
Introduction

Proteomics is the protein equivalent of genomics and has
captured the imagination of biomolecular scientists
worldwide. This has resulted in the establishment of the
Human Proteome Organisation (HUPO) in February 2001 to
increase public awareness of the human proteome project
and ‘engender a broader understanding of the importance
of proteomics and the opportunities it offers in the
diagnosis, prognosis and therapy of disease’
(http://www.hupo.org/). If proteomics fulfils its promise, it
will have a major impact on biomedical science.

The proteome was first defined in 1995 as ‘the entire
PROTEin complement expressed by a genOME, or by a cell
or tissue type1,2’. In unicellular organisms the proteome is the
entire protein complement expressed by the genome.1

In multicellular organisms the proteome is the summation of
a number of subproteomes, each corresponding to an
individual cell type.3-5

Proteomics is the study of proteomes and aims ‘to examine
the total protein complement encoded by a particular
genome4’ or, more specifically, ‘seeks to identify and
characterise the proteins present in a cell or tissue and define
their patterns of expression2’. As individual cells express only
a proportion of the genome, it is debatable whether or not
proteomics can be applied effectively to multicellular
systems in their entirety.6

In practice, the term proteomics has been more widely
interpreted: for example, ‘the large-scale study of proteins
usually by biochemical methods7’ and the determination of
‘the salient properties of each protein (e.g. abundance, state
of modification, involvement in multiprotein complexes,
etc.)8’. Originally, proteomics could be interpreted as ‘a
surrogate name for the technology of two-dimensional
electrophoresis (2-DE) and image analysis2,9’. However,
proteomics is now perceived as the natural successor to
genomics10-14 and, as such, is more specifically defined as ‘the
use of quantitative protein-level measurements of gene
expression to characterise biological processes (e.g. disease
processes, drug effects) and decipher the mechanisms of
gene expression control15’.

Proteomics has triggered ‘a renaissance in protein
biochemistry16’ and, as a consequence, its applications are
wide-ranging. Distinctions already have been made
between quantitative regulation proteomics,15 which
monitors changes in protein expression, and structural
proteomics, which maps protein complexes.17,18 The impact of
proteomics can be gauged by the appearance in 2001 of the
international journal Proteomics (http://www.wiley-
vch.de/publish/en/journals/alphabeticIndex/2120/).

Historical note

The human proteome project and its advisory body HUPO
are analogous to the human protein index (HPI) and its
respective ‘task force’ established 20 years ago.15 High-
resolution 2-DE was introduced in 197519-21 and widely
applied in biomedical science.22,23 In response to this, the HPI
was initiated to ‘detect, characterise and catalogue all human
proteins24-29’. As such, the aim of the HPI was similar to that
of the current human proteome project. 

Classical approach

Traditionally, proteins have been purified individually by
the sequential use of a range of fractionation methods, each
exploiting different physicochemical properties.29 The
fractionation methods (and separation parameters) include
centrifugation (density), precipitation (solvation), ion-
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exchange chromatography (electrostatic binding), gel
filtration (size) and electrophoresis (charge). Subsequently,
the purified protein is used to raise antibodies to develop
immunoassays for quantitative measurement of the
individual protein in biological fluids. This approach works
when bulk amounts of starting material are available and the
protein to be purified has a recognisable biological activity
by which recovery can be monitored.

However, the classical approach is unsuitable for
proteomics, in which the starting material tends to be scarce
(particularly if human) and a high proportion of the protein
complement is of unknown activity, thus making
monitoring difficult. Furthermore, the number of proteins
will exceed the separation capacity of the methods available29

and the prospect of developing immunoassays for each
protein is daunting. 

Two-dimensional electrophoresis approach

High-resolution 2-DE19-21 potentially can separate and
simultaneously purify up to 10 000 polypeptides in a single
analysis. Using only microgram amounts of sample, the
resultant 2-DE map can indicate the relative amounts of each
polypeptide. 

Briefly, proteins are dissociated into their constituent
polypeptides and separated by isoelectric focusing (IEF) –
electrophoresis in a pH gradient – according to isoelectric
point (pI; corresponding to a net charge of zero) in the first
dimension. This is followed by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) according to
relative molecular mass (Mr) in the second dimension
(Figure 1).

The 2-DE patterns are visualised using ultrasensitive
detection methods and analysed by computerised gel
scanning.2 The positions of the polypeptides are defined by
their pI and Mr values, which can be used as spot
coordinates on the resultant 2-DE map.2 However, the aspect
of 2-DE that defines proteomics is not the separation (which
has changed little in ten years) but rather the microchemical
methods used for protein identification.30,31 

Proteomics is based upon these methods and its success is
a measure of their development in recent years.

Protein identification
Polypeptides separated by 2-DE can be identified using
amino acid analysis,3,32-34 peptide-mass fingerprinting,35-43

amino acid analysis/peptide-mass fingerprinting,44

N-terminal sequence tag,45 N-terminal Edman micro-
sequencing,46 internal peptide Edman microsequencing,47-49

microsequencing by mass spectrometry (MS)50 and ladder
sequencing.51

Amino acid analysis involves acid hydrolysis of the
polypeptide (transferred to blotting membrane) followed by
derivatisation/chromatographic separation32,52 and selective
cross-matching of the amino acid composition with that of
known proteins in databases.3,33,34,53 The confidence of
identification is improved by simultaneous cross- matching
of both the amino acid composition and a 3-4 amino acid 
N-terminal ‘sequence tag’ determined by Edman
degradation.45,54

Peptide-mass fingerprinting involves MS of the protease-
cleaved polypeptide to generate peptide-mass profiles that
are selectively cross-matched against profiles derived
theoretically from known protein sequences or deduced
from DNA sequences.30,35-41 The MS involves electrospray
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Fig. 1. Silver stained 2-DE patterns of human serum (0.2 µL) after isoelectric focusing (IEF, first dimension) with Ampholine, pH range 5 – 7
(A). The resolution of high- and intermediate-molecular-weight polypeptides was improved by prolonging electrophoresis (SDS-PAGE) in the
second dimension (B). In this and subsequent 2-DE figures, the anode of the IEF gel is to the left and electrophoresis performed from top to
bottom.
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ionisation (ESI), MS or, more commonly, matrix-assisted laser
desorption ionisation-time of flight (MALDI-TOF) MS,
which is more sensitive and less prone to interference.36,37,39,41

In MALDI-TOF MS the polypeptide is co-crystallised in a
matrix of weak aromatic acids on a sample probe and
irradiated with a short-pulsed laser. Ionisation of the matrix
results in energy transfer and the release of ionised
polypeptides that are accelerated electrically (under
vacuum) into a field-free flight tube.41 Time of flight
corresponds to the time interval from triggering to detection
and is inversely related to peptide mass (i.e. the smallest
arrives first). 

In ESI-MS the sample is in solution (e.g. liquid
chromatography [LC] effluent in LC-MS) and passes
through a fine needle at high electric potential (5000 V) to
generate a spray of highly charged droplets. These desolvate
to eject the ions, which enter the inlet of a quadrupole
scanning mass analyser.41

In tandem-MS, selected ions (following LC-ESI-MS) are
fragmented by collision-induced dissociation and analysed
further by MS. The resulting MS/MS spectra are then
compared with predicted MS/MS spectra from protein
sequence databases using cluster analysis algorithms for
automated identification with high throughput.55

N-terminal sequencing is performed by determining the

MS profiles of the residual truncated peptides
(corresponding to sequential cycles of Edman degradation)
and identifying the released amino acids from the mass
differences of the ions.41 The methodology includes ‘post
source decay’ (PSD) MALDI-MS or ESI-MS/MS and the
principle of ladder sequencing (or nested peptide
sequencing) for analysis of isolated peptide fragments
(internal sequencing).51,56

Alternative degradation reagents (to the Edman reagent
phenylisothiocyanate) have been developed to permit
detection at higher sensitivity.41 In addition, sequentially
truncated C-terminal peptide fragments (C-terminal
sequencing) have been analysed by ESI-MS.57-59 The use of
MS for protein identification has been reviewed extensively,
with the emphasis upon recent developments.8,31,41-43,60-62

Briefly, the trend is towards automation, microchips and
new MS configurations. These include MALDI quadrupole
time of flight mass spectrometry (MALDI-Qq TOF MS),63,64)

tandem TOF65,66 and surface-enhanced laser desorption
ionisation (SELDI)-TOF MS, which exploits affinity capture
of selective proteins by using MS probes with derivatised
protein chip arrays.62,67
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Fig. 2. Home page (http://www.expasy.org/) of the Expert Protein
Analysis System (ExPASy) Molecular Biology Server of the Swiss
Institute of Bioinformatics. This proteomics server is dedicated to
protein analysis and provides hypertext links to protein databases,
tools/software packages and major molecular biology servers.
Reproduced with permission. Copyright: Swiss Institute of
Bioinformatics, Geneva, Switzerland.

Fig. 3. SWISS-2DPAGE reference map of cerebrospinal fluid
(http://www.expasy.org/cgi-bin/map2/def?CSF_HUMAN). This
annotated database includes different formats of the reference map.
The highlighted spots (+) can be clicked to reveal detailed
information on selected proteins. Reproduced with permission.
Copyright: Swiss Institute of Bioinformatics, Geneva, Switzerland.



Protein quantification
The 2-DE polypeptide patterns are visualised by protein
stains that include silver, Coomassie blue R-250, colloidal
gold, zinc imidazole, ponceau S, amido black, India Ink and
Stains-all.2 Proteins display a variable and non-linear
response. Consequently, staining is semi-quantitative and
does not indicate absolute protein amounts. 

Silver staining is used commonly for 2-DE reference maps
but is particularly problematic due to poor reproducibility
and variations in the kinetics of silver deposition.68,69

Fluorescent stains based on SYPRO dyes (and the formation
of luminescent ruthenium complexes) combine
ultrasensitive detection of protein with improved
performance characteristics and are fully compatible with
protein microchemical techniques.70-72

More accurate methods of determining relative protein
amount include radiolabelling. The proteins are labelled
prior to 2-DE and the polypeptides quantitated by liquid
scintillation counting or autoradiography.73-75 More recently,
the principle of stable isotope dilution has been exploited76

using whole-cell stable isotope labelling,77 isotope-coded
affinity tags (ICAT)78 or isotopic N-terminal labelling.79 The
protein samples to be compared are synthesised77 or
tagged78,79 so that one contains a heavy isotope and the other
a light one.76 The two samples are then mixed, fractionated
(by electrophoresis or affinity isolation), digested with
protease and then analysed by MS. The relative abundance
of the original proteins in the two samples is indicated by the
ratios of the lower and upper mass components of the
analyte pairs.76

Protein bioinformatics 
Proteomics exploits bioinformatics for the manipulation of
the 2-DE images, identification of the proteins and the
construction of interactive databases accessible on the
internet. The Expert Protein Analysis System (ExPASy) is an
excellent example of a proteomics server (Figure 2) and
provides links to many software tools
(http://www.expasy.org/)80,81. 

The 2-DE patterns (visualised by staining) are digitised
using a scanner (or camera) and the images manipulated
with software analysis packages such as TYCHO,82 ELSIE,83

GELLAB,84,85 QUEST86 and MELANIE.87,88 The software
removes streaking, adjusts background, enhances spot
detection, indicates relative amounts and facilitates cross-
matching (using ‘landmark’ spots) to generate the reference
maps and associated databases available on the internet.
Third-generation 2-DE software packages are user friendly,
run on low-cost general-purpose personal computers and
facilitate state-of-the-art image comparisons with statistical
analysis.87,88 

Software tools for protein identification are based upon
peptide mass spectra (e.g. MOWSE), peptide fragmentation
mass spectra (e.g. SEQUEST) and sequence tags (e.g.
TagIdent). These are available on the internet89-98 and
itemised in Table 1. Identification based upon cross-
referencing amino acid composition, protein sequence and
mass profile is indicated by a ranked list of candidate
proteins. Consequently, there is a risk of false-positive
identification and automated high-throughput analysis
incorporates quality control89 and simulation-based
significance testing99 to evaluate the search result. 

Proteomic databases incorporate annotated 2-DE
reference maps with interactive displays of information
relating to the identity, structure/function and
characterisation of individual polypeptide spots. SWISS-
2DPAGE100 is an excellent example of a 2-DE database
(http://www.expasy.org/ch2d/). It includes protein maps of
Escherichia coli, yeast, slime mould, Arabidopsis thaliana,
mouse tissues (liver, muscle, pancreas and adipose tissue)
and human tissues, body fluids and cell lines (e.g. blood
plasma/cells, cerebrospinal fluid [CSF], liver, kidney,
leukaemia cells and colorectal cells). 

The site is updated regularly, contains comprehensive
data on a wide range of 2-DE reference maps (e.g. CSF;
Figure 3) and provides a gateway for direct access to protein
identification tools (via ExPASy) and federated 2-DPAGE
databases (via WORLD-2DPAGE). The latter includes a wide
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Table 1. Software tools for protein identification

Software Key features URL Ref.

PepSea Protein identification by MS based on peptide http://195.41.108.38/PepSeaIntro.html 38,45
fragments and sequence tags

MOWSE Molecular weight search peptide mass database http://srs.hgmp.mrc.ac.uk/cgi-bin/mowse 36

SEQUEST Matches the tandem mass spectra of fragmented http://fields.scripps.edu/sequest/ 55
covalently modified peptides

MS-Fit Peptide mass and sequence tags with access http://prospector.ucsf.edu 90,91
MS-Tag to a range of tools for ‘mining’ sequence databases

PepFrag Combines different types of mass spectrometric information http://www.proteometric.com 92

TagIdent Multiple protein parameters for cross-species identification http://www.expasy.ch/tools/ 93-96 
PepIdent
MultiIdent 

Mascot Probability-based scoring algorithm combining mass http://www.matrixscience.com 97
and sequence data

ProFound An expert system using a Bayesian algorithm to rank proteins http://www.proteometric.com 98
according to multiple parameters including information 
relevant to peptide mapping experiment



range of human 2-DE databases,100-113 a selection of which are
itemised in Table 2.

Biomedical applications

The present era has been described as the ‘decade of
proteomics18’, and a billion dollar business is anticipated.14

Much of this investment will be in diagnostics and drug
development, with funding from biotechnology and
pharmaceutical companies. Consequently, proteomics is
likely to have a major impact on biomedical science and the
following sections review its application in medical
microbiology, cellular pathology, clinical chemistry,
haematology/immunology, pharmacology and toxicology. 

Medical microbiology
Proteomics has been described as functional genomics and,
as such, is particularly well suited to the study of
microorganisms because a large number of microbial whole
genome sequences are now available (The Institute for
Genomic Research [TIGR], URL: http://tigr.org/dtb/).
Microbial 2-DE databases of medical significance have been
established100,114-118 (Table 3) but reference maps based upon
well-characterised laboratory strains are of limited value in
studies of clinical isolates.119 The 2-DE patterns vary
according to the laboratory ‘type’, the growth phase and the
choice of growth conditions.119,120 

A good example of the application of proteomics has been
the detection and annotation of one-third of Haemophilus
influenzae genome within a three-year period.121,122 Such
studies indicate that microbial proteomes are unlikely to be

viewed on a single 2-DE gel and the completion of microbial
reference maps will require recourse to subcellular
fractionation and the use of overlapping narrow-range
(‘zoom’) immobilised pH gradients.121,122 The need for
narrow-range pH gradients was evident from early 2-DE
comparisons of the protein constituents of inner and outer
bacterial membranes123 (Figure 4). Bacterial outer membranes
are of particular biomedical significance as they interface the
organism/host, define pathogenicity and contribute to
antibiotic resistance.120

Proteomics has been applied in medical microbiology to
investigate taxonomy, identify virulence factors, evaluate the
host response and to study drug resistance.119,120 Early
applications of 2-DE to Neisseria gonorrhoeae,124 Mycoplasma
capricolum,125 M. pulmonis126 and Campylobacter pylori127

demonstrated a high level of discrimination, consistent with
taxonomic classification.124,125,127 Such studies included
subcellular fractionation for analysis of outer-membrane
proteins and flagellum-associated antigens.127 More recently,
proteomics has been applied to isolates of H. influenzae,116,128

Listeria spp.129 and Helicobacter pylori,130,131 with emphasis upon
computerised gel analysis129 and 2-DE databases116,131 (Table 3).

Virulent and avirulent strains have been compared to
detect virulence factors, in order to develop more effective
vaccines. Early 2-DE studies involved M. pneumoniae132 and
Brucella abortus.133 More recently, however, proteomics has
been used to compare virulent tuberculosis strains with BCG
vaccine strains of M. bovis.115,134-136 This work incorporated the
use of narrow pH ranges135 and resulted in the detection of
1800 spots136 and the establishment of a mycobacterial
proteome database115 (Table 3). 

Using 2-DE, the expression of an additional 10 proteins in
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Table 2. Human 2-DE databases

Website Key features URL Ref.

SWISS-2DPAGE Plasma, CSF, liver, kidney, blood cells and a http://www.expasy.org/ch2d/ 100
range of other cells/cell lines with direct access 
to WORLD-2DPAGE databases and services.

HEART-2DPAGE Ventricle, atrium in dilated cardiomyopathy http://userpage.chemie.fu-berlin.de/~pleiss/ 101

HSC-2DPAGE Ventricle with Flicker comparison facility http://www.harefield.nthames.nhs.uk/nhli/protein/index.html 102

MDC 2-DE Ventricle resolved by high performance http://www.mdc-berlin.de/~emu/heart/ 103
database large format gels

Danish 2-D Bladder cancer (including urine), keratinocytes http://biobase.dk/cgi-bin/celis/ 104
PAGE database and fibroblasts with human 2-DE gel gallery

SIENA-2DPAGE Breast carcinoma and amniotic fluid http://www.bio-mol.unisi.it/2d/2d.html 105,106

PMMA-2DPAGE Colorectal carcinoma http://www.pmma.pmfhk.cz/ 107

JPSL proteomic Breast carcinoma cell line http://www.ludwig.edu.au/jpsl/jpslhome.html 108
databases

BPP 2-DE Haematopoietic and lymphoid cell lines http://www-smbh.univ-paris13.fr/lbtp/ 109
database Biochemistry/biochimie/bque.htm

TMIG-2DPAGE Fibroblasts in studies on ageing http://proteome.tmig.or.jp/2D/header.html 110

BALF 2D database Bronchoalveolar lavage fluid in idiopathic http://www.umh.ac.be/~biochim/BALF2D.html 111
pulmonary fibrosis and hypersensitivity pneumonitis

Inner ear Perilymph http://oto.wustl.edu/thc/innerear2d.htm 112
protein database

Mitochondrial Isolated mitochondria http://www-dsv.cea.fr/thema/MitoPick/Mito2D.html 113
proteome 



BCG vaccine was indicated relative to virulent M. bovis and
M. tuberculosis.134 Subtractive genomic hybridisation then
was used to locate genetic differences between the three.
The introduction of a virulence-associated genome segment
(RD1) into the BCG genome resulted in expression of a
virulent-type 2-DE M. bovis profile, suggesting that RD1
suppresses protein synthesis in virulent mycobacteria.134

Proteome analysis of culture filtrate, cell wall and cytosol
has been used recently to establish a second proteome
database for M. tuberculosis117 (Table 3). Model systems
involving in vitro co-cultivation of bacteria and eukaryotic
cells137 provide a step towards the identification of specific
virulence determinants expressed only in vivo.119

Viral infection (and transformation) has been investigated
by 2-DE of tissue culture cell lines138-142 and proteomics used
to characterise ribosomal basic proteins associated with
herpes simplex virus type 1 infection.142

Proteomics has also been used to study the host response
to infection and identify new bacterial antigens for vaccine
development. The cellular and/or outer-membrane proteins
of H. pylori,143-145 Streptococcus pyogenes,146 Borrelia burgdorferi147

and Toxoplasma gondii148 have been separated by 2-DE and
immunoblotted with sera from infected patients to
characterise the antibody profile and locate the bacterial
antigens. In similar studies, proteomics has been applied to
culture filtrates to investigate the immunogenicity of 
M. tuberculosis.149-151

Drug resistance in microorganisms has been investigated
by comparing the protein expression patterns of drug-
sensitive and drug-resistant strains.152-155 Imipenem-resistant
Pseudomonas aeruginosa was characterised by reduced
amounts of an outer- membrane protein;152 rifampin-
resistant Neisseria meningitidis showed an acidic shift in the
pI of a protein Mr 18 900;119,153 while erythromycin-resistant 
S. pneumoniae (M phenotype) showed increased expression
of a basic isoform of glyceraldehyde-3-phosphate
dehydrogenase.154 These changes may be linked to
membrane-associated reduced permeability.152,153 2-DE of
Candida glabrata indicated that resistance to azole antifungal
agents may be associated with chromosome duplication,

increased expression of 25 proteins and down-regulation of
a further 76.155 

Cellular pathology
Eukaryotic cells present a major challenge to proteomics and
this is of particular significance to the human proteome
project. The task of integrating the protein complement and
expression of 252 different human cell types11 at all levels of
structural organisation and development, both in health and
disease, is daunting! To date, human proteomics has been
limited to specific applications in molecular anatomy and
pathological investigations of cancer or heart disease using
biopsies and tissue culture cell lines.

Molecular anatomy is the structural organisation of cells at
a molecular level in health and disease, and is a concept that
is ongoing. A human molecular anatomy (MAN) programme
was conceived in 1960,11 an HPI taskforce was established in
1980,11 and now the HUPO has been set up to promote the
human proteome project (http://www.hupo.org/).

The human proteome is complex and best considered as
the summation of the subproteomes corresponding to all
individual cell types.5 The problem is compounded,
however, by the fact that each subproteome comprises
fractions corresponding to the subcellular organelles,156

which contain subfractions corresponding to multiprotein
complexes.18

2-DE databases of isolated human mitochondria have
been established (Table 2 and http://www.mips.biochem.
mpg.de/proj/medgen/mitop/)113,157 and these incorporate
search facilities that include a ‘human disease catalogue’
specifying 110 human diseases associated with
mitochondrial protein abnormalities.157 A 2-DE database of
nuclei isolated from human liver cells has been established158

and can be accessed via the ExPASy server (Table 2).
Likewise, the nuclei of Burkitt’s lymphoma (BL60) cells have
been studied to identify apoptosis-associated proteins.159

Application of proteomics has shown similarities between
the nuclear matrix proteins of nuclei isolated from human
lymphocytes, cultured amniotic cells and liver tissue cells,160

but differences (including filament-forming components)
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Fig. 4. Silver stained 2-DE patterns of the inner (A) and outer (B,C) membrane fractions of Methylobacterium organophilum (2.5 µg protein)
after isoelectric focusing (first dimension) with Ampholine, pH range 3 – 10 (A,B). The resolution was improved by use of a narrow Ampholine
range (pH 4 – 6) for IEF in the first dimension (C).
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between those of isolated subtypes of human
haematopoietic cells and cultured leukaemia cells.161,162

Lysosomes isolated from human placenta have been
studied to compare the luminal and membrane proteins and
to establish a 2-DE map163 (http://www.health.adelaide.
edu.au/2Ddatabase/front2.htm). In novel applications, the
spliceosome complex of a human HeLa cell line has been
completely characterised (50% of the proteins being
identified via protein sequence databases and the remainder
via sequence tag databases)164 and sucrose density gradient
centrifugation used as ‘a third dimension’ prior to 2-DE.165 

Such studies are of fundamental importance in elucidating
the human proteome but subcellular fractionation and the
purification of individual organelles are notoriously
problematic.166 In addition, 2-DE fails to detect structurally
important high-molecular- weight proteins (Mr >200 000)4

and the isolated organelle approach does not reveal the
subcellular redistribution of proteins (e.g. kinases) that is
characteristic of the physiological response to stimuli and
the activation of regulatory pathways.4

A complementary approach is differential detergent
fractionation, which partitions cellular proteins into cytosol,
membrane/organelle, nuclear and cytoskeletal fractions
prior to electrophoretic analysis.4

Pathological investigations of cancer have involved 2-DE
comparison of benign and malignant tumours to improve
screening (i.e. tumour classification) and to identify specific
protein markers for early clinical diagnosis.167,168 Squamous
cell carcinoma (SCC) of the bladder has been studied
widely168,169 and a 2-DE database established104,170 (Table 2).
Analysis of the bladder urothelium (following cystectomy)
was used to investigate progressive differentiation from the
early stages of metaplasia to premalignant lesions and
invasive disease.171 This revealed three types of non-
keratinising metaplastic lesion that showed abnormal
protein expression (when compared to normal urothelium)
and these could be distinguished by immunowalking (i.e.
immunostaining of serial cryostat sections).171

Related studies have involved detection of an SCC-
associated calcium-binding protein, psoriasin (Mr 11 000; 
pI 6.2), as a potential biomarker,172,173 and comparison of
superficial transitional cell carcinomas with their primary
cultures.174

In addition, proteomics has been used to grade breast
tumours175,176 in order to investigate down-regulation of high-
molecular-weight tropomyosin isoforms,175 and to

demonstrate a highly heterogeneous pattern of gene
expression in malignant human breast carcinoma.176 2-DE
databases of human breast carcinoma and related cell lines
can be accessed on the internet177 (Table 2 and
http://www.anl.gov/CMB/PMG/projects/index_hbreast.html).

2-DE has also been used to compare benign and malignant
tumours of ovarian178,179 or prostatic origin.180,181 These studies
indicate that, in common with breast cancer, malignancy is
associated with increased expression of proliferating-cell
nuclear antigen (PCNA) and stress proteins (HSP90, pHSP60
and calreticulin). There is also a malignancy-associated
down-regulation of high-molecular-weight tropomyosin
isoforms.178-181

Proteins associated with individual cancers include
calgranulin B (Mr 13 000; pI 5.6) in colorectal cancer182 and
TAO1/TAO2 (Mr 35 000; similar pI) in lung
adenocarcinoma.183,184 The latter may prove valuable for
histocytological differentiation, with the potential to
distinguish primary lung malignancies from distant
metastases.183,184 Studies of renal cell carcinoma indicated a
malignancy-associated absence of ubiquinol cytochrome
reductase (UQCR) and mitochondrial NADH-ubiquinone
oxidoreductase complex I.185 2-DE of ovarian tumours
followed by multivariate analysis has indicated that this
approach has the potential to classify tumours using artificial
intelligence.179

Pathological investigations of heart disease have involved
2-DE comparison of healthy and diseased myocardium.
Early studies of normal and infarcted myocardium indicated
proteins (including myosin light chain) that were depleted
after acute myocardial infarction (AMI).186 More recently,
dilated cardiomyopathy (DCM) has been studied
extensively187,188 to establish the HEART 2DPAGE101 and HSC-
2DPAGE102 databases (Table 2). Comparison of DCM biopsies
with both donor heart samples and explanted hearts from
patients with ischaemic heart disease (IHD) has revealed
prominent changes in myosin light chain 2 and desmin,188

heat shock proteins hsp60189 and hsp27,190 and the apoptosis-
associated Bcl-2 family of proteins191 – findings which
indicate a future potential for proteomics in the study of
heart disease.192

Biopsies are an important source of material for
development of the human proteome project but the protein
complement is a composite of the subproteomes of the
constituent cell types and will be contaminated with plasma
proteins. An exciting development, however, is the analysis
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Table 3. Microbial 2-DE databases of medical significance

Website Organisms URL Ref.

SWISS-2DPAGE Escherichia coli http://www.expasy.ch/ch2d/ 100

SIENA-2DPAGE Chlamydia trachomatis http://www.bio-mol.unisi.it/2d/2d.html 114

Max Planck 2-DE Database Borrelia garinii, Helicobacter pylori, http://www.mpiib-berlin.mpg.de/2D-PAGE/ 115
Mycobacterium bovis, 
Mycobacterium tuberculosis

2-D PAGE Aberdeen Haemophilus influenzae http://www.abdn.ac.uk/~mmb023/2dhome.htm 116

SSI-2DPAGE Mycobacterium tuberculosis http://www.ssi.dk/en/forskning/tbimmun/tbhjemme.htm 117

Toxoplasma 2D database Toxoplasma gondii http://www-public.rz.uni-duesseldorf.de/~hfischer/ 118



mf.nih.gov/) has a unique ability to detect tumour-specific
marker proteins195,196 and promises to be a key feature of the
proteomic analysis of tissues.197,198

Clinical chemistry
2-DE has been applied widely to human body fluids to
detect protein markers of disease.22,23,199 Proteomic databases
have been established for blood plasma, CSF, urine and
amniotic fluid100,104,105 (Table 2). However, it is unlikely that the
protein complement of a body fluid constitutes a proteome,
in that it represents a varying proportion of incomplete
subproteomes (corresponding to different cell types)
modified by ageing effects, turnover and clearance
mechanisms. Body fluids show wide biological variation and
it is difficult to define a 2-DE reference map – of urine, for
example – that is representative of healthy individuals.

Early clinical applications of 2-DE have been reviewed
extensively.199 Our own work includes the demonstration in
human serum of subnormal amounts of mature
apolipoprotein A-I isoforms in familial dyslipo-
proteinaemia,200 heterogeneity of paraproteins in
myelomatosis,201 and time-course changes associated with
either abstinence following alcohol abuse202 or AMI.186

Alcohol abuse induced an abnormal heterogeneity of α1-
acid glycoprotein and α1-antitrypsin and enhancement of an
unidentified string of spots (Mr 30 000; pI 4.4-4.8).202 AMI
resulted in the appearance (and normalisation over a five-
day period) of abnormal polypeptides (Mr 13 000; pI 6.2-7.5)
tentatively identified as apo-serum amyloid A protein (an
acute phase reactant) and myosin light chain (Mr 27 000; 
pI 5.2).186

More recently, proteomics has been applied to perinatal
human plasma to characterise an acute-phase time-course
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Fig. 5. CBB-stained 2-DE patterns of pooled human urine (n = 9) corresponding to normal healthy individuals (A, 125 µg protein) and patients
with chronic renal failure (B, 160 µg protein) or end-stage renal failure (C, 160 µg protein). With B and C the central gel area of interest is
enlarged to enhance clarity. The identified proteins are: 1, albumin; 2, transferrin; 3, hemopexin; 4, α1-ß-glycoprotein; 5, Ig α chains; 6, α1-
antichymotrypsin; 7, α2-HS-glycoprotein (fetuin); 8, α1-antitrypsin; 9, GC-globulin; 10, Ig γ chains; 11, α1-acid glycoprotein (orosomucoid); 12,
haptoglobin ß chain; 13, apolipoprotein A-I; 14, Ig λ, κ light chains; 15, retino-binding protein; 16, haptoglobin α2 chain; 17, prealbumin; 18,
haptoglobin α IF and α IS chains; 19, apolipoprotein A-II; 20, Tamm-Horsfall mucoprotein (uromodulin); 21, Zn-α2-glycoprotein; 22, α1-
microglobulin; 23, human chorionic gonadotrophin (hCG) chain; and 24, ß2-microglobulin. Note: renal failure is associated with a progressive
increase in the proportion of apolipoprotein A-I (including abnormal isoforms), retinol binding protein, α1-microglobulin, ß2-microglobulin and an
unidentified cluster of spots (circled, C).

of individual cell types by laser capture microdissection
(LCM),193 which allows cells visualised in a tissue section to
be bound selectively to a thermoplastic film overlay
following activation of the film by a laser directed at the
cell.193

The technique’s potential has been investigated by
proteomic analysis of renal and cervical tissue,194 and in a
comparative study of normal squamous epithelium with
tumour cells in oesophageal cancer, 2-DE of 50 000
microdissected cells revealed 675 proteins which showed
tumour-specific changes and proteins present uniquely in
either the normal or abnormal material.195 This new LCM
technology (for laboratory protocols see http://cgap-
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response of serum amyloid A protein and the haptoglobins
in early-onset (<72 h) sepsis.203 Comparison of the serum
protein profiles of prostatic cancer patients with those of
benign prostate hyperplasia indicates a greater proportion of
protease inhibitor-free prostate-specific antigen, a potential
early marker for prostatic cancer.204 Proteomics also has
revealed that fibrinogen δ-chain dimer (cross-linked by
transglutaminase) is present in the blood plasma of tumour
patients, suggesting an association between cancer and
transglutaminase activity and a possible correlation between

plasma levels of the dimer and tumour-associated fibrin
deposition.205

Human CSF has been studied extensively by 2-DE and is
well represented on the SWISS-2DPAGE database (Table 2,
Figure. 3). Abnormal proteins have been detected in various
neurological diseases, including schizophrenia206 and
Creutzfeldt-Jacob disease (CJD).207,208 However, the clinical
specificity of these changes is doubtful as the schizophrenia-
associated proteins were detected in patients with herpes
simplex encephalitis, CJD, multiple sclerosis and Parkinson’s
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Fig. 6. CBB-stained 2-DE pattern of urine (30 µg protein) indicating light chain heterogeneity in Bence-Jones proteinuria. Arrowheads indicate
polypeptide spots corresponding to free immunoglobulin light chain (L) and light chain fragments (F) as identified by immunoblotting. The
pattern of light chain heterogeneity (A) varies from patient to patient and can be further characterised by recourse to narrow pH range ‘zoom’
gels (B). 

Fig. 7. Silver stained 2-DE patterns of 75 µL unconcentrated pooled urine (n = 10) from controls (A) and workers occupationally exposed to
cadmium for 5 – 24 years (B). Nephrotoxicity associated with tubular damage is characterised by an increase in the amount of a range of low
molecular weight proteins including 11, α1-acid glycoprotein (orosomucoid); 13, apolipoprotein A-I; 14, Ig λ, κ light chains; 15, retino-binding
protein; 22, α1-microglobulin; and 24, ß2-microglobulin.
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disease,206 and the two CJD-associated proteins (Mr 26 000; 
pI 5.2 and Mr 29 000; pI 5.1), were detected in 50% of patients
with herpes simplex encephalitis.207

The CJD-associated proteins (denoted 130/131) are
members of the 14-3-3 family of proteins and have been
exploited to develop a highly sensitive and specific
immunoblotting assay for CJD.208 The test was strongly
recommended for the diagnosis of CJD209,210 as it showed a
positive predictive value of 95% (and a negative predictive
value of 92%)209 and was favourably assessed relative to other
protein markers when applied to CSF samples from
suspected CJD cases.210 However, the validity of the 14-3-3
test has been questioned recently211,212 as it failed to
discriminate between CJD and non-CJD when false-positive
results were obtained with various degenerative and
secondary dementias unrelated to prion disease.211

Furthermore, 14-3-3 was only detected in 22 of 45 patients
with variant CJD.212

Nevertheless, CSF is known to contain many disease-
specific proteins213 (including tau, soluble amyloid protein
precursors, apolipoprotein E, acetylcholinesterase, neuron-
specific enolase and S-100 protein associated with
Alzheimer’s disease, Parkinson’s disease and depression)
and proteomics is likely to play a major role in the future
investigation of neuropsychiatric disorders.213,214

Human urine has been analysed extensively by 2-DE215

(Figure 5). Proteomics has been used to monitor and
characterise psoriasin (S100A7; Mr 11 000; pI 6.2), a calcium-
binding protein expressed by bladder SCCs, which is
detected in urine and provides a potential biomarker for
non-invasive follow-up of patients.168,169,172,173 Recently, SELDI
ProteinChip array-time of flight MS has been used as an
alternative to 2-DE for proteomic analysis of urine to detect
and characterise proteins (including β2-microglobulin) as
biomarkers of impending nephropathy.216

Surprisingly, proteomics has not been applied to
characterise the nephrotoxic effects of free immunoglobulin
light chain (LC) in Bence-Jones proteinuria (BJP).217

Nephrotoxicity is currently unpredictable; however,
proteomics could be exploited to correlate the
physicochemical characteristics of individual LCs (Figure 6)
with prognostic data to provide a predictive index. 

Haematology and immunology
2-DE has been used to map the proteins of erythrocytes,
leucocytes and platelets, and to detect the protein changes in
lymphocytes, lymphoblasts and myeloblasts associated with
Huntingdon’s disease, infectious mononucleosis, acute
myeloid leukaemia (AML), acute lymphoid leukaemia (ALL)
and chronic lymphocytic leukaemia.22,23,68 A similar approach
has been used to study differentiation of T-cell clones and to
study dysfibrinogenaemia and the heterogeneity of
paraproteins in myelomatosis and Waldenström’s
macroglobulinaemia.22,23,201 Proteomics has been used to
establish 2-DE databases for blood cells,100 haematopoietic
and lymphoid cell lines109 (Table 2) and Jurkat T-cells
(http://www.mpiib-berlin.mpg.de/2D-PAGE/)218 and to
catalogue tyrosine-phosphorylated human platelet
proteins.219

Pharmacology 
Proteomics is important in preclinical drug development.220

Proteins are the functional units of the cell and the prime

targets of most drugs.15 Proteomics involves global analysis
of the cellular response to drugs and is ideal for testing the
efficacy of novel compounds and detecting possible side
effects.15,221 A potential drug should reverse disease-
associated changes in protein expression and/or induce
changes consistent with a desired mode of action.
Proteomics offers an holistic approach to pharmacological
investigation222 and should rapidly promote drug
development while greatly improving our understanding of
the molecular basis of drug action.220,221

A 2-DE database of rat liver proteins has been
established223 and proteomics used to investigate the effects
of the cholesterol lowering drugs lovastatin224 and
fluvastatin.225 The affected proteins reflected changes in
cholesterol biosynthesis and carbohydrate metabolism but
also induced a stress response indicative of toxicity..224,225 In
similar studies, oltipraz (a cancer chemoprevention agent)
was shown to induce a detoxifying enzyme (aflatoxin B1

aldehyde reductase),226 and etomoxir (a potential antidiabetic
agent) induced adipose differentiation-related protein to
levels which correlated with the degree of liver steatosis.227

SDZ PGU 693 (a hypoglycaemic agent) caused
mitochondrial protein changes consistent with down-
regulation of fatty acid metabolism.228

Proteomics has been used to investigate the effects of
peroxisome proliferators (PPs) on mouse liver229-231 to identify
a protein (correlating with peroxisomal β-oxidation) for
potency testing,229 and to demonstrate decreased abundance
of selenium-binding protein 2, a cell growth regulation
factor.231 It has also been used to investigate acetaminophen
(APAP, paracetamol)-induced hepatotoxicity by comparison
of the effects of APAP and 3-acetamidophenol (AMAP, a non-
toxic regioisomer) on the 2-DE patterns of mouse liver
proteins.232

Such studies have resulted in the compilation of a
comparative drug effects database (currently incorporating
51 pharmaceutical agents) used to investigate the correlation
between chemical structure and reactivity, and identify sets
of proteins co-regulated (or anti-co-regulated) in response to
such agents.15 

In a comprehensive study co-ordinated by the US
National Cancer Institute, the 2-DE protein expression
patterns of 60 different cancer cell lines were screened
against 3989 compounds to establish a database for the
molecular pharmacology of cancer (http://discover.
nci.nih.gov/).233

More recently, the anticancer activity of bohemine (an
olomoucine-derived synthetic cyclin-dependent kinase
inhibitor) has been studied using a lymphoblastic leukaemia
cell line234. Five down-regulated proteins (α-enolase,
triosephosphate isomerase, eukaryotic initiation factor 5A
and α and β subunits of Rho GDP-dissociation inhibitor 1)
were identified, suggesting a mode of action related to
inhibition of protein synthesis (and/or glycolysis) rather than
inhibition of cyclin-dependent kinases.234 The response of
pancreatic carcinoma cells to the cytotoxic agent
daunorubicin has been investigated to demonstrate a dose-
dependent up-regulation of proteins.235

Other pharmacological studies incorporating proteomics
have been directed more specifically towards the chemical
characterisation of drug-related protein adducts236 and post-
translational modifications237 or the efficacy of drug delivery
using model carriers in vitro.238,239
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Toxicology
2-DE and proteomics have been used to study the toxic
effects of chemical pollutants in order to investigate
occupational or environmental exposure. Early 2-DE work
demonstrated serum protein changes in rats following
exposure to carbon tetrachloride, trichloroethylene or
dimethylformamide.240,241 More recently, proteomics has been
used to investigate inflammation induced experimentally in
rats by intramuscular injection of turpentine, with or
without daily doses of indomethacine.242,243 The resulting
acute-phase response affected a number of proteins
(including C-reactive protein, serine protease inhibitor-3 and
thiostatin) and these have been catalogued on a rat serum
database (http://linux.farma.unimi.it/index.html).242,243 In a
follow-up study of rat serum proteins, arthritis was shown to
mimic the acute-phase inflammatory response and the
effects of non-steroidal anti-inflammatory drugs
(indomethacine and ibuprofen) were investigated.244

2-DE has been used to investigate nephrotoxicity by
monitoring changes in the protein composition of human
urine following occupational exposure to cadmium245,246

(Figure 7). However, most proteomic studies have been
directed towards animal model systems. Thus, the renotoxic
effects of lead have been investigated and a more marked
effect demonstrated on the cortex (76 affected proteins) than
the medulla (13 affected proteins) of rat kidney.247

Occupational exposure to lead (at subchronic blood levels)
has been simulated in rabbits and kidney protein expression
investigated to demonstrate a dose-related response of a
range of proteins (possibly including variants of glutathione-
S-transferase).248

Occupational exposure to JP-8 jet fuel has been simulated
in mice249 and rats,250 and proteomic analysis of kidney (and
other tissues) used to demonstrate a moderate nephrotoxic
effect249 and significant alterations in 10-
formyltetrahydrofolate dehydrogenase.250 In addition,
proteomics has been used to investigate the nephrotoxic
effects of puromycin aminonucleoside in rats251 and
cyclosporine A (Cs-A) in different species.252,253 Cs-A down-
regulated a protein identified as calbindin-D-28kDa (a
vitamin D-dependent calcium-binding protein) in rat
kidney252 and in human kidney biopsy sections from Cs-A-
treated transplant recipients.253 Dogs and monkeys (which
are generally free of Cs-A-mediated nephrotoxicity) did not
show this effect.253 

Future prospects

High-resolution two-dimensional electrophoresis (2-DE) is a
very powerful technique for the separation of proteins and
will continue to underpin proteomics within the foreseeable
future.254,255 However, it is a semi-quantitative, technically
demanding method and relatively few studies have
included clinically significant sample numbers with
adequate quality control. While immobilised pH gradients
have improved reproducibility and the detection of basic
proteins,256 2-DE still fails to detect high-molecular-weight or
low abundancy proteins.4,6,255 Recourse to prefractionation16,255

or narrow pH range ‘zoom’ gels257,258 complicates sample
preparation and reduces throughput. Consequently, it has
been suggested that 2-DE be replaced by alternative
methods9,255 such as ICAT,78 protein arrays259,260 or the multi-

dimensional protein identification technique (MudPIT).261

If proteomics fulfils its promise, our understanding of
gene expression, post-translational modifications2,262-264 and
protein function11 will be enhanced considerably, with better
appreciation of the regulatory importance of subcellular
compartmentation,156 subcellular redistribution of proteins4

and protein-protein interactions.17 

Within biomedical science, cytology screening167,168 and the
typing of microorganisms119,120 will be vastly improved, and
there will be a proliferation of new drugs220,221 and more
effective vaccines.119 Clinical diagnosis will be
revolutionised,5 with early detection of disease by analysis of
new, more specific biomarkers10,14,265,266 using 2-DE clinical
molecular scanners267,268 and protein expression profiling by
microarray analysis.259,260 Sample throughput will be
improved by automation and miniaturisation through the
application of microchip technology.259,260,269,270

The human proteome project provides a focal point for the
future development of proteomics and a strong justification
for research funding. However, the level of funding required
will be colossal and it is impossible to predict whether or not
it will ever achieve its goal. Given the limited availability of
public funds, it is possible that human proteomics will
evolve within the private sector and, as a consequence,
commercial interests may dictate that it never be freely
accessed in its entirety. �
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