 168 173 +5

9 173 146 –27

10 149 144 –5

11 171 155 –16

12 156 149 –7

Mean (SD) 174 (27) 161 (21) –13 (13)

Median (IQR) 169 (151–186) 161 (144–172) –12 (5–26)

Table 2. Data at two time points.

These illustrative data show the effect of a new drug on the function
of the kidney. We need to obtain a blood sample before the drug is
issued, and then place the patients on the new drug for perhaps
several months, and then take a second sample of blood. Note that
in 10 of the 12 patients, the level of creatinine has fallen. However,
in two patients (numbers 4 and 8) levels have increased.
Nevertheless, overall there has been a decrease in creatinine that,
assuming no other changes in the lives of the patients, implies that
the drug may be active in alleviating the renal disease in these
patients.

To be fully confident, however, we need to apply the correct statistical
test to the data. The choice is between a paired t-test and the

Wilcoxon test. Although the mean difference (–13) is the same as the
SD (13), it is virtually the same as the median difference (–12), so we
can be fairly confident that the data are normally distributed and so the
appropriate test would be a paired t-test. This test will give P=0.004,
which is considerably smaller than the required cut-off point for
statistical significance (P<0.05). In fact, this P value tells use we can
be 99.6% confident that the effect is real, and only 0.4% confident that
the difference is due to chance. 

In this type of study we should also measure creatinine in a similar
group of patients who have not been taking this particular drug over the
same time period. We call these subjects the control group – this is a
vital consideration when designing and carrying out experiments.



distribution (e.g., height and weight), we use Pearson’s
correlation method. However, if one or both sets of data
have a non-normal distribution (e.g., total cholesterol and
triglycerides) we have to use Spearman’s correlation
method. These aspects are illustrated in Table 1 and Figure 4. 

Analysis of continuous data obtained at two time points 
So far we have been looking at data that are generally
assessed at a single time point. However, it is also important
to be able to assess whether or not there is a change in a
particular index in a group of people at two time points.
These types of data are called ‘paired’ because there are
always pairs of figures (e.g., before and after), never just a
single point. In clinical medicine, as part of the development
of new therapeutics, we need to know if a new drug
genuinely influences the biological system it is designed to
act upon. For example, to be convinced that a new drug
designed to lower blood pressure actually does so, we need
data on the reduction of systolic blood pressure and/or
diastolic blood pressure from the same people before they
are placed on the drug, and then again later, once they have
been taking the drug for perhaps weeks or months. Exactly
how much the drug can be expected to reduce blood
pressure will determine, via a power calculation, the
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probability that the difference is real is 99.8%, while the
probability that the difference is spurious is only 0.2%.
Therefore, there is a difference in total cholesterol levels of
P=0.025, and a difference in triglyceride levels of P=0.002.
Thus, the difference in the triglyceride data is greater than
the cholesterol data. The questions that follow may include
“why are these differences present?” and, perhaps later, “if
these differences have important consequences, do we need
to act on either of them?”

Two sets of continuously variable data from 
a single group of subjects
Not only can we compare a single laboratory index (e.g.,
serum cholesterol) from two different populations (as above)
but we can also look at two different sets of data (e.g., serum
cholesterol and blood glucose) within a single population. We
may predict (or perhaps hypothesise) that the two are related
in that those people who have a high cholesterol will also
have raised glucose, and those who have low cholesterol will
also have low glucose. We are therefore predicting a
correlation between glucose and cholesterol, and in doing so
we seek a correlation coefficient, represented by the Greek
letter Rho (r). A very strong association between two sets of
indices would be represented by a correlation coefficient
where r is close to 1 (e.g., 0.92), whereas we would consider
the relationship to be weak if we obtained a small r value of
perhaps 0.15. Once more we need to perform a power
calculation to ensure that the number of data points (sample
size) is large enough to provide meaningful data. For
example, a correlation coefficient (r) of 0.65 may seem good,
but the probability that this association is genuine (i.e.,
P<0.05) will only occur if the sample size is sufficiently large.
Conversely, large epidemiology studies often provide very
significant P values (e.g., P<0.001) on correlations that seems
poor (e.g., r = 0.15), merely because the sample size is of
thousands of people.

We must be cautious about interpreting correlations. The
fact that two indices correlate strongly does not necessarily
mean that one causes the other. A crucial comment is always
to recall that correlation does not imply causation. An
excellent example of this is the relationship between height
and weight. It is quite well established that, in general, tall
people are heavier than short people, but it is just as well
known that two people of the same height can have very
different weights (and vice versa). It is also evident that, in
general, height correlates with weight. But is this because
the taller you are, the heavier you become, or is it that the
heavier you are, the taller you become? The former seems
more likely. A better example in biomedical science is from
human epidemiology and clinical studies where we know
that systolic blood pressure in a large population generally
correlates very strongly with diastolic blood pressure. But
the increased systolic value does not cause the diastolic
value to rise – the factors that act to increase systolic blood
pressure also act to cause diastolic blood pressure to rise. As
a result, both systolic blood pressure and diastolic blood
pressure rise in parallel, but do so independently of one
another. 

As in comparing two groups of data from different
populations, where we use Student’s t-test if the data are
normally distributed and the Mann-Whitney U test if they
are non-normally distributed, we have a choice of different
tests of correlation. If the two sets of data have a normal

• Quantitative data are generally of two forms: that which is
continuously variable and that which is categorical.

• Data which are continuously variable must be subjected to a 
formal test to define distribution. The two most common forms 
of distribution are normal and non-normal.

• Data which are normally distributed should be presented as mean
and standard deviation. Differences between two data sets of
normal distribution should be sought using Student’s t-test.

• Data which are non-normally distributed should be presented as
median and inter-quartile range. Differences between two data 
sets of non-normal distribution, or between one set of data
normally distributed and one set non-normally distributed,
should be sought using the Mann-Whitney U test.

• Differences between data sets which are categorical should be
sought using a test such as the Chi-squared (χ2) test.

• If possible, research questions should be formed in terms of an
original hypothesis. If possible, such an hypothesis should be
quantified. A quantified hypothesis should be supported by a 
power calculation to define the sample size.

• Any relationship between two sets of data may be sought by
correlation. For data normally distributed, Pearson’s method is
appropriate. If one or both sets of data are non-normally
distributed, Spearman’s method is appropriate.

• Differences in directly linked pairs of data (e.g., serial data) 
should be sought using a paired t-test (if the difference between
the linked pairs has a normal distribution) or Wilcoxon’s method 
(if the difference has a non-normal distribution).

• In order to be assured that any difference we have is genuinely
ascribable to a defined pathology, and is not due to chance, 
we require that the probability of chance is less than 5% 
(i.e., P<0.05). It follows that we require the probability to exceed
95% in order to be confident that the difference is genuine.

Table 3. Key aspects of good analytical practice.



GLOSSARY

minimum number of patients to be recruited. Table 2
provides the opportunity to explain these points.

The exact type of statistical test depends on the nature of
the distribution of the data: if the difference between the two
sets of data is normally distributed then a paired t-test is
appropriate. However, if the difference between the two sets
of data is distributed non-normally then Wilcoxon’s test
should be used. It is important to note that in both cases it is
not the distribution of the original data or the follow up that
is important, but the difference between them. Paired
analyses need not be linked in time but may be linked in
other ways (e.g., the systolic blood pressure in the left arm
compared with that in the right arm in the same person, or
the difference in a component of blood measured in serum
compared to plasma from the same person).

Analysis of two sets of categorical data
An example of this class of data is the number of people who
fall into only one of a small number of well-defined
categories (e.g., being male or female, whether or not you
regularly smoke cigarettes). In pathology, alternatives may
be the presence of a certain cancer, the presence of a
condition such as diabetes, or a history of heart disease.
Taking the last as an example, an appropriate hypothesis

may be “people with diabetes have twice as much heart
disease as people without diabetes”. In order to test this
hypothesis we need to examine the presence of heart disease
in two groups of people – those with diabetes and those free
of diabetes. We also need to define heart disease precisely
(e.g., history of angina, having had a heart attack or heart
surgery). In this comparison, we describe those free of
diabetes as the control group. 

The next step would be to find out how many people we
need to recruit in order to have sufficient statistical power
for our result to be reliable. If we expect a frequency of heart
disease of 10% in the healthy control group, then our
hypothesis would suggest a doubling in the frequency (i.e.,
to 20%) in the group with diabetes. The power calculation
calls for a sample size of 200 (i.e., 100 people in each group).
As with the definition of a normal or a non-normal
distribution, statistical programs are available that will
define precisely the exact number of people a study requires
(i.e., the sample size). 

Following ethics committee approval, data collection may
begin. Perhaps the best source of the 100 patients with
diabetes would be a diabetes out-patient clinic, and the data
itself may be the simple answer of ‘yes’ to the presence of
one of the definitions of heart disease previously outlined.
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Categorical data
Data that fits into exact, unambiguous units with no data
points between. Examples include gender (where effectively
everybody is either male or female) and marital status
(everybody is either single or married). In both cases there
is no third option, no in-betweens. 

Chi-squared (χ2) test
Used to analyse the frequency/proportion of categorical
data in different groups.

Continuous data
Numbers that flow freely from zero to very, very large, with
an almost infinite number of steps between each data point
(e.g., age, weight, height, virtually all plasma molecules).

Correlation and correlation coefficient
A method for examining possible relationships between
two sets of continuous data from the same groups of
subjects (e.g., height/weight/age). It follows that you cannot
correlate, for example, gender and smoking or gender and
height. Correlation does not imply causation. It derives a
correlation coefficient (r, or Rho) where 0.9 is excellent, and
implies a strong and significant association, and 0.1 is poor,
implying a weak, non-significant association. 

Hypothesis
A research question reworded to be a statement. Generally,
this statement should be quantified (e.g., patients with a
certain disease have 20% more substance ‘x’ in their blood
than another group). However, some hypotheses are not
easily quantified.

Interquartile range (IQR)
Defines the spread or variance of data that are non-

normally distributed, and so is presented with a median.
Thus, in a data set of median (IQR) 120 (100–180), 25% 
of the data points are less than 100, and the next 25% 
are between 100 and 120. The third quartile is between 120
and 180 and the final 25% are above 180. Thus, the first to
third quartiles will include half of the total number of
observations.

Mann-Whitney U test
This tests differences between sets of data where at least
one is non-normally distributed. It is expressed in terms 
of median and inter-quartile range (IQR).

Mean 
The ‘average’ of a set of data – obtained by adding up all the
data points then dividing the sum by the number of
individual data points.

Median
The ‘middle’ of a set of data – obtained by ranking all the
data from lowest to highest.

Non-normal distribution
Data are skewed so that the highest frequency 
of observations (the median) is not at the central point 
of the data set but is to one side (generally on the left) 
of the entire set. The mean and median are far apart, 
and the standard deviation is large in relation to the 
mean. 

Normal distribution
A bell-shaped curve with the mean generally in the centre
and with two equal ‘shoulders’ on each side. The mean and
median are close together, and the standard deviation is
small in proportion to the mean. 



Collection of data from those free of diabetes may be more
problematic, but we would certainly seek to ensure that
ultimately there was no significant difference in the mean
ages of the two groups or the proportion of the two sexes. 

We can perform an analysis once data collection is
complete, and the most appropriate test is the Chi-squared
(χχ2) test. Of the 100 patients with diabetes, suppose that 26
have heart disease, while in the 100 control subjects, heart
disease is present in only 12. Effectively, therefore, we
compare 26% with 12%. The χ2 test gives us a probability that
the difference is real at P=0.012 (i.e., the probability that the
results are down to chance is just 1.2%, making it 98.8%
likely that the results are real, and are due to some genuine
difference). The result of P=0.012 is less than the cut-off
point of P=0.05 so our results support the hypothesis that
diabetes is associated with excess heart disease – an
established finding in human pathology.

Additional methods of analysis

While generally not part of a biomedical scientist’s 
day-to-day work, data collection, presentation and analysis
will be a familiar series of processes. Table 3 summarises the

major components of these aspects of good analytical
practice. The second part of this article will describe
additional methods of analysis that are required by more
complex data sets, and will conclude with recommendations
for authors who are considering submitting their data to this
journal.

Brian Nation is Editor of the British Journal of Biomedical
Science. Andrew Blann is a member of the Editorial Board and 
a Fellow of the Royal Statistics Society.
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Paired t-test
Used to search for a difference between two data sets from
the same individual that are linked, perhaps in time (e.g.,
blood pressure before and after an intervention) or
physically (e.g., the circumference of the left versus the
right calf muscle, or level of substance ‘x’ in serum
compared to plasma). However, it is important that the
difference has a normal distribution.

Pearson’s correlation method
Used when attempting to correlate two sets of data that
have a normal distribution.

Power calculation
Method of determining how many patients or persons to
recruit, or observations to make, in order to be sure that the
difference found (if present) will give a reliable outcome.

Probability (P)
This defines whether or not a different is due to a real effect
(e.g., of pathology) or is simply due to chance or
coincidence. We take a probability of greater than 19 in 20
(i.e., P>0.95) to be sufficient evidence that the effect is
genuine, and we accept a rate of less than 1 in 20 
(i.e., P<0.05) that the difference is spurious. It follows that
we are convinced that an effect is spurious if the probability
is 1 in 10 (i.e., P=0.1) but will be convinced if the chance of
the difference is 1 in 30 (i.e., P=0.033).

Qualitative 
Refers to information expressed in words, letters,
expressions etc. 

Quantitative 
Refers to information expressed in numbers.

Reference range
A set of data from a defined group of subjects (often
healthy, and can be referred to as controls) against which a
data point from an individual or a second group of
individuals is compared.

Spearman’s correlation method
Used when attempting to correlate two sets of data where
one or both have a non-normal distribution.

Standard deviation (SD)
A measure of the spread (variance) of a data set. Put simply,
it represents the ‘shape’ of a set of data that is normally
distributed. So, if a data set has a mean of 100 and an SD of
5, is it reasonably ‘sharp’. But if the data set has a mean of
100 and an SD of 20, it is much more ‘rounded’. Generally,
mean±2SD should define 95% of a population. 

Student’s t-test
Also known as t-test. It is used to compare two sets of data
whose distribution is normal. Both the mean and standard
deviation are required.

Variance
The extent to which continuous data are clustered close to
the central point or are more spread out. The measure of
variance is the standard deviation when the data are
distributed normally. Variance is expressed as the inter-
quartile range when the data are non-normally distributed.

Wilcoxon’s test
Like the paired t-test, this is used to search for a difference
between two data sets from the same individual that are
linked. However, it is important that the difference between
the two sets has a non-normal distribution.


