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Introduction 

Toluene is an organic solvent that is produced worldwide in
large quantities for use in a variety of industrial and
commercial applications. For example, it is used widely in
paints, varnishes, inks, adhesives and plastics.1 Toluene has a
high potential for abuse, primarily through inhaling
products such as glue or spray paints.2,3 Also, it has addictive
properties, so exposure to toluene-based organic solvents is
an important public health problem.4

It is well-recognised that solvent abuse can result in
sudden death and can produce pathological changes in the
liver, kidney, brain, heart and lungs.5,6 Moreover, its influence
on neurons and the central nervous system has been
reported.7–10 Recently, it has been documented that brief
repeated prenatal exposure to toluene causes growth
restriction, malformation and impairment of behavioural
development in rats.3 In addition, the male reproductive
system is affected.11 However, the pathophysiological
mechanisms responsible for impairment of organ function
are not clearly understood.1,12–14

This study is designated to assess the effect of chronic
toluene exposure (15, 30 and 45 days) on the oxidative stress
and antioxidant status of different organs in the rat. In
addition, cyclooxygenase-2 and caspase-3 activities (as a
marker of apoptosis) are studied. 

Materials and methods 

The study was conducted on 40 adult male albino rats
(100–140 g) kept in an air-conditioned room (23±2˚C) under
a 12-h light/12-h dark cycle. Food and tap water were
available ad libitum. Rats were divided randomly into four
groups of 10 rats, comprising a control group (group I) and
three further groups each receiving a single daily dose of
toluene (650 mg/kg) for 15 days (group II), 30 days (group III)
and 45 days (group IV). This level of exposure aimed to
produce blood toluene concentrations equivalent to those
obtained by inhalation of toluene for 3h at > 4100 ppm.15 The

animals were then sacrificed and the liver, kidney, testis and
brain (cortex and cerebellum) were separated. 

The organs were washed in phosphate-buffered saline
and homogenised in ice-cold 20 mmol/L Tris-HCl-buffered
saline (pH 7.4) to produce a 1 in 10 (w/v) homogenate.
Homogenates were centrifuged at 10,000 xg for 10 min at
4˚C and the supernatant were used to determine the end
products of lipid peroxidation by the thiobarbituric acid
reactive substance (TBARS) assay.16 In this assay, the
malondialdehyde is heated with thiobarbituric acid (TBA) at
low pH to produce a pink chromogen with a maximum
absorbance at 532 nm. 
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Glutathione and glutathione disulphide (GSSG) were
assayed using the method of Griffith,17 which depends on
the oxidation of GSH by 5,5 /-dithiobis-(2-nitrobenzoic acid)
(DTNB) to yield GSSG and 5-thio-2-nitrobenzoic acid (TNB).
Oxidised GSSG is reduced enzymatically by the action of
glutathione reductase and NADPH to regenerate GSH. The
rate of TNB formation is monitored at 412 nm and is
proportional to the sum of GSH and GSSG present in the
sample. The GSSG content is determined by the same assay
used for total glutathione, but the reduced glutathione is
bound by 2-vinylpyridine. 

Glutathione reductase (GR) activity was assayed using the
method of Smith et al.,18 which is based on the reduction of
DTNB by GSH to produce GSSG followed by the release of
TNB monitored at 412 nm. Glutathione-S-transferase (GST)
activity was determined by the method modified by
Carmagnol et al.,19 which is based on GST-catalysed
conjugation of GSH with 1-chloro-2,4-dinitrobenzene
(CDNB), measured at 340 nm. 

Glutathione peroxidase activity was determined by the
method of Flohe and Gunzler.20 This method is based on
monitoring the generation of GSH from GSSG by the action
of glutathione reductase in the presence of NADPH. Total
GPx activity was measured using cumene hydroperoxide as
the substrate. 

Superoxide dismutase (SOD) activity was determined by
the pyrogallol method of Marklund and Marklund.21 This
depends on the spontaneous autoxidation of pyrogallol at
alkaline pH, resulting in the production of superoxide anion
radicals (O·2¯). These radicals enhance the autoxidation of
pyrogallol, which manifests itself by an increase in
absorbance at 420 nm. The presence of SOD in the reaction
leads to the removal of superoxide anion radicals and the
inhibition of pyrogallol autoxidation. 

Activity of the proinflammatory marker cyclooxygenase-2
was assayed by a kit obtained from the Cayman Chemical
Company (Ann Arbor, Michigan, USA). It measures the
peroxidase activity of cyclooxygenase. Peroxidase activity
was assayed colorimetrically by monitoring the appearance
of oxidised N,N,N’,N’,-tetramethyl-p-phenylenediamine
(TMPD) at 590 nm.22 Activity of the apoptosis marker
caspase-323 was assayed using a substrate (Ac-DEVD)
labelled with the chromophore p-nitroaniline (pNA), 
which is released from the substrate when cleaved by
caspase-3. Free pNA produces a yellow colour that is
monitored at 405 nm. 

All data are presented as mean±SD. All analyses were
carried out using the SPSS software. Student’s t test and
ANOVA were used to assess differences. P<0.05 was
considered to be statistically significant. 

Results

The results of the study of lipid peroxidation end products,
measured as TBARS, are summarised in Figure 1, which
shows a time-dependent increase in all the organs following
toluene exposure. 

Reduced glutathione in the liver, kidney, testis and
cerebellum showed a time-dependent decline following
toluene exposure, with the lowest levels observed after 
45 days (Fig. 2). However, depletion of GSH in the brain
cortex reached its lowest level after 15 days of toluene
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Fig. 1. Change in level of TBARS in different organs of the rat 
in response to different durations of toluene exposure. 
*Significant difference from control values (P<0.05).
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Fig. 2. Change in level of reduced glutathione in different organs 
of the rat in response to different durations of toluene exposure.
*Significant difference from control values (P<0.05).
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Fig. 3. Change in level of GSSG in different organs of the rat 
in response to different durations of toluene exposure. 
*Significant difference from control values (P<0.05).



exposure, and no further change was seen thereafter. In
contrast to GSH, GSSG levels showed a time-course increase
in all the organs studied (Fig. 3). 

The redox state, as measured by the GSH:GSSG ratio,
showed severe derangement following toluene exposure
(Fig 4), with a time-dependent decline (i.e., shift towards an
oxidising state) following toluene exposure in all organs. 

Toluene exposure resulted in change to the activities of
glutathione metabolising enzymes. Liver, brain cortex and
cerebellum showed a prominent inhibition of GR activity.
(Fig. 5), while GST activity showed a small gradual increase
with duration of toluene exposure, especially in the liver
(Fig. 6). The liver and kidney showed no significant changes
in GPx activity following toluene exposure, while the testis,
brain cortex and cerebellum showed only gradual inhibition
(Fig. 7).

Activity of the antioxidant enzyme SOD showed no
significant change in the liver, kidney and testis across the
entire exposure period (Fig. 8). In contrast, brain cortex and
cerebellum showed a significant, time-dependent elevation
in SOD activity. Finally, with the exception of activity in the
rat testis, COX-2 displayed no significant change following
toluene exposure (Fig. 9). 

The apoptotic marker caspase-3 activity was greatly
increased in the brain cortex and cerebellum (Fig 10),
particularly after 15 days’ exposure to toluene. Liver was the
only other tissue that showed an increase in caspase-3
activity, and this was apparent only after 45 days’ exposure
to toluene. 

Discussion 

There is evidence to suggest that organic solvents express
their toxicity through ROS-induced cell damage.7,8 The
present study confirms the role of oxidative stress and an
altered redox state in toluene-induced toxicity, as indicated
by elevated lipid peroxidation, depletion of GSH, a
derangement in antioxidant enzymes and an increase in
apoptosis in different organs of the rat. 
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Fig. 4. Change in level of GSH:GSSG ratio in different organs of the
rat in response to different durations of toluene exposure. 
*Significant difference from control values (P<0.05).
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Fig. 5. Change in glutathione reductase activity in different organs 
of the rat in response to different durations of toluene exposure.
*Significant difference from control values (P<0.05).

0

0.2

0.4

0.6

0.8

1

1.2

0 15 30 45
Days o toluene exposure

GS
SG

re
du
ct
as
ea
ct
ivi
ty
(U
/m
g
p r
ot
ein
)

*
*

*
*

*
*

*

*

*

*

*
*

0

5

10

15

20

25

30

0 15 30 45
Days of toluene exposure

GS
T
Ac
tiv
ity
( U
/ m
g
p r
ot
ein

) *
**

f

Fig. 6. Change in GST activity in different organs of the rat 
in response to different durations of toluene exposure.
*Significant difference from control values (P<0.05).
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Fig. 7. Change in glutathione peroxidise activity in different organs 
of the rat in response to different durations of toluene exposure.
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It is well documented that in vivo and in vitro exposure to
toluene leads to ROS formation in rat brain, liver, kidney and
lung.24 In line with the present results, it has been reported
that toluene-containing thinners increase lipid peroxidation
in different brain regions in the rat.7 A human study also
showed increased malondialdehyde levels in the serum of
people working with paint thinner.25

Considerable evidence has accumulated to show that
agents which alter GSH concentration affect the activity and
transcription of detoxification enzymes, cell proliferation
and apoptosis.26,27 In principle, GSH, GSSG or the redox state
of the GSH:GSSG couple provide a mechanistic control 
or signal for these phenotypic changes. In line with this, 
the present study clearly shows that toluene exposure
resulted in time-dependent depletion of GSH and elevation
of GSSG in various rat organs. These changes are associated
with increased GST activity, especially in the liver and 
brain. 

The derangement in redox state of the GSH:GSSG couple
resulted in a shift towards an oxidising state, which drives
the cells along an apoptotic pathway. In the present study,
the highest rate of apoptosis, as indicated by caspase-3
activation, was found in the brain cortex and cerebellum.
These results suggest that brain cells are more sensitive to
toluene toxicity or toluene-induced apoptosis. 

It is reported that apoptosis is not dependent on GSH but
is dependent on the GSH:GSSG ratio,28 which confirms the
findings of the present study. The observed increase in
apoptosis in different regions of the brain may explain the
effect of toluene exposure in documented central nervous
system conditions such as cerebellar ataxia, diffuse cortical
atrophy, tremors, convulsions, memory function
deterioration and dementia.1,29–32

The observed increase in SOD activity, together with a
reduction in GPx activity, may result in the accumulation of
hydrogen peroxide (H2O2) in different organs. This effect
was more prominent in the brain cortex and cerebellum, and
increased ROS levels may also explain the increased rate of
apoptosis.

The highest level of TBARS was observed in the liver. This
can be explained partially by increased oxidative stress due
to toluene toxicity and also by the metabolic load on the liver
to eliminate toluene by excretion as benzyl mercapturic acid
through oxidation by CYP2EL and conjugation with GSH.33

With the exception of COX-2 activity, the testis showed
only minor changes in the studied parameters, which is
consistent with other reports.34 Increased COX-2 activity in
the tests conducted here may indicate a state of
inflammation, particularly in the brain cortex in response to
increased ROS generation following toluene exposure.

From the present study, it is possible to conclude that
oxidative stress, derangement of the GSH:GSSG couple,
induced chronic inflammatory change and induced
apoptosis may play an essential role in toluene toxicity. 5
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