
Introduction

Chronic oral potassium intake above that ordinarily
available in foods (adaptation) causes reduction in blood
pressure in several models of hypertension in the rat,1-5 and
human studies support this. Unpublished data shows a
similar phenomenon in the normotensive rat. Some reports,6

however, indicate no change in arterial pressure after
potassium supplementation, although the protocols seem to
vary with the groups of workers. 

Mechanisms suggested to account for these findings
include increased endothelium-mediated relaxation5,7 and
increased sodium/potassium ATPase activity8 in the aorta of
rats given potassium-supplemented diets. 

Involvement of the endothelium might suggest a role for
an endothelium-derived relaxing factor, possibly nitric
oxide. Platelets are known to synthesise nitric oxide, which
has anti-aggregatory properties in these cells.9-11 They
contain SKCa, intermediate KCa, and Kv potassium channels,
and the presence of KATP has not been excluded completely.12

A reduced tendency for platelets to aggregate could result
in decreased blood viscosity and a reduction in the incidence
of intravascular blood clotting.13 However, no direct link has
been found between haematological function and potassium
supplementation, or alteration in platelet response following
the administration of potassium-channel modulators.
Furthermore, it is not known if potassium supplementation
could cause a change in platelet response to pro-aggregatory
agents. 

Here, we study the haematological influence of potassium
administered as potassium chloride in drinking water on
blood obtained from rats, in order to clarify some of the
current uncertainty.

Materials and methods 

Animals
Adult male Wistar rats weighing 220.3 ± 17.08 and 227.1 ±
26.7g (mean ± standard deviation) for the control and other
groups, respectively, were obtained from the Department of
Physiology, Ambrose Alli University, Ekpoma, Nigeria. They
were housed in standard cages, fed rat chow (Livestock
Feeds plc, Nigeria), allowed access to a particular drinking
fluid ad libitum, and exposed to a 12-h light-dark cycle. The
animals were allowed to acclimatise to these conditions for
two weeks, and then were divided into four groups
comprising controls, potassium-adapted (adapted), renal
hypertensive (RHP), and renal hypertensive with later
potassium adaptation (RHP-A).
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ABSTRACT

Dietary potassium is known to cause reduction in blood
pressure in several models of hypertension in human and
animal studies but its haematological effects are not
known. Here, experiments are designed to study the
haematological effects of potassium adaptation (achieved
by administering 0.75% KCl solution in drinking water for
five weeks) in Wistar rats. The animals are divided into
four groups comprising controls, potassium-adapted, renal
hypertensive, and renal hypertensive with later adaptation
to potassium. Packed cell volume (PCV) and platelet count
(PC), whole blood and plasma viscosities, and platelet
aggregation in the presence of sodium nitroprusside,
levcromakalim, and glibenclamide, are studied. Results
showed comparable PCV and PC in all groups. While
relative whole blood viscosity was significantly higher
(P<0.05) in the hypertensive group, relative plasma
viscosity was similar in all groups. Adaptation significantly
reduced (P<0.05) the tendency of platelets to aggregate to
collagen. Sodium nitroprusside significantly reduced
(P<0.05) the pro-aggregatory effects of collagen only in the
control group. Neither of the potassium-channel
modulators (levcromakalim, glibenclamide) caused any
significant alteration in platelet response to collagen at the
concentrations studied. Although these results suggest that
potassium adaptation may not affect haemorheology, the
reduced ability of platelets to aggregate – by mechanisms
not clearly understood – has implications for reduced
thromboembolism and the attendant cardiovascular
sequelae. 
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Potassium adaptation was achieved by giving the animals
0.75% potassium chloride for five weeks. Renal
hypertension was induced by the method first described by
Grollman14 and used by Eferakeya and Osunkwo.15 Under
pentobarbitone anaesthesia (40mg/mL), a unilateral
nephrotomy was performed and the contralateral kidney
compressed in a figure-of-eight pattern by a ligature.
Thereafter, these rats were given 0.9% sodium chloride
solution in place of tap water for six weeks. In the RHP-A
group, 0.75% potassium chloride replaced normal saline for
five weeks after hypertension was established. 

Measurement of blood pressure
Mean arterial pressure (MAP) was measured directly in rats
anaesthetised with pentobarbitone (40 mg/kg [ip]) by
connecting a physiological pressure transducer (Bentley
Trandec, USA) to a heparinised cannula inserted into the
carotid artery. Animal body temperature was maintained at
36 ± 2˚C by means of an overhead lamp, around which a
thermometer was fitted, and respiration was facilitated by
tracheal intubation. Recordings were taken using a 
two-channel Gemini 7070 recorder (Ugo Basile, Italy).

Blood sample collection and haematological experiments
Rats were anaesthetised as previously described and blood
samples were collected via a carotid cannula into citrate or
EDTA (for aggregation studies) bottles. Samples were
maintained at 22˚C for 15 min and quantities of blood were
withdrawn for the particular experiments. Packed cell
volume (PCV) and platelet count (PC) were estimated in
platelet-rich plasma under phase-contrast microscope by the
method of Dacie and Lewis.16 Relative whole blood viscosity
(RWBV) and plasma viscosity (PV) were measured by the
method of Reid and Ugwu,17 described in detail by Famodu
et al.18

Platelet aggregation studies
Platelet aggregation was monitored using the method of Wu
and Hoak.19 Briefly, platelet aggregation was examined in
blood samples anticoagulated either with EDTA plus
formalin solution or EDTA plus phosphate buffer, and an
aggregation ratio was calculated. Blood (0.5 mL) was
withdrawn into two separate EDTA tubes, drugs were
added and then 2.5 mL of either formalin solution or buffer
were added. After thorough mixing, the tubes were stored at
22˚C for 15 min and then centrifuged at 150 xg for 8 min.
Platelet counts were performed on the two samples. 

Platelet aggregation was studied in this way in the
presence of i) 150 µg (60 µL of 2.5 mg/mL) collagen alone as
an aggregating agent; ii) 2.5 µmol/L (12.5 µL of 10-4M) sodium
nitroprusside (SNP), followed 10 min later by 150 µg
collagen; iii) 2.5 µmol/L (12.5 µL of 10-4M) levcromakalim
(LEV), followed 10 min later by 150 µg collagen; and iv) 
3 µmol/L (15 µL of 10-4M) glibenclamide (GLIB), followed 
10 min later by 150 µg collagen.

Subsequently, platelet aggregation ratios were calculated
for each of the samples. The doses of drugs (except collagen)
were based on the concentrations from our unpublished
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Fig. 1. The effect of potassium adaptation on relative whole blood
(RWBV) and plasma (RPV) viscosity (*P<0.05). The numbers
between the bars represent the number of animals from which blood
was obtained.

Table 1. Mean arterial pressure (MAP), packed cell volume (PCV)
and platelet count (PC) by group (n=5 in each group)

MAP (mmHg) PCV (%) PC (x103/µL)

Control 110.8 ± 2.8 32.0 ± 1.5 257.2 ± 25.6 

Adapted 95.6 ± 5.0* 33.2 ± 2.1 242.3 ± 19.0

RHP 138.2 ± 4.1 35.5 ± 1.7 262.5 ± 30.0

RHP-A 116.0 ± 4.4** 35.8 ± 3.0 259.0 ± 13.9

*P<0.01
**P<0.05

Fig. 2. The effect of potassium adaptation on
collagen-induced platelet aggregation (*P<0.05).
The numbers in the bars represent the number of
rats from which blood was drawn.



data that produced 70% relaxation (sodium nitroprusside
and levcromakalim), or inhibition of relaxation (gliben-
clamide) in isolated rat aorta.

Drugs
Sodium nitroprusside (Sigma, UK) was prepared fresh for
each experiment. Pentobarbitone sodium (Sigma) was
prepared weekly by dissolving in distilled water.
Glibenclamide and levcromakalim (Smith Kline Beecham,
UK) were freshly prepared in absolute and 70% ethanol,
respectively, with further dilutions carried out in 10%
ethanol-water mixture. Collagen (Behring Werke Ag
Marburg, Germany) was dissolved in distilled water. 

Statistical analyses
In all cases, data are presented as the mean ± standard error
of the mean (SEM). Comparisons were made where
appropriate by ANOVA with Tukey post hoc test (GraphPad
Prism Software). P<0.05 was regarded as significant.

Results

Effects on packed cell volume and platelet count
Table 1 shows the MAP, PCV and PC for the groups studied.
The protocol significantly reduced MAP in both
normotensive and hypertensive rats. No differences were
seen in PCV within the groups, suggesting that the protocol
had no effect on the parameter.

Effects on blood and plasma viscosity
The results are show in Figure 1. The RHP group showed a
higher RWBV (P<0.05), with a value of 5.30 ± 0.29. RPV did
not change significantly. RHP and RHP-A groups gave
values of 1.50 ± 0.09 and 1.58 ± 0.1, indicating that blood
and plasma rheological was not affected by adaptation. 

Effect on platelet aggregation
Adaptation appeared to decrease the pro-aggregatory effect of
collagen (Figure 2). Platelets from potassium-adapted rats
showed significantly higher aggregation ratios (0.84 ± 0.05, 
P < 0.05) than did the control (0.67 ± 0.05) and the RHP groups
(0.65 ± 0.02). The RHP-A group showed values similar to those
in the adapted group (0.81 ± 0.02), indicating facilitated
antiplatelet activity due to later exposure to potassium.

Effect of drugs on platelet aggregation
Addition of 150 µg collagen to blood containing 2.5 µmol/L
SNP did not produce a significant change in platelet
aggregation (Figure 3), except in the control group (from 0.67
± 0.06 to 0.83 ± 0.04, P<0.05). Overall, SNP appeared to
reduce the tendency of platelets to aggregate, but this did
not achieve significance. Values for collagen and SNP
followed by collagen were 0.84 ± 0.05 and 0.89 ± 0.01
(adapted), 0.65 ± 0.05 and 0.80 ± 0.06 (RHP), and 0.81 ± 0.02
and 0.84 ± 0.02 (RHP-A), respectively. 

Figure 4 shows the platelet response to collagen-induced
aggregation in the presence of levcromakalim. A pattern
similar to that obtained with SNP was seen; however, this
did not achieve significance. Platelet aggregation ratios for
the groups were 0.67 ± 0.06 and 0.80 ± 0.04 (control), 0.84 ±
0.05 and 0.88 ± 0.02 (adapted), 0.65 ± 0.05 and 0.75 ± 0. 0.03
(RHP), and 0.81 ± 0.02 and 0.86 ± 0.03 (RHP-A).

Glibenclamide appeared to enhance collagen-induced
platelet aggregation (Figure 5), but not significantly. Mean
aggregate ratios were lower in all but the RHP group as
follows: 0.67 ± 0.06 and 0.64 ± 0.02 (control), 0.84 ± 0.05 and
0.79 ± 0.02 (adapted), 0.65 ± 0.05 and 0.67 ± 0.06 (RHP), and
0.81 ± 0.02 and 0.78 ± 0.02 (RHP-A).

Discussion

Generally, diet provides the nutrients required for the
synthesis of the formed elements of blood, haemoglobin and
other plasma proteins. The roles of iron in haemoglobin
formation and of calcium as a coagulation factor are well
known, but less is known of the role of potassium. Thus,
while the BP-lowering effect of potassium adaptation is

BRITISH JOURNAL OF BIOMEDICAL SCIENCE 2002 59 (2)

Haematological influences of potassium adaptation in rats82

Fig. 3. Effect of 150 µg collagen on blood samples pretreated with
2.5 µmol/L SNP (*P<0.05).

Fig. 4. Effect of pretreatment with 2.5 µmol/L levcromakalim on
collagen-induced platelet aggregation.



supported by the results of this study, the short- and long-
term haematological consequences remain unknown.

In the present study, potassium adaptation did not affect
PCV or PC. A reduction in platelet count in patients with
pre-eclampsia has been reported20 but whether or not this
occurs in other hypertensive situations is not known. Taken
together, the absence of any obvious change among the
groups studied here provides a basis for comparison of the
effect of drugs. 

Hypertension has been reported to increase the
rheological properties of blood.21,22 This is consistent with the
current findings but the mechanisms underlying the
increased viscosity of blood has yet to be fully explained.
Increased fibrinogen levels and concomitant derangement
of fibrinolytic activity occur in hypertension and these may
account, at least in part, for this increase.22,23 However, other
workers24 have reported that blood viscosity and fibrinogen
concentration decrease in hypertension. Increased viscosity
leads to further elevation in BP, due to increased stasis and
peripheral resistance. Plasma viscosities in the other groups
were also similar, implying that arterial resistance,
particularly at capillary level, may be responsible for the
increased viscosity in the RHP group.

Although there are many methods available to study
platelet aggregation, the method used in the present study
was a manual one. Although regarded as a drawback, the
method is useful (if extreme care is taken) in situations
where facilities for more widely used methods are lacking. 

Platelets in potassium-adapted and RHP-A groups
showed a lower propensity to aggregate, and implies that
potassium adaptation is responsible. Whether or not
adaptation activates ATPase in the platelets is not known.

The effect of SNP on platelet activation has been reported
previously.11,25,26 Nitric oxide donating agents are known to
possess antiplatelet activity, and the mechanisms are diverse
and the subject of intensive research. So far, facilitation of 
the phosphorylation of thromboxane receptor by cGMP-
dependent protein kinase,27 decreased expression of 
P-selectin,28,29 fibrinogen binding in vitro and in vivo,28 and

inhibition of thrombin receptor-activating peptide-induced
phosphoinositide-3-kinase activity30 in human platelets have
all been suggested. 

In the present study, SNP reduced the tendency of
platelets to aggregate and this is consistent with the findings
of previous reports.11,26 The finding that SNP did not reduce
collagen-induced aggregation significantly in the potassium-
adapted group may be due to the fact that little original
aggregation was seen in this group. In the other groups the
concentrations of SNP and collagen might be important. 

This may also hold true for the influence of levcromakalim
pretreatment on collagen-induced platelet aggregation,
where results indicated a non-significant increase in platelet
aggregation ratios. Levcromakalim would be expected to
open potassium channels in platelets; however, previous
studies have not suggested any possible consequence of this.
Perhaps potassium-channel opening leads to
hyperpolarisation and a reduction in the ability of the
contractile apparatus (in the dense tubules) to initiate the
necessary platelet response.

If potassium-channel opening inhibits platelet
aggregation, closure of the channels might be pro-
aggregatory, and glibenclamide would be expected to
enhance collagen-induced aggregation. However, reductions
in platelet aggregation ratio were not significant in the
present study. No report is available on the influence of
potassium-channel blockade on platelet function. 

Impaired KCa channel function is seen in platelets from
patients with Alzheimer’s disease31 but the consequence of
this on platelet function is unknown. Once again, the
concentration of the blocker might be critical to the response. 

In conclusion, although these results suggest that
potassium adaptation may not affect haemorheology, the
reduced ability of platelets to aggregate – by mechanisms
not clearly understood – has implications for reduced
thromboembolism and the attendant cardiovascular
sequelae. In addition, potassium-channel modulating drugs
may, at high enough concentration, alter the response of
platelets to aggregating agents. �
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